Интегрирование дробно рациональных функций теория. Интегрирование рациональных функций и метод неопределённых коэффициентов

Интегрирование рациональных функций Дробно – рациональная функция Простейшие рациональные дроби Разложение рациональной дроби на простейшие дроби Интегрирование простейших дробей Общее правило интегрирования рациональных дробей

многочлен степени n. Дробно – рациональная функция Дробно – рациональной функцией называется функция, равная отношению двух многочленов: Рациональная дробь называется правильной, если степень числителя меньше степени знаменателя, то есть m < n , в противном случае дробь называется неправильной. многочлен степени m Всякую неправильную рациональную дробь можно, путем деления числителя на знаменатель, представить в виде суммы многочлена L(x) и правильной рациональной дроби:)()()(x. Q x. P xf n m)()()(x. Q x. R x. L x. Q x. P

Дробно – рациональная функция Привести неправильную дробь к правильному виду: 2 95 4 x xx 95 4 xx 2 x 3 x 34 2 xx 952 3 xx 2 2 x 23 42 xx 954 2 xx x 4 xx 84 2 93 x 3 63 x 15 2 95 4 x xx 342 23 xxx 2 15 x

Простейшие рациональные дроби Правильные рациональные дроби вида: Называются простейшими рациональными дробями типов. ax A); 2(Nkk ax A k)04(2 2 qp qpxx NMx); 2; 04(2 2 Nkkqp qpxx NMx k V V,

Разложение рациональной дроби на простейшие дроби Теорема: Всякую правильную рациональную дробь, знаменатель которой разложен на множители: можно представить, притом единственным образом в виде суммы простейших дробей: s k qxpxxxxxx. Q)()()(22 2 11 2 21)()(x. Q x. P 1 xx A k k xx B)()(2 2 2 1 11 2 qxpx DCx 2 22 22 2 11)(qxpx Nx. M s ss qxpx Nx. M)(

Разложение рациональной дроби на простейшие дроби Поясним формулировку теоремы на следующих примерах: Для нахождения неопределенных коэффициентов A, B, C, D … применяют два метода: метод сравнивания коэффициентов и метод частных значений переменной. Первый метод рассмотрим на примере. 3 2)3)(2(4 xx x 2 x A 3 3 2 21)3()3(3 x B x B 1 2 x DCx 22 22 2 11)1(1 xx Nx. M)1(3 22 3 xx x 2 21 x A 22 2)1)(4(987 xxx xx 4 x

Разложение рациональной дроби на простейшие дроби Представить дробь в виде суммы простейших дробей: Приведем простейшие дроби к общему знаменателю Приравняем числители получившейся и исходной дробей Приравняем коэффициенты при одинаковых степенях х)52)(1(332 2 2 xxx xx 1 x A 52 2 xx CBx)52)(1()1)(()52(2 2 xxx x. CBxxx. A 33252 222 xx. CBx. Cx. Bx. AAx. Ax 35 32 2 0 1 2 CAx BAx 2 3 1 C B A 52 23 1 1 2 xx x x

Интегрирование простейших дробей Найдем интегралы от простейших рациональных дробей: Интегрирование дроби 3 типа рассмотрим на примере. dx ax A k dx qpxx NMx 2 ax axd A)(Cax. Aln)(axdax. A k C k ax. A k

Интегрирование простейших дробейdx xx x 102 13 2 dx xx x 9)12(13 2 dx x x 9)1(13 2 dtdx tx tx 1 1 dt t t 9 1)1(3 2 dt t t 9 23 2 9 322 t dtt 9 9 2 3 2 2 t td 33 2 t arctg. C t arctgt 33 2 9 ln 2 32 C x arctgxx 3 1 3 2 102 ln

Интегрирование простейших дробей Интеграл данного типа с помощью подстановки: приводится к сумме двух интегралов: Первый интеграл вычисляется методом внесения t под знак дифференциала. Второй интеграл вычисляется с помощью рекуррентной формулы: dx qpxx NMx k 2 V t p x 2 kk at dt N at dtt M 22122 1221222))(1(222 321 kkkk atk t k k aat dt

Интегрирование простейших дробей a = 1; k = 3 323)1(t dt tarctg t dt 1 21)1)(12(2222 322 1 21222 t t t dt)1(22 1 2 t t tarctg 2223)1)(13(2232 332 t t C t t tarctg 222)1(4)1(

Общее правило интегрирования рациональных дробей Если дробь неправильная, то представить ее в виде суммы многочлена и правильной дроби. Разложив знаменатель правильной рациональной дроби на множители, представить ее в виде суммы простейших дробей с неопределенными коэффициентами Найти неопределенные коэффициенты методом сравнения коэффициентов или методом частных значений переменной. Проинтегрировать многочлен и полученную сумму простейших дробей.

Пример Приведем дробь к правильному виду. dx xxx 23 35 2 442 35 xxxxxx 23 2 2 x 345 2 xxx 442 34 xxx x 2 234 242 xxx 4425 23 xxx xxx 23 35 2 442 xxx xx xx 23 2 2 2 48 52 5 xxx 5105 23 48 2 xx

Пример Разложим знаменатель правильной дроби на множители Представим дробь в виде суммы простейших дробей Найдем неопределенные коэффициенты методом частных значений переменной xxx xx 23 2 2 48 2 2)1(48 xx xx 2)1(1 x C x B x A 2 2)1()1(xx Cxx. Bxx. A 48)1()1(22 xx. Cxx. Bxx. A 5241 31 40 CBAx Cx Ax 3 12 4 C B A xxx xx 23 2 2 48 2)1(3 1 124 xxx

Пример dx xx 2 2)1(3 1 124 52 2 2)1(3 1 12452 x dx dxxdxdxx C x xxxx x 1 3 1 ln 12 ln

2., 5.
,

3.
, 6.
.

В интегралах 1-3 качествеu принимают. Тогда, послеn -кратного применения формулы (19) придем к одному из табличных интегралов

,
,
.

В интегралах 4-6 при дифференцировании упроститься трансцендентный множитель
,
или
, который следует принять заu .

Вычислить следующие интегралы.

Пример 7.

Пример 8.

Приведение интегралов к самому себе

Если подынтегральная функция
имеет вид:

,
,
и так далее,

то после двукратного интегрирования по частям получим выражение, содержащее исходный интеграл :

,

где
- некоторая постоянная.

Разрешая полученное уравнение относительно , получим формулу для вычисления исходного интеграла:

.

Этот случай применения метода интегрирования по частям называется «приведение интеграла к самому себе ».

Пример 9. Вычислить интеграл
.

В правой части стоит исходный интеграл . Перенеся его в левую часть, получим:

.

Пример 10. Вычислить интеграл
.

4.5. Интегрирование простейших правильных рациональных дробей

Определение. Простейшими правильными дробями I , II и III типов называются следующие дроби:

I . ;

II .
; (
- целое положительное число);

III .
; (корни знаменателя комплексные, то есть:
.

Рассмотрим интегралы от простейших дробей.

I .
; (20)

II . ; (21)

III .
;

Преобразуем числитель дроби таким образом, чтобы выделить в числителе слагаемое
, равное производной знаменателя.

Рассмотрим первый из двух полученных интегралов и сделаем в нем замену:

Во втором интеграле дополним знаменатель до полного квадрата:

Окончательно, интеграл от дроби третьего типа равен:

=
+
. (22)

Таким образом, интеграл от простейших дробей I-го типа выражается через логарифмы,II–го типа – через рациональные функции,III-го типа – через логарифмы и арктангенсы.

4.6.Интегрирование дробно-рациональных функций

Одним из классов функций, которые имеют интеграл, выраженный через элементарные функции, является класс алгебраических рациональных функций, то есть функций, получающихся в результате конечного числа алгебраических операций над аргументом.

Всякая рациональная функция
может быть представлена в виде отношения двух многочленов
и
:

. (23)

Будем предполагать, что многочлены не имеют общих корней.

Дробь вида (23) называется правильной , если степень числителя меньше степени знаменателя, то есть,m < n . В противном случае –неправильной .

Если дробь неправильная, то, разделив числитель на знаменатель (по правилу деления многочленов), представим дробь в виде суммы многочлена и правильной дроби:

, (24)

где
- многочлен,- правильная дробь, причем степень многочлена
- не выше степени (n -1).

Пример.

Так как интегрирование многочлена сводится к сумме табличных интегралов от степенной функции, то основная трудность при интегрировании рациональных дробей заключается в интегрировании правильных рациональных дробей.

В алгебре доказано, что всякая правильная дробь разлагается на сумму рассмотренных вышепростейших дробей, вид которых определяется корнями знаменателя
.

Рассмотрим три частных случая. Здесь и далее будем считать, что коэффициент при старшей степени знаменателя
равен единице=1, то есть
многочлен приведенный .

Случай 1. Корни знаменателя, то есть, корни
уравнения
=0, действительны и различны. Тогда знаменатель представим в виде произведения линейных множителей:

а правильная дробь разлагается на простейшие дроби I-готипа:

, (26)

где
– некоторые постоянные числа, которые находятся методом неопределенных коэффициентов.

Для этого необходимо:

1. Привести правую часть разложения (26) к общему знаменателю.

2. Приравнять коэффициенты при одинаковых степенях тождественных многочленов, стоящих в числителе левой и правой частей. Получим систему линейных уравнений для определения
.

3. Решить полученную систему и найти неопределенные коэффициенты
.

Тогда интеграл дробно-рациональной функции (26) будет равен сумме интегралов от простейших дробей I-готипа, вычисляемых по формуле (20).

Пример. Вычислить интеграл
.

Решение. Разложим знаменатель на множители, используя теорему Виета:

Тогда, подынтегральная функция разлагается на сумму простейших дробей:

.

х :

Запишем систему трех уравнений для нахождения
х в левой и правой частях:

.

Укажем более простой способ нахождения неопределенных коэффициентов, называемый методом частных значений .

Полагая в равенстве (27)
получим
, откуда
. Полагая
получим
. Наконец, полагая
получим
.

.

Случай 2. Корня знаменателя
действительны,но среди них есть кратные (равные) корни. Тогда знаменатель представим в виде произведения линейных множителей, входящих в произведение в той степени, какова кратность соответствующего корня:

где
.

Правильная дробь будет разлагаться сумму дробейI–го иII-го типов. Пусть, например,- корень знаменателя кратностиk , а все остальные (n - k ) корней различны.

Тогда разложение будет иметь вид:

Аналогично, если существуют другие кратные корни. Для некратных корней в разложение (28) входят простейшие дроби первого типа.

Пример. Вычислить интеграл
.

Решение. Представим дробь в виде суммы простейших дробей первого и второго рода с неопределенными коэффициентами:

.

Приведем правую часть к общему знаменателю и приравняем многочлены, стоящие в числителях левой и правой части:

В правой части приведем подобные при одинаковых степенях х :

Запишем систему четырех уравнений для нахождения
и. Для этого приравняем коэффициенты при одинаковых степеняхх в левой и правой части

.

Случай 3. Среди корней знаменателя
есть комплексные однократные корни. То есть, в разложение знаменателя входят множители второй степени
, не разложимые на действительные линейные множители, причем они не повторяются.

Тогда в разложении дроби каждому такому множителю будет соответствовать простейшая дробь IIIтипа. Линейным множителям соответствуют простейшие дробиI–го иII-го типов.

Пример. Вычислить интеграл
.

Решение.
.

.

.

Материал, изложенный в этой теме, опирается на сведения, представленные в теме "Рациональные дроби. Разложение рациональных дробей на элементарные (простейшие) дроби" . Очень советую хотя бы бегло просмотреть эту тему перед тем, как переходить к чтению данного материала. Кроме того, нам будет нужна таблица неопределенных интегралов .

Напомню пару терминов. О их шла речь в соответствующей теме , посему тут ограничусь краткой формулировкой.

Отношение двух многочленов $\frac{P_n(x)}{Q_m(x)}$ называется рациональной функцией или рациональной дробью. Рациональная дробь называется правильной , если $n < m$, т.е. если степень многочлена, стоящего в числителе, меньше степени многочлена, стоящего в знаменателе. В противном случае (если $n ≥ m$) дробь называется неправильной .

Элементарными (простейшими) рациональными дробями именуют рациональные дроби четырёх типов:

  1. $\frac{A}{x-a}$;
  2. $\frac{A}{(x-a)^n}$ ($n=2,3,4, \ldots$);
  3. $\frac{Mx+N}{x^2+px+q}$ ($p^2-4q < 0$);
  4. $\frac{Mx+N}{(x^2+px+q)^n}$ ($p^2-4q < 0$; $n=2,3,4,\ldots$).

Примечание (желательное для более полного понимания текста): показать\скрыть

Зачем нужно условие $p^2-4q < 0$ в дробях третьего и четвертого типов? Рассмотрим квадратное уравнение $x^2+px+q=0$. Дискриминант этого уравнения $D=p^2-4q$. По сути, условие $p^2-4q < 0$ означает, что $D < 0$. Если $D < 0$, то уравнение $x^2+px+q=0$ не имеет действительных корней. Т.е. выражение $x^2+px+q$ неразложимо на множители. Именно эта неразложимость нас и интересует.

Например, для выражения $x^2+5x+10$ получим: $p^2-4q=5^2-4\cdot 10=-15$. Так как $p^2-4q=-15 < 0$, то выражение $x^2+5x+10$ нельзя разложить на множители.

Кстати сказать, для этой проверки вовсе не обязательно, чтобы коэффициент перед $x^2$ равнялся 1. Например, для $5x^2+7x-3=0$ получим: $D=7^2-4\cdot 5 \cdot (-3)=109$. Так как $D > 0$, то выражение $5x^2+7x-3$ разложимо на множители.

Примеры рациональных дробей (правильных и неправильных), а также примеры разложения рациональной дроби на элементарные можно найти . Здесь нас будут интересовать лишь вопросы их интегрирования. Начнём с интегрирования элементарных дробей. Итак, каждый из четырёх типов указанных выше элементарных дробей несложно проинтегрировать, используя формулы, указанные ниже. Напомню, что при интегрировании дробей типа (2) и (4) предполагается $n=2,3,4,\ldots$. Формулы (3) и (4) требуют выполнение условия $p^2-4q < 0$.

\begin{equation} \int \frac{A}{x-a} dx=A\cdot \ln |x-a|+C \end{equation} \begin{equation} \int\frac{A}{(x-a)^n}dx=-\frac{A}{(n-1)(x-a)^{n-1}}+C \end{equation} \begin{equation} \int \frac{Mx+N}{x^2+px+q} dx= \frac{M}{2}\cdot \ln (x^2+px+q)+\frac{2N-Mp}{\sqrt{4q-p^2}}\arctg\frac{2x+p}{\sqrt{4q-p^2}}+C \end{equation}

Для $\int\frac{Mx+N}{(x^2+px+q)^n}dx$ делается замена $t=x+\frac{p}{2}$, после полученный интерал разбивается на два. Первый будет вычисляться с помощью внесения под знак дифференциала, а второй будет иметь вид $I_n=\int\frac{dt}{(t^2+a^2)^n}$. Этот интеграл берётся с помощью рекуррентного соотношения

\begin{equation} I_{n+1}=\frac{1}{2na^2}\frac{t}{(t^2+a^2)^n}+\frac{2n-1}{2na^2}I_n, \; n\in N \end{equation}

Вычисление такого интеграла разобрано в примере №7 (см. третью часть).

Схема вычисления интегралов от рациональных функций (рациональных дробей):

  1. Если подынтегральная дробь является элементарной, то применить формулы (1)-(4).
  2. Если подынтегральная дробь не является элементарной, то представить её в виде суммы элементарных дробей, а затем проинтегрировать, используя формулы (1)-(4).

Указанный выше алгоритм интегрирования рациональных дробей имеет неоспоримое достоинство - он универсален. Т.е. пользуясь этим алгоритмом можно проинтегрировать любую рациональную дробь. Именно поэтому почти все замены переменных в неопределённом интеграле (подстановки Эйлера, Чебышева, универсальная тригонометрическая подстановка) делаются с таким расчётом, чтобы после оной замены получить под интералом рациональную дробь. А к ней уже применить алгоритм. Непосредственное применение этого алгоритма разберём на примерах, предварительно сделав небольшое примечание.

$$ \int\frac{7dx}{x+9}=7\ln|x+9|+C. $$

В принципе, этот интеграл несложно получить без механического применения формулы . Если вынести константу $7$ за знак интеграла и учесть, что $dx=d(x+9)$, то получим:

$$ \int\frac{7dx}{x+9}=7\cdot \int\frac{dx}{x+9}=7\cdot \int\frac{d(x+9)}{x+9}=|u=x+9|=7\cdot\int\frac{du}{u}=7\ln|u|+C=7\ln|x+9|+C. $$

Для детальной информации рекомедую посмотреть тему . Там подробно поясняется, как решаются подобные интегралы. Кстати, формула доказывается теми же преобразованиями, что были применены в этом пункте при решении "вручную".

2) Вновь есть два пути: применить готовую формулу или обойтись без неё. Если применять формулу , то следует учесть, что коэффициент перед $x$ (число 4) придется убрать. Для этого оную четвёрку просто вынесем за скобки:

$$ \int\frac{11dx}{(4x+19)^8}=\int\frac{11dx}{\left(4\left(x+\frac{19}{4}\right)\right)^8}= \int\frac{11dx}{4^8\left(x+\frac{19}{4}\right)^8}=\int\frac{\frac{11}{4^8}dx}{\left(x+\frac{19}{4}\right)^8}. $$

Теперь настал черёд и для применения формулы :

$$ \int\frac{\frac{11}{4^8}dx}{\left(x+\frac{19}{4}\right)^8}=-\frac{\frac{11}{4^8}}{(8-1)\left(x+\frac{19}{4} \right)^{8-1}}+C= -\frac{\frac{11}{4^8}}{7\left(x+\frac{19}{4} \right)^7}+C=-\frac{11}{7\cdot 4^8 \left(x+\frac{19}{4} \right)^7}+C. $$

Можно обойтись и без применения формулы . И даже без вынесения константы $4$ за скобки. Если учесть, что $dx=\frac{1}{4}d(4x+19)$, то получим:

$$ \int\frac{11dx}{(4x+19)^8}=11\int\frac{dx}{(4x+19)^8}=\frac{11}{4}\int\frac{d(4x+19)}{(4x+19)^8}=|u=4x+19|=\\ =\frac{11}{4}\int\frac{du}{u^8}=\frac{11}{4}\int u^{-8}\;du=\frac{11}{4}\cdot\frac{u^{-8+1}}{-8+1}+C=\\ =\frac{11}{4}\cdot\frac{u^{-7}}{-7}+C=-\frac{11}{28}\cdot\frac{1}{u^7}+C=-\frac{11}{28(4x+19)^7}+C. $$

Подробные пояснения по нахождению подобных интегралов даны в теме "Интегрирование подстановкой (внесение под знак дифференциала)" .

3) Нам нужно проинтегрировать дробь $\frac{4x+7}{x^2+10x+34}$. Эта дробь имеет структуру $\frac{Mx+N}{x^2+px+q}$, где $M=4$, $N=7$, $p=10$, $q=34$. Однако чтобы убедиться, что это действительно элементарная дробь третьего типа, нужно проверить выполнение условия $p^2-4q < 0$. Так как $p^2-4q=10^2-4\cdot 34=-16 < 0$, то мы действительно имеем дело с интегрированием элементарной дроби третьего типа. Как и в предыдущих пунктах есть два пути для нахождения $\int\frac{4x+7}{x^2+10x+34}dx$. Первый путь - банально использовать формулу . Подставив в неё $M=4$, $N=7$, $p=10$, $q=34$ получим:

$$ \int\frac{4x+7}{x^2+10x+34}dx = \frac{4}{2}\cdot \ln (x^2+10x+34)+\frac{2\cdot 7-4\cdot 10}{\sqrt{4\cdot 34-10^2}} \arctg\frac{2x+10}{\sqrt{4\cdot 34-10^2}}+C=\\ =2\cdot \ln (x^2+10x+34)+\frac{-26}{\sqrt{36}} \arctg\frac{2x+10}{\sqrt{36}}+C =2\cdot \ln (x^2+10x+34)+\frac{-26}{6} \arctg\frac{2x+10}{6}+C=\\ =2\cdot \ln (x^2+10x+34)-\frac{13}{3} \arctg\frac{x+5}{3}+C. $$

Решим этот же пример, но без использования готовой формулы. Попробуем выделить в числителе производную знаменателя. Что это означает? Мы знаем, что $(x^2+10x+34)"=2x+10$. Именно выражение $2x+10$ нам и предстоит вычленить в числителе. Пока что числитель содержит лишь $4x+7$, но это ненадолго. Применим к числителю такое преобразование:

$$ 4x+7=2\cdot 2x+7=2\cdot (2x+10-10)+7=2\cdot(2x+10)-2\cdot 10+7=2\cdot(2x+10)-13. $$

Теперь в числителе появилось требуемое выражение $2x+10$. И наш интеграл можно переписать в таком виде:

$$ \int\frac{4x+7}{x^2+10x+34} dx= \int\frac{2\cdot(2x+10)-13}{x^2+10x+34}dx. $$

Разобьём подынтегральную дробь на две. Ну и, соответственно, сам интеграл тоже "раздвоим":

$$ \int\frac{2\cdot(2x+10)-13}{x^2+10x+34}dx=\int \left(\frac{2\cdot(2x+10)}{x^2+10x+34}-\frac{13}{x^2+10x+34} \right)\; dx=\\ =\int \frac{2\cdot(2x+10)}{x^2+10x+34}dx-\int\frac{13dx}{x^2+10x+34}=2\cdot\int \frac{(2x+10)dx}{x^2+10x+34}-13\cdot\int\frac{dx}{x^2+10x+34}. $$

Поговорим сперва про первый интеграл, т.е. про $\int \frac{(2x+10)dx}{x^2+10x+34}$. Так как $d(x^2+10x+34)=(x^2+10x+34)"dx=(2x+10)dx$, то в числителе подынтегральной дроби расположен дифференциал знаменателя. Короче говоря, вместо выражения $(2x+10)dx$ запишем $d(x^2+10x+34)$.

Теперь скажем пару слов и о втором интеграле. Выделим в знаменателе полный квадрат: $x^2+10x+34=(x+5)^2+9$. Кроме того, учтём $dx=d(x+5)$. Теперь полученную нами ранее сумму интегралов можно переписать в несколько ином виде:

$$ 2\cdot\int \frac{(2x+10)dx}{x^2+10x+34}-13\cdot\int\frac{dx}{x^2+10x+34} =2\cdot\int \frac{d(x^2+10x+34)}{x^2+10x+34}-13\cdot\int\frac{d(x+5)}{(x+5)^2+9}. $$

Если в первом интеграле сделать замену $u=x^2+10x+34$, то он примет вид $\int\frac{du}{u}$ и возьмётся простым применением второй формулы из . Что же касается второго интеграла, то для него осуществима замена $u=x+5$, после которой он примет вид $\int\frac{du}{u^2+9}$. Это чистейшей воды одиннадцатая формула из таблицы неопределенных интегралов . Итак, возвращаясь к сумме интегралов, будем иметь:

$$ 2\cdot\int \frac{d(x^2+10x+34)}{x^2+10x+34}-13\cdot\int\frac{d(x+5)}{(x+5)^2+9} =2\cdot\ln(x^2+10x+34)-\frac{13}{3}\arctg\frac{x+5}{3}+C. $$

Мы получили тот же ответ, что и при применении формулы , что, собственно говоря, неудивительно. Вообще, формула доказывается теми же методами, кои мы применяли для нахождения данного интеграла. Полагаю, что у внимательного читателя тут может возникнуть один вопрос, посему сформулирую его:

Вопрос №1

Если к интегралу $\int \frac{d(x^2+10x+34)}{x^2+10x+34}$ применять вторую формулу из таблицы неопределенных интегралов , то мы получим следующее:

$$ \int \frac{d(x^2+10x+34)}{x^2+10x+34}=|u=x^2+10x+34|=\int\frac{du}{u}=\ln|u|+C=\ln|x^2+10x+34|+C. $$

Почему же в решении отсутствовал модуль?

Ответ на вопрос №1

Вопрос совершенно закономерный. Модуль отсутствовал лишь потому, что выражение $x^2+10x+34$ при любом $x\in R$ больше нуля. Это совершенно несложно показать несколькими путями. Например, так как $x^2+10x+34=(x+5)^2+9$ и $(x+5)^2 ≥ 0$, то $(x+5)^2+9 > 0$. Можно рассудить и по-иному, не привлекая выделение полного квадрата. Так как $10^2-4\cdot 34=-16 < 0$, то $x^2+10x+34 > 0$ при любом $x\in R$ (если эта логическая цепочка вызывает удивление, советую посмотреть графический метод решения квадратных неравенств). В любом случае, так как $x^2+10x+34 > 0$, то $|x^2+10x+34|=x^2+10x+34$, т.е. вместо модуля можно использовать обычные скобки.

Все пункты примера №1 решены, осталось лишь записать ответ.

Ответ :

  1. $\int\frac{7dx}{x+9}=7\ln|x+9|+C$;
  2. $\int\frac{11dx}{(4x+19)^8}=-\frac{11}{28(4x+19)^7}+C$;
  3. $\int\frac{4x+7}{x^2+10x+34}dx=2\cdot\ln(x^2+10x+34)-\frac{13}{3}\arctg\frac{x+5}{3}+C$.

Пример №2

Найти интеграл $\int\frac{7x+12}{3x^2-5x-2}dx$.

На первый взгляд подынтегральая дробь $\frac{7x+12}{3x^2-5x-2}$ очень похожа на элементарную дробь третьего типа, т.е. на $\frac{Mx+N}{x^2+px+q}$. Кажется, что единcтвенное отличие - это коэффициент $3$ перед $x^2$, но ведь коэффициент и убрать недолго (за скобки вынести). Однако это сходство кажущееся. Для дроби $\frac{Mx+N}{x^2+px+q}$ обязательным является условие $p^2-4q < 0$, которое гарантирует, что знаменатель $x^2+px+q$ нельзя разложить на множители. Проверим, как обстоит дело с разложением на множители у знаменателя нашей дроби, т.е. у многочлена $3x^2-5x-2$.

У нас коэффициент перед $x^2$ не равен единице, посему проверить условие $p^2-4q < 0$ напрямую мы не можем. Однако тут нужно вспомнить, откуда взялось выражение $p^2-4q$. Это всего лишь дискриминант квадратного уравнения $x^2+px+q=0$. Если дискриминант меньше нуля, то выражение $x^2+px+q$ на множители не разложишь. Вычислим дискриминант многочлена $3x^2-5x-2$, расположенного в знаменателе нашей дроби: $D=(-5)^2-4\cdot 3\cdot(-2)=49$. Итак, $D > 0$, посему выражение $3x^2-5x-2$ можно разложить на множители. А это означает, что дробь $\frac{7x+12}{3x^2-5x-2}$ не является элементаной дробью третьего типа, и применять к интегралу $\int\frac{7x+12}{3x^2-5x-2}dx$ формулу нельзя.

Ну что же, если заданная рациональная дробь не является элементарной, то её нужно представить в виде суммы элементарных дробей, а затем проинтегрировать. Короче говоря, след воспользоваться . Как разложить рациональную дробь на элементарные подробно написано . Начнём с того, что разложим на множители знаменатель:

$$ 3x^2-5x-2=0;\\ \begin{aligned} & D=(-5)^2-4\cdot 3\cdot(-2)=49;\\ & x_1=\frac{-(-5)-\sqrt{49}}{2\cdot 3}=\frac{5-7}{6}=\frac{-2}{6}=-\frac{1}{3};\\ & x_2=\frac{-(-5)+\sqrt{49}}{2\cdot 3}=\frac{5+7}{6}=\frac{12}{6}=2.\\ \end{aligned}\\ 3x^2-5x-2=3\cdot\left(x-\left(-\frac{1}{3}\right)\right)\cdot (x-2)=3\cdot\left(x+\frac{1}{3}\right)(x-2). $$

Подынтеральную дробь представим в таком виде:

$$ \frac{7x+12}{3x^2-5x-2}=\frac{7x+12}{3\cdot\left(x+\frac{1}{3}\right)(x-2)}=\frac{\frac{7}{3}x+4}{\left(x+\frac{1}{3}\right)(x-2)}. $$

Теперь разложим дробь $\frac{\frac{7}{3}x+4}{\left(x+\frac{1}{3}\right)(x-2)}$ на элементарные:

$$ \frac{\frac{7}{3}x+4}{\left(x+\frac{1}{3}\right)(x-2)} =\frac{A}{x+\frac{1}{3}}+\frac{B}{x-2}=\frac{A(x-2)+B\left(x+\frac{1}{3}\right)}{\left(x+\frac{1}{3}\right)(x-2)};\\ \frac{7}{3}x+4=A(x-2)+B\left(x+\frac{1}{3}\right). $$

Чтобы найти коэффициенты $A$ и $B$ есть два стандартных пути: метод неопределённых коэффициентов и метод подстановки частных значений. Применим метод подстановки частных значений, подставляя $x=2$, а затем $x=-\frac{1}{3}$:

$$ \frac{7}{3}x+4=A(x-2)+B\left(x+\frac{1}{3}\right).\\ x=2;\; \frac{7}{3}\cdot 2+4=A(2-2)+B\left(2+\frac{1}{3}\right); \; \frac{26}{3}=\frac{7}{3}B;\; B=\frac{26}{7}.\\ x=-\frac{1}{3};\; \frac{7}{3}\cdot \left(-\frac{1}{3} \right)+4=A\left(-\frac{1}{3}-2\right)+B\left(-\frac{1}{3}+\frac{1}{3}\right); \; \frac{29}{9}=-\frac{7}{3}A;\; A=-\frac{29\cdot 3}{9\cdot 7}=-\frac{29}{21}.\\ $$

Так как коэффициенты найдены, осталось лишь записать готовое разложение:

$$ \frac{\frac{7}{3}x+4}{\left(x+\frac{1}{3}\right)(x-2)}=\frac{-\frac{29}{21}}{x+\frac{1}{3}}+\frac{\frac{26}{7}}{x-2}. $$

В принципе, можно такую запись оставить, но мне по душе более аккуратный вариант:

$$ \frac{\frac{7}{3}x+4}{\left(x+\frac{1}{3}\right)(x-2)}=-\frac{29}{21}\cdot\frac{1}{x+\frac{1}{3}}+\frac{26}{7}\cdot\frac{1}{x-2}. $$

Возвращаясь к исходному интегралу, подставим в него полученное разложение. Затем разобьём интеграл на два, и к каждому применим формулу . Константы я предпочитаю сразу выносить за знак интеграла:

$$ \int\frac{7x+12}{3x^2-5x-2}dx =\int\left(-\frac{29}{21}\cdot\frac{1}{x+\frac{1}{3}}+\frac{26}{7}\cdot\frac{1}{x-2}\right)dx=\\ =\int\left(-\frac{29}{21}\cdot\frac{1}{x+\frac{1}{3}}\right)dx+\int\left(\frac{26}{7}\cdot\frac{1}{x-2}\right)dx =-\frac{29}{21}\cdot\int\frac{dx}{x+\frac{1}{3}}+\frac{26}{7}\cdot\int\frac{dx}{x-2}dx=\\ =-\frac{29}{21}\cdot\ln\left|x+\frac{1}{3}\right|+\frac{26}{7}\cdot\ln|x-2|+C. $$

Ответ : $\int\frac{7x+12}{3x^2-5x-2}dx=-\frac{29}{21}\cdot\ln\left|x+\frac{1}{3}\right|+\frac{26}{7}\cdot\ln|x-2|+C$.

Пример №3

Найти интеграл $\int\frac{x^2-38x+157}{(x-1)(x+4)(x-9)}dx$.

Нам нужно проинтегрировать дробь $\frac{x^2-38x+157}{(x-1)(x+4)(x-9)}$. В числителе расположен многочлен второй степени, а в знаменателе - многочлен третьей степени. Так как степень многочлена в числителе меньше степени многочлена в знаменателе, т.е. $2 < 3$, то подынтегральная дробь является правильной. Разложение этой дроби на элементарные (простейшие) было получено в примере №3 на странице, посвящённой разложению рациональных дробей на элементарные. Полученное разложение таково:

$$ \frac{x^2-38x+157}{(x-1)(x+4)(x-9)}=-\frac{3}{x-1}+\frac{5}{x+4}-\frac{1}{x-9}. $$

Нам останется только разбить заданный интеграл на три, и к каждому применить формулу . Константы я предпочитаю сразу выносить за знак интеграла:

$$ \int\frac{x^2-38x+157}{(x-1)(x+4)(x-9)}dx=\int\left(-\frac{3}{x-1}+\frac{5}{x+4}-\frac{1}{x-9} \right)dx=\\=-3\cdot\int\frac{dx}{x-1}+ 5\cdot\int\frac{dx}{x+4}-\int\frac{dx}{x-9}=-3\ln|x-1|+5\ln|x+4|-\ln|x-9|+C. $$

Ответ : $\int\frac{x^2-38x+157}{(x-1)(x+4)(x-9)}dx=-3\ln|x-1|+5\ln|x+4|-\ln|x-9|+C$.

Продолжение разбора примеров этой темы расположено во второй части.

Интегрирование дробно-рациональной функции.
Метод неопределенных коэффициентов

Продолжаем заниматься интегрированием дробей. Интегралы от некоторых видов дробей мы уже рассмотрели на уроке , и этот урок в некотором смысле можно считать продолжением. Для успешного понимания материала необходимы базовые навыки интегрирования, поэтому если Вы только приступили к изучению интегралов, то есть, являетесь чайником, то необходимо начать со статьи Неопределенный интеграл. Примеры решений .

Как ни странно, сейчас мы будем заниматься не столько нахождением интегралов, сколько… решением систем линейных уравнений. В этой связи настоятельно рекомендую посетить урок А именно – нужно хорошо ориентироваться в методах подстановки («школьном» методе и методе почленного сложения (вычитания) уравнений системы).

Что такое дробно-рациональная функция? Простыми словами, дробно-рациональная функция – это дробь, в числителе и знаменателе которой находятся многочлены либо произведения многочленов. При этом дроби являются более навороченными, нежели те, о которых шла речь в статье Интегрирование некоторых дробей .

Интегрирование правильной дробно-рациональной функции

Сразу пример и типовой алгоритм решения интеграла от дробно-рациональной функции.

Пример 1


Шаг 1. Первое, что мы ВСЕГДА делаем при решении интеграла от дробно-рациональной функции – это выясняем следующий вопрос: является ли дробь правильной? Данный шаг выполняется устно, и сейчас я объясню как:

Сначала смотрим на числитель и выясняем старшую степень многочлена:

Старшая степень числителя равна двум.

Теперь смотрим на знаменатель и выясняем старшую степень знаменателя. Напрашивающийся путь – это раскрыть скобки и привести подобные слагаемые, но можно поступить проще, в каждой скобке находим старшую степень

и мысленно умножаем: – таким образом, старшая степень знаменателя равна трём. Совершенно очевидно, что если реально раскрыть скобки, то мы не получим степени, больше трёх.

Вывод : Старшая степень числителя СТРОГО меньше старшей степени знаменателя, значит, дробь является правильной.

Если бы в данном примере в числителе находился многочлен 3, 4, 5 и т.д. степени, то дробь была бы неправильной .

Сейчас мы будем рассматривать только правильные дробно-рациональные функции . Случай, когда степень числителя больше либо равна степени знаменателя, разберём в конце урока.

Шаг 2. Разложим знаменатель на множители. Смотрим на наш знаменатель:

Вообще говоря, здесь уже произведение множителей, но, тем не менее, задаемся вопросом: нельзя ли что-нибудь разложить еще? Объектом пыток, несомненно, выступит квадратный трехчлен. Решаем квадратное уравнение:

Дискриминант больше нуля, значит, трехчлен действительно раскладывается на множители:

Общее правило: ВСЁ, что в знаменателе МОЖНО разложить на множители – раскладываем на множители

Начинаем оформлять решение:

Шаг 3. Методом неопределенных коэффициентов раскладываем подынтегральную функцию в сумму простых (элементарных) дробей. Сейчас будет понятнее.

Смотрим на нашу подынтегральную функцию:

И, знаете, как-то проскакивает интуитивная мысль, что неплохо бы нашу большую дробь превратить в несколько маленьких. Например, вот так:

Возникает вопрос, а можно ли вообще так сделать? Вздохнем с облегчением, соответствующая теорема математического анализа утверждает – МОЖНО. Такое разложение существует и единственно .

Только есть одна загвоздочка, коэффициенты мы пока не знаем, отсюда и название – метод неопределенных коэффициентов.

Как вы догадались, последующие телодвижения так, не гоготать! будут направлены на то, чтобы как раз их УЗНАТЬ – выяснить, чему же равны .

Будьте внимательны, подробно объясняю один раз!

Итак, начинаем плясать от:

В левой части приводим выражение к общему знаменателю:

Теперь благополучно избавляемся от знаменателей (т.к. они одинаковы):

В левой части раскрываем скобки, неизвестные коэффициенты при этом пока не трогаем:

Заодно повторяем школьное правило умножение многочленов. В свою бытность учителем, я научился выговаривать это правило с каменным лицом: Для того чтобы умножить многочлен на многочлен нужно каждый член одного многочлена умножить на каждый член другого многочлена .

С точки зрения понятного объяснения коэффициенты лучше внести в скобки (хотя лично я никогда этого не делаю в целях экономии времени):

Составляем систему линейных уравнений.
Сначала разыскиваем старшие степени:

И записываем соответствующие коэффициенты в первое уравнение системы:

Хорошо запомните следующий нюанс . Что было бы, если б в правой части вообще не было ? Скажем, красовалось бы просто без всякого квадрата? В этом случае в уравнении системы нужно было бы поставить справа ноль: . Почему ноль? А потому что в правой части всегда можно приписать этот самый квадрат с нулём: Если в правой части отсутствуют какие-нибудь переменные или (и) свободный член, то в правых частях соответствующих уравнений системы ставим нули .

Записываем соответствующие коэффициенты во второе уравнение системы:

И, наконец, минералка, подбираем свободные члены.

Эх,…что-то я расшутился. Шутки прочь – математика наука серьезная. У нас в институтской группе никто не смеялся, когда доцент сказала, что разбросает члены по числовой прямой и выберет из них самые большие. Настраиваемся на серьезный лад. Хотя… кто доживет до конца этого урока, все равно будет тихо улыбаться.

Система готова:

Решаем систему:

(1) Из первого уравнения выражаем и подставляем его во 2-е и 3-е уравнения системы. На самом деле можно было выразить (или другую букву) из другого уравнения, но в данном случае выгодно выразить именно из 1-го уравнения, поскольку там самые маленькие коэффициенты .

(2) Приводим подобные слагаемые во 2-м и 3-м уравнениях.

(3) Почленно складываем 2-е и 3-е уравнение, при этом, получая равенство , из которого следует, что

(4) Подставляем во второе (или третье) уравнение, откуда находим, что

(5) Подставляем и в первое уравнение, получая .

Если возникли трудности с методами решения системы отработайте их на уроке Как решить систему линейных уравнений?

После решения системы всегда полезно сделать проверку – подставить найденные значения в каждое уравнение системы, в результате всё должно «сойтись».

Почти приехали. Коэффициенты найдены, при этом:

Чистовое оформление задание должно выглядеть примерно так:




Как видите, основная трудность задания состояла в том, чтобы составить (правильно!) и решить (правильно!) систему линейных уравнений. А на завершающем этапе всё не так сложно: используем свойства линейности неопределенного интеграла и интегрируем. Обращаю внимание, что под каждым из трёх интегралов у нас «халявная» сложная функция, об особенностях ее интегрирования я рассказал на уроке Метод замены переменной в неопределенном интеграле .

Проверка: Дифференцируем ответ:

Получена исходная подынтегральная функция, значит, интеграл найден правильно.
В ходе проверки пришлось приводить выражение к общему знаменателю, и это не случайно. Метод неопределенных коэффициентов и приведение выражения к общему знаменателю – это взаимно обратные действия .

Пример 2

Найти неопределенный интеграл.

Вернемся к дроби из первого примера: . Нетрудно заметить, что в знаменателе все множители РАЗНЫЕ. Возникает вопрос, а что делать, если дана, например, такая дробь: ? Здесь в знаменателе у нас степени, или, по-математически кратные множители . Кроме того, есть неразложимый на множители квадратный трехчлен (легко убедиться, что дискриминант уравнения отрицателен, поэтому на множители трехчлен никак не разложить). Что делать? Разложение в сумму элементарных дробей будет выглядеть наподобие с неизвестными коэффициентами вверху или как-то по-другому?

Пример 3

Представить функцию

Шаг 1. Проверяем, правильная ли у нас дробь
Старшая степень числителя: 2
Старшая степень знаменателя: 8
, значит, дробь является правильной.

Шаг 2. Можно ли что-нибудь разложить в знаменателе на множители? Очевидно, что нет, всё уже разложено. Квадратный трехчлен не раскладывается в произведение по указанным выше причинам. Гуд. Работы меньше.

Шаг 3. Представим дробно-рациональную функцию в виде суммы элементарных дробей.
В данном случае, разложение имеет следующий вид:

Смотрим на наш знаменатель:
При разложении дробно-рациональной функции в сумму элементарных дробей можно выделить три принципиальных момента:

1) Если в знаменателе находится «одинокий» множитель в первой степени (в нашем случае ), то вверху ставим неопределенный коэффициент (в нашем случае ). Примеры №1,2 состояли только из таких «одиноких» множителей.

2) Если в знаменателе есть кратный множитель , то раскладывать нужно так:
– то есть последовательно перебрать все степени «икса» от первой до энной степени. В нашем примере два кратных множителя: и , еще раз взгляните на приведенное мной разложение и убедитесь, что они разложены именно по этому правилу.

3) Если в знаменателе находится неразложимый многочлен второй степени (в нашем случае ), то при разложении в числителе нужно записать линейную функцию с неопределенными коэффициентами (в нашем случае с неопределенными коэффициентами и ).

На самом деле, есть еще 4-й случай, но о нём я умолчу, поскольку на практике он встречается крайне редко.

Пример 4

Представить функцию в виде суммы элементарных дробей с неизвестными коэффициентами.

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.
Строго следуйте алгоритму!

Если Вы разобрались, по каким принципам нужно раскладывать дробно-рациональную функцию в сумму, то сможете разгрызть практически любой интеграл рассматриваемого типа.

Пример 5

Найти неопределенный интеграл.

Шаг 1. Очевидно, что дробь является правильной:

Шаг 2. Можно ли что-нибудь разложить в знаменателе на множители? Можно. Здесь сумма кубов . Раскладываем знаменатель на множители, используя формулу сокращенного умножения

Шаг 3. Методом неопределенных коэффициентов разложим подынтегральную функцию в сумму элементарных дробей:

Обратите внимание, что многочлен неразложим на множители (проверьте, что дискриминант отрицательный), поэтому вверху мы ставим линейную функцию с неизвестными коэффициентами, а не просто одну буковку.

Приводим дробь к общему знаменателю:

Составим и решим систему:

(1) Из первого уравнения выражаем и подставляем во второе уравнение системы (это наиболее рациональный способ).

(2) Приводим подобные слагаемые во втором уравнении.

(3) Почленно складываем второе и третье уравнения системы.

Все дальнейшие расчеты, в принципе, устные, так как система несложная.

(1) Записываем сумму дробей в соответствии с найденными коэффициентами .

(2) Используем свойства линейности неопределенного интеграла. Что произошло во втором интеграле? С этим методом Вы можете ознакомиться в последнем параграфе урока Интегрирование некоторых дробей .

(3) Еще раз используем свойства линейности. В третьем интеграле начинаем выделять полный квадрат (предпоследний параграф урока Интегрирование некоторых дробей ).

(4) Берём второй интеграл, в третьем – выделяем полный квадрат.

(5) Берём третий интеграл. Готово.


Ранее речь шла об общих приемах интегрирования. В этом и следующих параграфах мы будем говорить об интегрировании конкретных классов функций с помощью рассмотренных приемов.

Интегрирование простейших рациональных функций

Рассмотрим интеграл вида \textstyle{\int R(x)\,dx} , где y=R(x) - рациональная функция. Всякое рациональное выражение R(x) можно представить в виде \frac{P(x)}{Q(x)} , где P(x) и Q(x) - многочлены. Если эта дробь неправильная, т. е. если степень числителя больше или равна степени знаменателя, то ее можно представить в виде суммы многочлена (целая часть) и правильной дроби. Поэтому достаточно рассмотреть интегрирование правильных дробей.


Покажем, что интегрирование таких дробей сводится к интегрированию простейших дробей , т. е. выражений вида:


\mathsf{1)}~\frac{A}{x-a};\quad \mathsf{2)}~\frac{A}{(x-a)^n};\quad \mathsf{3)}~ \frac{Ax+B}{x^2+px+q};\quad \mathsf{4)}~\frac{Ax+B}{(x^2+px+q)^n}.


где A,\,B,\,a,\,p,\,q - действительные числа, а квадратный трехчлен x^2+px+q не имеет действительных корней. Выражения вида 1) и 2) называют дробями 1-го рода, а выражения вида 3) и 4) - дробями 2-го рода.


Интегралы от дробей 1-го рода вычисляются непосредственно


\begin{aligned}\mathsf{1)}&~\int\frac{A}{x-a}\,dx= A\ln|x-a|+C;\\ \mathsf{2)}&~ \int\frac{A}{(x-a)^n}\,dx= A\int(x-a)^{-n}\,dx= A\,\frac{(x-a)^{-n+1}}{-n+1}+C~(n=2,3,4,\ldots). \end{aligned}


Рассмотрим вычисление интегралов от дробей 2-го рода: \mathsf{3)}~ \int\frac{Ax+B}{x^2+px+q}\,dx\,.


Сначала заметим, что


\int\frac{dt}{t^2+a^2}= \frac{1}{a}\operatorname{arctg}\frac{t}{a}+C,\qquad \int\frac{t\,dt}{t^2+a^2}= \frac{1}{2}\ln(t^2+a^2)+C.


Чтобы свести вычисление интеграла 3) к этим двум интегралам, преобразуем квадратный трехчлен x^2+px+q , выделив из него полный квадрат:


x^2+px+q= {\left(x+\frac{p}{2}\right)\!}^2+ \left(q-\frac{p^2}{4}\right)\!.


Так как по предположению этот трехчлен не имеет действительных корней, то q-\frac{p^2}{4}>0 и мы можем положить q-\frac{p^2}{4}=a^2 . Подстановка x+\frac{p}{2}=t,~ dx=dt преобразует интеграл 3) к линейной комбинации указанных двух интегралов:


\begin{aligned}\int\frac{Ax+B}{x^2+px+q}\,dx&= \int\frac{A\!\left(t-\frac{p}{2}\right)+B}{t^2+a^2}\,dt= A\int\frac{t\,dt}{t^2+a^2}+ \left(B-\frac{Ap}{2}\right)\!\int\frac{dt}{t^2+a^2}=\\ &=\frac{A}{2}\ln(t^2+a^2)+ \frac{1}{a}\!\left(B-\frac{Ap}{2}\right)\!\ \operatorname{arctg}\frac{t}{a}+C. \end{aligned}


В окончательном ответе нужно лишь заменить {t} на x+\frac{p}{2} , а {a} на \sqrt{q-\frac{p^2}{4}} . Так как t^2+a^2=x^2+px+q , то


\int\frac{Ax+B}{x^2+px+q}\,dx= \frac{A}{2}\ln(x^2+px+q)+ \frac{B-\dfrac{Ap}{2}}{\sqrt{q-\dfrac{p^2}{4}}} \operatorname{arctg}\frac{x+\dfrac{p}{2}}{\sqrt{q-\dfrac{p^2}{4}}}+C.


Рассмотрим случай \mathsf{4)}~ \int\frac{Ax+B}{(x^2+px+q)^n}\,dx .


Как и в предыдущем случае, положим x+\frac{p}{2}=t . Получим:


\int\frac{Ax+B}{(x^2+px+q)^n}\,dx= A\int\frac{t\,dt}{(t^2+a^2)^n}+ \left(B-\frac{Ap}{2}\right)\! \int\frac{dt}{(t^2+a^2)^n}\,.


Первое слагаемое вычисляется так:


A\int\frac{t\,dt}{(t^2+a^2)^n}= \frac{A}{2}\int(t^2+a^2)^{-n}\,d(t^2+a^2)= \frac{A}{2}\frac{(t^2+a^2)^{-n+1}}{-n+1}= \frac{A}{2(1-n)(t^2+a^2)^{n-1}}\,.


Второй же интеграл вычисляется с помощью рекуррентной формулы.

Пример 1. Вычислим \int\frac{3x+2}{x^2+2x+3}\,dx .


Решение. Имеем: x^2+2x+3=(x+1)^2+2 . Положим x+1=t . Тогда dx=dt и 3x+2=3(t-1)+2=3t-1 и, следовательно,


\begin{aligned}\int\frac{3x+2}{x^2+2x+3}\,dx&= \int\frac{3t-1}{t^2+2}\,dt= \frac{3}{2}\int\frac{2t\,dt}{t^2+2}- \int\frac{dt}{t^2+(\sqrt{2})^2}=\\ &=\frac{3}{2}\ln(t^2+2)- \frac{1}{\sqrt{2}}\operatorname{arctg}\frac{t}{\sqrt{2}}+C=\\ &=\frac{3}{2}\ln(x^2+2x+3)- \frac{1}{\sqrt{2}}\operatorname{arctg}\frac{x+1}{\sqrt{2}}+C. \end{aligned}

Пример 2. Вычислим \int\frac{x+2}{(x^2+6x+10)^2}\,dx .


Решение. Имеем: x^2+6x+10=(x+3)^2+1 . Введем новую переменную, положив x+3=t . Тогда dt=dx и x+2=t-1 . Заменив переменную под знаком интеграла, получим:


\begin{aligned}\int\frac{x+2}{(x^2+6x+10)^2}\,dx&= \int\frac{t-1}{(t^2+1)^2}\,dt= \frac{1}{2}\int\frac{2t\,dt}{(t^2+1)^2}-\int\frac{dt}{(t^2+1)^2}=\\ &=-\frac{1}{2(t^2+1)}- \int\frac{dt}{(t^2+1)^2}\,. \end{aligned}}


Положим I_2=\int\frac{dt}{(t^2+1)^2} . Имеем:


I_2=\frac{1}{2}I_1+\frac{1}{2}\frac{t}{t^2+1} , но I_1=\int\frac{dt}{t^2+1}= \operatorname{arctg}t Таким образом, I_2= \frac{1}{2}\operatorname{arctg}t+ \frac{t}{2(t^2+1)} .


Окончательно получаем:


\begin{aligned}\int\frac{x+2}{(x^2+6x+10)^2}\,dx&=-\frac{1}{2(t^2+1)}-\frac{1}{2}\operatorname{arctg}t-\frac{t}{2(t^2+1)}=\\ &=-\frac{1}{2(x^2+6x+10)}- \frac{1}{2}\operatorname{arctg}(x+3)- \frac{x+3}{2(x^2+6x+10)}+C=\\ &=\frac{-x-4}{2(x^2+6x+10)}-\frac{1}{2}\operatorname{arctg}(x+3)+C \end{aligned}

Интегрирование правильных дробей

Рассмотрим правильную дробь R(x)=\frac{P(x)}{Q(x)} , где Q(x) - многочлен степени n . Не теряя общности, можно считать, что старший коэффициент в Q(x) равен 1. В курсе алгебры доказывается, что такой многочлен с действительными коэффициентами может быть разложен на множители первой и второй степени с действительными коэффициентами:


Q(x)= (x-x_1)^{\alpha}\ldots (x-x_k)^{\beta} (x^2+p\,x+q)^{\gamma}\ldots (x^2+r\,x+s)^{\delta}.


где x_1,\ldots,x_k -действительные корни многочлена Q(x) , а квадратные трехчлены не имеют действительных корней. Можно доказать, что тогда R(x) представляется в виде суммы простейших дробей вида 1) -4):


\begin{aligned}R(x)=&\frac{P(x)}{Q(x)}= \frac{A_1}{(x-x_1)^{\alpha}}+ \frac{A_2}{(x-x_1)^{\alpha-1}}+\ldots+ \frac{A_{\alpha}}{x-x_1}\,+\\ &+\,\ldots+ \frac{B_1}{(x- x_k)^{\beta}}+ \frac{B_2}{(x-x_k)^{\beta-1}}+\ldots+ \frac{B_{\beta}}{x-x_k}+ \frac{M_1x+ N_1}{(x^2+p\,x+q)^{\gamma}}\,+\\ &+\,\ldots+ \frac{M_{\gamma}+ N_{\gamma}}{x^2+ p\,x+s}+ \frac{E_1x+F_1}{(x^2+rx+s)^{\delta}}+\ldots+ \frac{E_{\delta}x+F_{\delta}}{x^2+rx+s}\, \end{aligned}


где показатели у знаменателей последовательно уменьшаются от \alpha до 1, …, от \beta до 1, от \gamma до 1, …, от \delta до 1, а A_1,\ldots,F_{\delta} - неопределенные коэффициенты. Для того чтобы найти эти коэффициенты, необходимо освободиться от знаменателей и, получив равенство двух многочленов, воспользоваться методом неопределенных коэффициентов.


Другой способ определения коэффициентов A_1,\ldots, A_{\alpha}, \ldots, F_{\delta} основан на подстановке значений переменной x . Подставляя в равенство, полученное из равенства (1) после освобождения от знаменателей, вместо x любое число, придем к линейному уравнению относительно искомых коэффициентов. Путем подстановки необходимого количества таких частных значений переменной получим систему уравнений для отыскания коэффициентов. В качестве частных значений переменной удобнее всего выбирать корни знаменателя (как действительные, так и комплексные). При этом почти все члены в правой части равенства (имеется в виду равенство двух многочленов) обращаются в нуль, что позволяет легко находить оставшиеся коэффициенты. При подстановке комплексных значений следует иметь в виду, что два комплексных числа равны тогда и только тогда, когда равны соответственно их действительные и мнимые части. Поэтому из каждого равенства, содержащего комплексные числа, получаются два уравнения.


После нахождения неопределенных коэффициентов остается вычислить интегралы от полученных простейших дробей. Так как при интегрировании простейших дробей получаются, как мы видели, лишь рациональные функции, арктангенсы и логарифмы, то интеграл от любой рациональной функции выражается через рациональную функцию, арктангенсы и логарифмы .

Пример 3. Вычислим интеграл от правильной рациональной дроби \int\frac{6x+1}{x^2+2x-3}\,dx .


Решение. Разложим знаменатель подынтегральной функции на множители:


x^2+2x-3=(x-1)(x+3).


Выпишем подынтегральную функцию и представим ее в виде суммы простейших дробей:


\frac{6x+1}{x^2+2x-3}= \frac{A}{x-1}+\frac{B}{B+3}\,.


Освободившись в этом равенстве от знаменателей, получим:

6x+1=A\cdot (x+3)+B\cdot (x-1)\,.


Для отыскания коэффициентов воспользуемся методом подстановки частных значений. Для нахождения коэффициента A положим x=1 . Тогда из равенства (2) получим 7=4A , откуда A=7/4 . Для отыскания коэффициента B положим x=-3 . Тогда из равенства (2) получим -17=-4B , откуда B=17/4 .


Итак, \frac{6x+1}{x^2+2x-3}= \frac{7}{4}\cdot\frac{1}{x-1}+ \frac{17}{4}\cdot\frac{1}{x+3} . Значит,


\int\frac{6x+1}{x^2+2x-3}\,dx= \frac{7}{4}\int\frac{dx}{x-1}+ \frac{17}{4}\int\frac{dx}{x+3}= \frac{7}{4}\ln|x-1|+ \frac{17}{4}\ln|x+3|+C.

Пример 4. Вычислим \int\frac{x^4+2x^2+8x+5}{(x^2+2)(x-1)^2(x+2)}\,dx .


Решение. Выпишем подынтегральную функцию и представим ее в виде суммы простейших дробей. В знаменателе содержится множитель x^2+2 , не имеющий действительных корней, ему соответствует дробь 2-го рода: \frac{Ax+B}{x^2+2} множителю (x-1)^2 соответствует сумма двух дробей 1-го рода: \frac{C}{(x-1)^2}+ \frac{D}{x-1} ; наконец, множителю x+2 соответствует одна дробь 1-го рода \frac{E}{x+2} . Таким образом, подынтегральную функцию мы представим в виде суммы четырех дробей:


\frac{x^4+2x^2+8x+5}{(x^2+2)(x-1)^2(x+2)}= \frac{Ax+B}{x^2+2}+ \frac{C}{(x-1)^2}+ \frac{D}{x-1}+ \frac{E}{x+2}\,.


Освободимся в этом равенстве от знаменателей. Получим:

\begin{aligned} x^4+2x^2+8x+5&= (Ax+B)(x-1)^2(x+2)+ C(x^2+2)(x+2)\,+\\ &\phantom{=}+ D(x^2+2)(x-1)(x+2)+ E(x^2+2)(x-1)^2.\end{aligned}


Знаменатель подынтегральной функции имеет два действительных корня: x=1 и x=-2 . При подстановке в равенство (4) значения x=1 получаем 16=9C , откуда находим C=16/9 . При подстановке x=-2 получаем 13=54E и соответственно определяем E=13/54 . Подстановка значения x=i\,\sqrt{2} (корня многочлена x^2+2 ) позволяет перейти к равенству


4-4+8\,i\,\sqrt{2}+5= (A\,i\,\sqrt{2}+B)\cdot (i\,\sqrt{2}-1)^2\cdot (i\,\sqrt{2}+2).


Оно преобразуется к виду:


(10A+2B)+(2A-5B)\sqrt{2}\,i= 5+8\sqrt{2}\,i , откуда 10A+2B=5 , а (2A-5B)\sqrt{2}=8\sqrt{2} .


Решив систему двух уравнений с двумя переменными \begin{cases}10A+2B=5,\\ 2A-5B=8,\end{cases} находим: A=\frac{41}{54},~ B=-\frac{35}{27} .


Осталось определить значение коэффициента D . Для этого в равенстве (4) раскроем скобки, приведем подобные члены, а затем сравним коэффициенты при x^4 . Получим:


A+D+E=1 , то есть D=0 .


Подставим найденные значения коэффициентов в равенство (3):


\frac{x^4+2x^2+8x+5}{(x^2+2)(x-1)^2(x+2)}= \frac{\drac{41}{54}\,x- \dfrac{35}{27}}{x^2+2}+ \frac{16}{9}\frac{1}{(x-1)^2}+ \frac{13}{54}\frac{1}{x+2}\,


а затем перейдем к интегрированию:

\begin{aligned}\int\frac{x^4+2x^2+8x+5}{(x^2+2)(x-1)^2(x+2)}\,dx&= \frac{41}{54}\int\frac{x\,dx}{x^2+2}- \frac{35}{27}\int\frac{dx}{x^2+2}+ \frac{16}{9} \int\frac{dx}{(x-1)^2}+ \frac{13}{54}\int\frac{dx}{x+2}=\\ &=\frac{41}{108}\ln(x^2+2)- \frac{35}{27\sqrt{2}}\operatorname{arctg}\frac{x}{\sqrt{2}}- \frac{16}{9(x-1)}+ \frac{13}{54} \ln|x+2|+C.\end{aligned}

Интегрирование неправильных дробей

Пусть нужно проинтегрировать функцию y=\frac{f(x)}{g(x)} , где f(x) и g(x) - многочлены, причем степень многочлена f(x) больше или равна степени многочлена g(x) . В этом случае прежде всего необходимо выделить целую часть неправильной дроби \frac{f(x)}{g(x)} , т. е. представить ее в виде


\frac{f(x)}{g(x)}=s(x)+ \frac{r(x)}{g(x)}\,


где s(x) - многочлен степени, равной разности степеней многочленов f(x) и g(x) , а \frac{r(x)}{g(x)} - правильная дробь.


Тогда имеем \int\frac{f(x)}{g(x)}\,dx= \int s(x)\,dx+ \int\frac{r(x)}{g(x)}\,dx\,. .

Пример 5. Вычислим интеграл от неправильной дроби \int\frac{x^4-4x^3+x^2+16x-11}{(x-1)(x+2)(x-3)}\,dx .


Решение. Имеем:


\begin{aligned}g(x)&=(x-1)(x+2)(x-3)= x^3-2x^2-5x+6,\\ f(x)&=x^4-4x^3+x^2+16x-11. \end{aligned}


Для выделения целой части разделим f(x) на g(x) : \frac{f(x)}{g(x)}= x-2+\frac{2x^2+1}{x^3-2x^2-5x+6}\,.


Значит, \int\frac{x^4-4x^3+x^2+16x-11}{(x-1)(x+2)(x-3)}\,dx= \int(x-2)dx+ \int\frac{2x^2+1}{(x-1)(x+2)(x-3)}\,dx


Имеем: \int(x-2)dx=\frac{x^2}{2}-2x+C .


Для вычисления интеграла \int\frac{2x^2+1}{(x-1)(x+2)(x-3)}\,dx применяется, как и выше, метод неопределенных коэффициентов. После вычислений, которые мы оставляем читателю, получаем.