Инструментальные методы исследования в химии. Лабораторные и инструментальные методы исследования

n Совокупность традиционных методов определения состава вещества путём его последовательного химического разложения получила название «мокрой химии» («мокрый анализ»). Эти методы обладают относительно низкой точностью, требуют относительно невысокой квалификации аналитиков и ныне почти полностью вытеснены современными инструментальными методами определения состава вещества.

n Однако у «мокрой химии» есть своё преимущество перед инструментальными методами - она позволяет путем проведения стандартизованных процедур (систематический анализ) напрямую определять состав и разные окислительные состояния элементов.

Наряду с классическими химическими методами широко распространены физические и физико-химические (инструментальные) методы. Они основаны на измерении оптических, электрических, адсорбционных, каталитических и других характеристик анализируемых веществ, зависящих от их количества (концентрации).

Обычно эти методы делят на следующие группы: электрохимические (кондуктометрия, полярография, потенциометрия и др.); спектральные или оптические (эмиссионный и абсорбционный спектральный анализ, фотометрия, колориметрия, нефелометрия, люминесцентный анализ и др.); рентгеновские (абсорбционный и эмиссионный рентгеноспектральный анализ, рентгенофазовый анализ и др.); хроматографический (жидкостная, газовая, газо-жидкостная хроматография и др.); радиометрические (активационный анализ и др.); масс-спектрометрические.

Перечисленные методы, уступая химическим в точности, существенно превосходят их по чувствительности, избирательности, скорости выполнения. Точность химических методов находится обычно в пределах 0, 005- 0, 1%; ошибки определения инструментальными методами составляют 5- 10%, а иногда и значительно больше.

При использовании физических и физикохимических методов требуются, как правило, микроколичества веществ. Анализ может быть в ряде случаев выполнен без разрушения пробы; иногда возможна также непрерывная и автоматическая регистрация результатов. Эти методы используются для анализа веществ высокой чистоты, оценки выходов продукции, изучения свойств и строения веществ.

n ПОТЕНЦИОМЕТРИЯ (от лат. potentia-сила, мощность и греч. metreo- измеряю), электрохимический метод исследования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от термодинамической активности (концентрации) компонентов электрохимической реакции.

где Е 0 стандартный потенциал, R-газовая постоянная, Т-температура, F-постоянная Фарадея, n-число электронов, участвующих в реакции, a, b, . . . , т, р. . . -стехиометрические коэффициенты при компонентах реакции А, В, . . . , М, Р (которыми могут быть ионы и молекулы в жидкой, твердой или газовой фазе). n Активности твердых и газообразных компонентов и р-рителей принимают за единицу. n n n

n При потенциометрических измерениях составляют гальванический элемент с индикаторным электродом, потенциал которого зависит от активности хотя бы одного из компонентов электрохимической реакции, и электродом сравнения и измеряют электродвижущую силу (ЭДС) этого элемента.

n Среди этих методов различают прямую потенциометрия и потенциометрическое титрование. Прямая потенциометрия применяется для непосредственного определения активности ионов (напр. , Ag+ в р-ре Ag. NO 3) по значению Е соответствующего индикаторного электрода (напр. , серебряного); при этом электродный процесс должен быть обратимым.

n Исторически первыми методами прямой потенциометрии были способы определения водородного показателя р. Н. Появление мембранных ионоселективных электродов привело к возникновению ионометрии (р. Хметрии), где р. Х = - lg ах, ах-активность компонента X электрохимической реакции.

n Иногда р. Н-метрию рассматривают как частный случай ионометрии. Градуировка шкал приборов потенциометров по значениям р. Х затруднена из-за отсутствия соответствующих стандартов. Поэтому при использовании ионоселективных электродов активности (концентрации) ионов определяют, как правило, с помощью градуировочного графика или методом добавок. Применение таких электродов в неводных растворах ограничено из-за неустойчивости их корпуса и мембраны к действию органических растворителей.

n Метод градуировочного графика. Для этого заранее строят градуировочный график в координатах ЭДС - lg. СИ с использованием стандартных растворов анализируемого иона, имеющих одинаковую ионную силу paствора. n График - линейный. Затем по ионной силе измеряют ЭДС цепи с анализируемым раствором и по графику определяют концентрацию раствора. Пример определения приведен на рис.

Метод добавок. n Это группа методов, основанная на введении в анализируемый раствор добавки раствора анализируемого иона с известной концентрацией. Добавка может быть одноразовой - метод единичной добавки; двухразовой - метод двойной добавки; многоразовой - метод многократных добавок.

n К прямой потенциометрии относится также редоксметрия - измерение стандартных и реальных окислит. -восстановит. потенциалов и констант равновесия окислит. -восстановит. реакций. Окислит. -восстановит. потенциал зависит от активностей окисленной и восстановленной форм вещества. Редоксметрию применяют также для определения концентрации ионов в растворах. Методом прямой потенциометрии с использованием металлич. электродов изучают механизм и кинетику реакций осаждения и комплексообразования.

n Прямая потенциометрия обладает важными достоинствами. В процессе измерений состав анализируемого раствора не меняется. При этом, как правило, не требуется предварительного отделения определяемого вещества. Метод можно легко автоматизировать, что позволяет использовать его для непрерывного контроля технологических процессов.

n Более распространены методы потенциометрического титрования, с помощью которых определяют широкий круг веществ в водных и неводных средах. В этих методах регистрируют изменение потенциала индикаторного электрода в процессе титрования исследуемого раствора стандартным раствором реагента в зависимости от объема последнего. Потенциометрическое титрование проводят с использованием различных реакций: кислотно-основного и окислительновосстановительных взаимодействий, осаждения и комплексообразования.

n Точку эквивалентности при потенциометрических титрованиях определяют графическим методом на кривой титрования. Обычно используют одну из следующих видов кривых титрования: интегральную, дифференциальную или кривую Грана.

n Интегральная кривая титрования (рис. а) строится в координатах E - VТ. Точка эквивалентности находится в середине скачка титрования. n Дифференциальная кривая титрования (рис. б) строится в координатах: n ∆Е / ∆V- VT. Точка эквивалентности находится в вершине кривой титрования. Дифференциальная кривая титрования дает более точное определение точки эквивалентности, чем интегральная. n Кривая титрования в методе Грана (рис. в) строится в координатах: ∆V / ∆Е -VT. Точка эквивалентности находится на пересечении двух прямых линий. Этой кривой удобно пользоваться для определения точки эквивалентности при титровании разбавленных растворов.

n В методах кислотно-основного титрования в качестве индикаторного можно использовать любой электрод, обратимый к ионам Н+ (водородный, хингидронный, сурьмяный, стеклянный); наиболее распространен стеклянный электрод. Окислительновосстановительное титрование проводят с электродами из благородных металлов (чаще всего с платиновым).

1. Титруется сильная кислота (HCl) сильным основанием (Na. OH) До т. э. p. Н = -lg В т. э. = p. Н=p. OH = 7 После т. э. p. Н=14+ lg 2. Титруется сильное основание (Na. OH) сильной кислотой (HCl) До т. э. p. Н=14+ lg В т. э. = p. Н=p. OH = 7 После т. э. p. Н = -lg

3. Титруется слабая кислота (CH 3 COOH) сильным основанием (Na. OH) До начала титрования p. Н = 0, 5 р. К – 0, 5 lg. Скисл До т. э. p. Н = р. К - lg. Скисл + lg. Ссоли В т. э. = p. Н= 7 + 0, 5 р. К + 0, 5 lg. Ссоли После т. э. p. Н=14+ lg. Сосн 4. Титруется слабое основание (NH 4 OH) сильной кислотой (HCl) До начала титрования p. Н= 14 - 0, 5 р. К + 0, 5 lg. Сосн До т. э. p. Н= 14 - р. К + lg. Сосн – lg. Ссоли В т. э. = p. Н= 7 - 0, 5 р. К - 0, 5 lg. Сосн После т. э. p. Н = - lg. Скисл

n В методах осадительного и комплексометрического титрования индикаторный (ионоселективный или металлический) электрод должен быть обратимым относительно одного из ионов, участвующих в реакции. Вблизи точки эквивалентности наблюдается резкое изменение (скачок) электродного потенциала E, обусловленное заменой одной электрохимической реакции другой с соответствующим изменением E 0.

n Потенциометрическое титрование имеет ряд преимуществ по сравнению с титриметрическими методами, в которых применяют химические индикаторы: объективность и точность в установлении конечной точки титрования, низкая граница определяемых концентраций, возможность титрования мутных и окрашенных растворов, возможность дифференцированного (раздельного) определения компонентов смесей из одной порции раствора, если соответствующие Е 0 достаточно различаются.

n Потенциометрическое титрование можно проводить автоматически до заданного значения потенциала, кривые титрования записывают как в интегральной, так и в дифференцированной форме. По этим кривым можно определять "кажущиеся" константы равновесия разложения процессов.

КЛАССИФИКАЦИЯ ЭЛЕКТРОДОВ n Для потенциометрических измерений применяют электрохимические цепи, содержащие два электрода: индикаторный и электрод сравнения. Если оба электрода погружены в анализируемый раствор, то такая цепь называется цепью без переноса. Если электрод сравнения соединяют с анализируемым раствором через жидкостный контакт (солевой мостик), то цепь называется цепью с переносом. n

В потенциометрическом анализе используют преимущественно цепи с переносом. Схематически такую цепь изображают следующим образом: Индикаторный электрод Анализируемый Солевой раствор мостик Электрод сравнения

n Индикаторным называют электрод, потенциал которого определяет активность анализируемого иона в соответствии с уравнением Нернста. Электродом сравнения называют электрод, потенциал которого постоянен и не зависит от концентрации ионов в растворе. Солевой мостик служит для предотвращения смешивания анализируемого раствора и раствора электрода сравнения. n В качестве солевого мостика используют насыщенные растворы солей KCl, КNО 3 и других с близкими значениями подвижностей катиона и аниона.

n В качестве индикаторных в потенциометрическом анализе применяют: n 1. Электроды, на поверхности которых протекают реакции с обменом электронов. Их называют электронообменными, или окислительновосстановительными. В качестве таких электродов применяют электроды из химически инертных металлов - платины, золота и др. В аналитической практике находит применение выпускаемый промышленностью точечный платиновый электрод ЭПВ-1 -100 и изготовленный из специального стекла мембранный окислительно-восстановительный электрод ЭО - 1.

n 2. Электроды, на поверхности которых протекают реакции обмена иона. Их называют ионообменными, или ионоселективными электродами. Основным элементом ионоселективных электродов является ионочувствительная мембрана. Поэтому их также иногда называют мембранными. n Ионоселективные электроды изготавливают: n - с твердыми мембранами; n - со стеклянными мембранами; n - с жидкостными мембранами.

n Электроды с твердыми мембранами. В таких электродах мембрана изготовлена из малорастворимого кристаллического вещества с ионным типом электрической проводимости. Конструктивно электрод представляет собой трубку диаметром около 1 см из инертного полимера (обычно поливинилхлорида), к торцу которой приклеена тонкая (~0, 5 мм) мембрана. В трубку заливают внутренний раствор сравнения, в который погружают электрод сравнения. В настоящее время промышленностью выпускаются электроды с твердыми мембранами, селективные к F- -ионам (мембрана на основе монокристалла Lа. F 3), к CI - , Br - и I - -ионам (мембраны на основе смеси серебра сульфида и соответствующего серебра галогенида).

n Электроды со стеклянными мембранами. Их изготавливают из специального электродного стекла, в состав которого входят оксиды алюминия, натрия, калия, бора и др. Мембрана таких электродов представляет собой тонкостенный шарик (~0, 1 мм) диаметром 5 - 8 мм. n В настоящее время промышленность выпускает стеклянные электроды, селективные только к катионам Н+, Na+, К+, Аg+, NH 4+. В этих электродах не только мембрана, но и сам корпус изготовлены из стекла.

n Электроды с жидкостными мембранами. В таких электродах жидкие мембраны, представляющие собой растворенные в органических растворителях ионообменные вещества, отделяют от анализируемого раствора гидрофобными мелкопористыми пленками, пористыми дисками или гидрофобизированными керамическими диафрагмами. Их основным недостатком является постепенное вымывание анализируемым раствором ионообменника, что сокращает срок работы электрода.

n Этих трудностей удалось избежать после разработки электродов с пленочными мембранами. В таких электродах в тонкую мембрану из гидрофобного полимера (поливинилхлорида) вводят пластификатор и растворенное в нем электродоактивное вещество, вступающее в ионообменную реакцию с анализируемым ионом в растворе. В настоящее время промышленность выпускает пленочные ионоселективные электроды на катионы Na+, К+, NH 4+, Са 2+, Mg 2+; электроды для определения общей жесткости воды; на анионы галогенидов, CNS-, NО 3 -. Существуют электроды и на другие ионы.

n В качестве электродов сравнения в настоящее время используют хлорсеребряные электроды. Хлорсеребряный электрод представляет собой серебряную проволоку, покрытую слоем Аg. Сl и погруженную в насыщенный раствор КС 1. Современная конструкция электродов сравнения совмещает с собой и солевой мостик.

n Потенциометрические методы анализа широко используют для автоматизации контроля технологических процессов в химической, нефтехимической, пищевой и других отраслях промышленности, в медицине, биологии, геологии, а также при контроле загрязнений окружающей среды.

n КУЛОНОМЕТРИЯ n Кулонометрия - электрохимический метод анализа, который основан на измерении количества электричества (кулонов), затраченного на электроокисление или восстановление анализируемого вещества.

Количество вещества, содержащееся в анализируемой пробе, рассчитывают по уравнению: m = M Q / F n n где m - количество вещества в анализируемом растворе, г; n М – молярная масса анализируемого компонента (вещества или иона); Q - количество электричества, затраченное на электрохимическое окисление или восстановление анализируемого компонента, Кл; F - число Фарадея, равное 96 500 Кл/моль; п - количество электронов, участвующих в электрохимическом процессе. Количество электричества рассчитывается по формуле: Q = I t n где I - сила тока, А; t - продолжительность электролиза, с.

n В кулонометрии различают два вида анализа: n 1) прямую кулонометрию; n 2) кулонометрическое титрование. n Для обоих видов кулонометрии должно выполняться условие: электрохимическому восстановлению или окислению должно подвергаться только анализируемое вещество со 100 % - ным выходом по току.

n Метод прямой кулонометрии очень чувствителен. Им можно определить до 10 -9 г вещества в пробе. Ошибка определений не превышает 0, 02 %. n Кулонометрическое титрование имеет существенное преимущество перед обычным титрованием. Его применение исключает необходимость приготовления и стандартизации титранта, становится возможным применение нестойких титрантов: серебра (I), олова (II), меди (II), титана (III) и др. n Кулонометрически может быть выполнен любой вид титрования: кислотно-основное, осадительное, комплексонометрическое, окислительно-восстановительное. Метод кулонометрического титрования по точности и чувствительности превосходит другие методы титрования. Он пригоден для титрования очень разбавленных растворов концентрацией до 10 -6 моль/дм 3 , а погрешность определений не превышает 0, 1 -0, 05 %.

Кондуктометрия (от англ. conductivity - электропроводность и метрия) - совокупность электрохимических методов анализа, основанных на измерении электропроводности растворов. Кондуктометрия применяется для определения концентрации растворов солей, кислот, оснований, для контроля состава некоторых промышленных растворов. Кондуктометрический анализ основан на изменении концентрации вещества или химического состава среды в межэлектродном пространстве; он не связан с потенциалом электрода, который обычно близок к равновесному значению. Кондуктометрия включает прямые методы анализа (используемые, например, в солемерах) и косвенные (например, в газовом анализе) с применением постоянного или переменного тока (низкой и высокой частоты), а также хронокондуктометрию, низкочастотное и высокочастотное титрование.

n ФОТОМЕТРИЧЕСКИЙ АНАЛИЗ (ФА), совокупность методов молекулярноабсорбционного спектрального анализа, основанных на избирательном поглощении электромагнитного излучения в видимой, ИК и УФ областях молекулами определяемого компонента или его соединения с подходящим реагентом. Концентрацию определяемого компонента устанавливают по закону Бугера -Ламберта – Бера.

Закон выражается следующей формулой: n где I 0 - интенсивность входящего пучка, l - толщина слоя вещества, через которое проходит свет, kλ - показатель поглощения.

n Колориметрия (от лат. color - цвет и греч. metreo - измеряю) - метод анализа, основанный на определении концентрации вещества по интенсивности окраски растворов (более точно - поглощения света растворами). Определяют интенсивность окраски либо визуально, либо с помощью приборов, например колориметров.

Фотометрия отличается от спектрофотометрии тем, что поглощение света измеряют в видимой области спектра, реже - в ближних УФ и ИК областях (т. е. в интервале длин волн от ~ 315 до ~ 980 нм), а также тем, что для выделения нужного участка спектра (шириной 10 -100 нм) используют не монохроматоры, а узкополосные светофильтры.

Приборами для фотоколориметрии служат фотоэлектроколориметры (ФЭК), характеризующиеся простотой оптической и электрической схем. Большинство ФЭК имеет набор из 10 -15 светофильтров и представляет собой двухлучевые приборы, в которых пучок света от источника излучения (лампа накаливания, редко ртутная лампа) проходит через светофильтр и делитель светового потока (обычно призму), который делит пучок на два, направляемые через кюветы с исследуемым раствором и с раствором сравнения.

После кювет параллельные световые пучки проходят через калиброванные ослабители (диафрагмы), предназначенные для уравнивания интенсивностей световых потоков, и попадают на два приемника излучения (фотоэлементы), подключенные по дифференциальной схеме к нуль - индикатору (гальванометр, индикаторная лампа). Недостаток приборов отсутствие монохроматора, что приводит к потере селективности измерений; достоинства простота конструкции и высокая чувствительность благодаря большой светосиле.

Измеряемый диапазон оптической плотности составляет приблизительно 0, 05 -3, 0, что позволяет определять многие элементы и их соединения в широком интервале содержаний - от ~ 10 -6 до 50% по массе. Для дополнительного повышения чувствительности и селективности определений существенное значение имеют подбор реагентов, образующих интенсивно окрашенные комплексные соединений с определяемыми веществами, выбор состава растворов и условий измерений. Погрешности определения составляют 5%.

АБСОРБЦИОННАЯ СПЕКТРОСКОПИЯ, изучает спектры поглощения электромагнитного излучения атомами и молекулами вещества в различных агрегатных состояниях. Интенсивность светового потока при его прохождении через исследуемую среду уменьшается вследствие превращения энергии излучения в различные формы внутренней энергии вещества и (или) в энергию вторичного излучения.

Поглощательная способность вещества зависит главным образом от электронного строения атомов и молекул, а также от длины волны и поляризации падающего света, толщины слоя, концентрации вещества, температуры, наличия электрических и магнитных полей.

Применение абсорбционной спектроскопии основано на зако не Бугера - Ламберта - Бера - физический закон, определяющий ослабление параллельного монохроматического пучка света при распространении его в поглощающей среде.

Для измерения поглощательной способности используют спектрофотометры -оптические приборы, состоящие из источника света, камеры для образцов, монохроматора (призма или дифракционная решетка) и детектора. Сигнал от детектора регистрируется в виде непрерывной кривой (спектра поглощения) или в виде таблиц, если спектрофотометр имеет встроенную ЭВМ.

Для определения концентрации исследуемого вещества используют: Метод градуировочного графика. Измеряют интенсивность аналитического сигнала у нескольких стандартных образцов или стандартных растворов и строят градуировочный график в координатах I = f(с) или I = f(lgc), где с - концентрация компонента в стандартном растворе или стандартном образце. В тех же условиях измеряют интенсивность сигнала у анализируемой пробы и по градуировочному графику находят концентрацию. .

Метод добавок. Измеряют интенсивность аналитического сигнала пробы Ix, а затем интенсивность сигнала пробы с известной добавкой стандартного раствора Ix+стt. Концентрацию вещества в пробе рассчитывают по соотношению сx = сст. Ix/(Ix+ст - Ix).

Теоретические и экспериментальные методы Ф. находят применение в светотехнике и технике сигнализации, в астрономии и астрофизике, при расчёте переноса излучения в плазме газоразрядных источников света и звёзд, при химическом анализе веществ, в пирометрии, при расчётах теплообмена излучением и во многих др. областях науки и производства.

n Определение содержание ингредиентов атмосферном воздухе населенных пунктов и воздухе рабочей зоны oксид азота (II), оксид азота (IV), аммиак, ангидрид сернистый, мышьяк, содержание серной кислоты, сульфаты, сероводород, фенол, формальдегид. n В питьевой воде: аммиак и ионы аммония, мышьяк, нитраты и нитриты, селен, сульфаты, общее железо. n В почве: алюминий (подвижный), нитраты, аммоний, кальций, магний, подвижные формы серы, фосфора, сульфаты, валовое содержание и подвижные формы железа, кобальта, меди, марганца, никеля, хрома. n Анализ нефтепродуктов, минеральных масел и др. органических веществ.

ФИЗИЧЕСКИЕ МЕТОДЫ АНАЛИЗА, основаны на измерении эффекта, вызванного взаимодействием с веществом излучения - потока квантов или частиц. Излучение играет примерно ту же роль, что играет реактив в химических методах анализа. Измеряемый физический эффект представляет собой сигнал. В результате нескольких или многих измерений величины сигнала и их статистической обработки получают аналитический сигнал. Он связан с концентрацией или массой определяемых компонентов.

n Исходя из характера используемого излучения, Ф. м. а. можно разделить на три группы: n 1) методы, использующие первичное излучение, поглощаемое образцом; n 2) применяющие первичное излучение, рассеиваемое образцом; n 3) использующие вторичное излучение, испускаемое образцом.

n 1) спектроскопические методы анализа - атомно-эмиссионная, атомно-абсорбционная, атомно-флуоресцентная спектрометрия, ультрафиолетовая спектроскопия, рентгеновская спектроскопия, рентгенофлуоресцентный метод и рентгеноспектральный микроанализ, массспектрометрия, электронный парамагнитный резонанс и ядерный магнитный резонанс, электронная спектрометрия;

n 2) ядерно-физический и радиохимический методы - радиоактивационный анализ, n ядерная гамма-резонансная, или мёссбауэровская спектроскопия, метод изотопного разбавления, n 3) прочие методы, например, рентгеновская дифрактометрия.

Аналитическая химия II. Инструментальные методы анализа Майстренко В. Н. Башкирский государственный университет Кафедра аналитической химии V_maystrenko@mail. ru Тел: 229 -97 -12

Аналитическая химия – наука об определении химического состава веществ и отчасти их химического строения Химические методы анализа Физико-химические методы анализа Физические методы анализа Инструментальные методы анализа

Инструментальные методы анализа - методы аналитической химии, для выполнения которых требуется электрохимическая, оптическая, радио-химическая и иная аппаратура. К инструментальным методам анализа относятся: электрохимические методы - потенциометрия (ионометрия), кулонометрия, вольтамперометрия, кондуктометрия и др. ; методы, основанные на испускании или погло-щении электромагнитного излучения – эмиссионная, абсорбционная, флуоресцентная атомная и молеку-лярная спектроскопия, фотометрические методы, рентгеноспектральный анализ и др. ; масс-спектральный анализ; ЯМР, ЭПР, методы, основанные на измерении радиоактивности и др.

Дефиниция y = f(x) х y Аналитический сигнал Сигнал, содержащий количественную информацию о величине, функционально связанной с содержанием определяемого компонента, и регистрируемый в ходе анализа вещества или материала "Контроль объекта аналитический. Термины и определения. " ГОСТ Р 52361– 2005.

Дефиниции Измерение величины y = f(x) х1 хn х2 Определение вещества Анализ объекта y 1 y 2 y 3 yn

Дефиниция Сигнал, y Градуировочная функция ∆y α ∆х b tgα = а = ∆y/∆х Концентрация, х y = f(x) y = b + аx

Дефиниция y = f(x) х Предел обнаружения y Сlim = y 0 + 3σ Концентрация, x

Дефиниция y = f(x) lgх Предел обнаружения y Сlim = y 0 + 3σ Концентрация, lgx

Дефиниция y = f(x) х Интервал определяемых концентраций y a = tgα y = ax + b Концентрация, x

Метод и методика анализа Метод анализа – достаточно универсальный и теоретически обоснованный способ определения состава безотносительно к определяемому компоненту и (обычно) к анализируемому объекту. Методика анализа – подробное описание анализа данного объекта с использованием выбранного метода. "Контроль объекта аналитический. Термины и определения. " ГОСТ Р 52361– 2005.

Методы аналитической химии Методы отбора проб (пробоотбора) Методы разложения проб Методы разделения компонентов Методы концентрирования Методы обнаружения (идентификации) Методы определения

Проба Проба – или образец – предмет исследования аналитика, объект, взятый для анализа. По ГОСТ: проба - часть вещества (материала), являющегося объектом аналитического контроля, отобранная для анализа и/или исследования его структуры, и/или определе-ния свойств, отражающая его химический состав и/или структуру, и/или свойства. Представительная проба вещества или материала - объекта аналитического контроля – проба, которая по химическому составу и/или свойствам, и/или структуре идентична объекту аналитического контроля, от которого она отобрана.

Классификация проб В зависимости от способа получения: разовая, точечная (единичная, частная), мгновенная, суточная и т. п. В зависимости от стадии первичной обработки: исходная, промежуточная, объединенная, средняя, сокращенная, лабораторная, аналитическая и др. В зависимости от назначения: контрольная, рабочая, резервная, арбитражная и др.

Абсолютные и относительные методы анализа Абсолютные методы – не требуют градуировки и стандартных образцов (гравиметрия, кулонометрия и т. д.). Относительные методы – параметры градуировочной функции определяют экспериментально (потенциометрия, вольтамперометрия и т. д.) с использованием стандартных образцов.

Одномерные и многомерные методы Одномерные методы основаны на измерении интенсивности сигнала в единственной измеритель-ной позиции. Сигнал, y Многомерные методы – используются несколько измерительных позиций. Положение максимума пика или полосы – качественная характеристика. Высота или площадь пика – количественная характеристика. Вторая координата, z

Классификация методов анализа Общая классификация качественный / количественный элементный / изотопный / молекулярный / структурно-групповой валовый / распределительный (локальный) / вещественный / фазовый контактный / дистанционный деструктивный / недеструктив-ный макро- > 0. 1 г полумикро- 0. 1 - 0. 01 г микро- 0. 01 – 0. 001 г ультрамикро- 10 -6 г субмикро- 10 -9 г макро- / полумикро- / ультрамикро- / субмикро-

Классификация методов анализа По способу регистрации сигнала Химические (погрешность

Классификация методов анализа По способу регистрации сигнала Химические (погрешность

Классификация методов анализа По способу регистрации сигнала Химические Физические Биологические Физико-химические Спектроскопические Масс-спектральные Основанные на радиоактивности Электрохимические Биохимические Термические

По способу измерения сигнала Спектроскопия Молекулярная Атомная Ядерная Электрохимические методы Вольтамперометрия Потенциометрия Кондуктометрия Кулонометрия Хронопотенциометрия, хроноамперометрия

Классификация По объекту анализа х по агрегатному состоянию по химической природе по происхождению объекта по степени распространенности и важности по степени чистоты

Распределительный анализ Анализ распределения элемента по поверхности Анализ распределения элемента по слоям – т. е. распределение по глубине и в целом – по объему. Распределение отдельных фаз по поверхности и по объему

Критерии сравнения Аналитические характеристики Метрологические характеристики Требования к пробоподготовке Особенности приборного оснащения Специальные требования, связанные с природой объекта контроля Экономические характеристики

Литература 1. Основы аналитической химии. Кн. 2. Методы химического анализа. / Под ред. Ю. А. Золотова. 2 -е изд. М. : Высшая школа, 2004. 2. Аналитическая химия. Физические и физико-химические методы анализа. Под ред. О. М. Петрухина. М. : Химия, 2001. 3. Васильев В. П. Аналитическая химия. Кн. 2. Физико-химические методы анализа. М. : Дрофа, 2004. Дополнительная литература 1. Кристиан Г. Аналитическая химия. В 2 -х т. М. : БИНОМ, 2009. 2. Аналитическая химия. Проблемы и подходы: В 2 -х т. / Под ред. Р. Кельнера, Ж-М. Мерме, М. Отто, Н. Видмера. М. : Мир, 2004. 3. Отто М. Современные методы аналитической химии. В 2 т. М. : Техносфера, 2003.

Инструментальные методы анализа: спектры атомов и молекул Майстренко В. Н. Башкирский государственный университет Кафедра аналитической химии V_maystrenko@mail. ru Тел: 229 -97 -12

В арсенале современной аналитической химии важнейшее место занимают методы атомной оптической спектроскопии, основанные на измерении интенсивности электромагнитного излучения, испускаемого или поглощаемого атомами элементов, которые находятся в газо- или парообразном состоянии. Эти методы являются многоэлементными и широко используются для установления состава различных объектов – сплавов, минералов, руд, пищевых продуктов, объектов окружающей среды и др.

История атомного спектрального анализа началась с опытов Исаака Ньютона (1666 г) по разложению света в спектр. Первые атомные спектры наблюдали в начале XIX века в ходе астрономических исследований. Возникновение спектрального анализа как метода определения химичес-кого состава вещества относят к 1859 г. , когда немецкие ученые Г. Кирхгоф и Р. Бунзен, исследуя поведение солей металлов в пламени, наблюдали появление линий в спектрах элементов. Густав Кирхгоф (слева) и Роберт Бунзен (справа) Спектроскоп Кирхгофа и Бунзена

Эксперимент Бунзена-Кирхгофа А – сигарный ящик, B – часть подзорной трубы, С – подзорная труба, D – газовая горелка Бунзена, E – штатив с солью натрия, F – призма из стекла с CS 2, G – зеркало, H – поворотное устройство

Историческая справка Конец XX века 1960 -е годы ААС, ИСП АЭС ИСП - МС 20 -е годы XX века Середина XIX века Методы количественного анализа Качественный и полуколичественный анализ

Спектры атомов Атомы химических элементов имеют строго определённые частоты, на которых они излучают или поглощают свет. При этом на спектрах элементов наблюдаются светлые или темные линии в определённых местах, характерные для каждого элемента. Атомарные спектры получают переведением веществ в парообраз-ное состояние путём нагревания до 1000- 10000 °C. В качестве источни-ков возбуждения атомов применяют искру, дугу переменного тока, пламя или плазму различных газов, лазеры и др. Спектры поглощения и испускания атомов натрия

Спектральные линии характеризуют частотой излучения, которая соответствует квантовому переходу между уровнями энергии Еi и Еk атома согласно соотношению h = Еi - Еk , где h – постоянная Планка, а также длиной волны = с / (с – скорость света), волновым числом ’ = 1/ и энергией фотона h. Частоты спектральных линий выражают в обратных секундах (с-1), длины волн – в нм, мкм и ангстремах, волновые числа – в обратных сантиметрах (см-1), энергию фотонов в электронвольтах (э. В). Спектры испускания (эмиссионные) получают при возбуждении атомов различными способами. Время жизни возбужденного состояния 10 -7 – 10 -8 с. В течение этого времени атом испускает квант электро-магнитного излучения и переходит в состояние с более низкой энергией. Спектры поглощения (абсорбционные) наблюдаются при прохож-дении электромагнитного излучения, имеющего непрерывный спектр, через пары или газы атомов. Возникновение оптических спектров и их характер определяет система электронов атома, которые характеризуются четыремя квантовыми числами: главным квантовым числом (уровни K, L, M, N…Q), орбитальным квантовым числом (подуровни s, p, d, f…), магнитным и спиновым квантовыми числами.

Спектр Совокупность спектральных линий, принадлежащих данной частице Термическое возбуждение Эмиссионный спектр Нетермическое возбуждение Спектр люминесценции Быстрая (спонтанная) Спектр флуоресценции (атомы и молекулы) Медленная Спектр фосфоресценции (молекулы)

Спектры атомов с малым числом валентных электронов (щелочные металлы, водород) имеют относительно мало линий (менее 100) в диапазоне 200 - 800 нм. Атомы с более сложными электронными оболочками (элементы побочных групп) имеют спектры с большим числом линий (Cu – более 500, Fe – более 3000, U – несколько тысяч). Линии, обусловленные переходом электронов на основной энергетический уровень, называются резонансными. Вследствие высокой интенсивности они обеспечивают наибольшую чувствитель-ность определений и используются для аналитических целей. Для возбуждения резонансных линий щелочных металлов необхо-дима небольшая энергия, тогда как для неметаллов она высокая и спектры из видимой области смещаются в труднодоступную ультра-фиолетовую область: для Na – 589 нм, Mg – 285 нм, Si – 251 нм, P – 176 нм. Основная область применения атомной спектроскопии – опреде-ление элементов с металлическими и полуметаллическими свойствами. Для получения количественной информации измеряют интенсив-ность одной из спектральных линий определяемого элемента. Процессы, происходящие с атомом при поглощении или испускании фотона, описывают с помощью спектральных термов, характеризующих энергетическое состояние поглощающего или испускающего атома. Спектральные термы получают путем векторного сложения орбитальных моментов и спинов всех электронов атома.

Src="https://present5.com/presentation/89020358_158004652/image-47.jpg" alt="Спектральные термы Формула Бальмера (m > n) Серия Лаймана n = 1 Серия Бальмера:"> Спектральные термы Формула Бальмера (m > n) Серия Лаймана n = 1 Серия Бальмера: n = 2 Серия Пашена: n = 3 Серия Брэкетта: n = 4 Терм: Спектральный терм: R = 109 677 см− 1 – постоянная Ридберга, m – целые числа.

Спектральные термы многоэлектронных атомов Учет заряда ядра: He+, Li 2+, Be 3+ Учет суммарного орбитального момента и суммарного спина

Длины волн электромагнитного излучения Интервал длин волн Участок спектра 10 -4 – 0, 1 нм γ-Излучение 0, 01 – 10 нм Рентгеновское излучение 10 – 400 нм Ультрафиолетовое излучение 400 – 760 нм Видимый свет 760 – 106 нм Инфракрасное излучение 10 -3 – 1 м Микроволновое (СВЧ) >1 м Радиоволны

Интенсивность спектральных линий Энергия, поглощаемая, излучаемая или рассеиваемая в единицу времени Спектр испускания: Рентгеновская спектроскопия, АЭС, АФС Спектр поглощения: ААС, UV-Vis, ИК, микроволновая и радиочастотная спектроскопия

Ширина спектральных линий естественная УФ: 10 -5 нм тепловое движение (допплеровское уширение) УФ: 10 -3 -10 -2 нм соударение частиц (лоренцево уширение) расщепление энергетических уровней в магнитном поле (эффект Зеемана)

МОЛЕКУЛЯРНЫЕ СПЕКТРЫ - спектры поглощения, испускания или рассеяния, возникающие при квантовых переходах молекул из одного энергетического состояния в другое. Молекулярные спектры определяются составом молекул, их структурой, характером химических связей и взаимодействием с окружающими атомами и молекулами. Наиболее характерными являются молекулярные спектры молекул разреженных газов, которые состоят из узких линий. Молекулярные спектры состоят из электронных, колебательных и вращательных спектров и лежат в диапазоне электромагнитных волн от радиочастот до рентгеновской области спектра. Частоты переходов между вращательными уровнями энергии обычно попадают в микроволновую область, частоты переходов между колебательными уровнями - в ИК-область, а частоты переходов между электронными уровнями - в видимую и УФ-области спектра. Часто вращательные переходы попадают в ИК-область, колебательные - в видимую область, электронные - в ИК-область. Электронные переходы сопровождаются изменением колебательной энергии молекул, а при колебательных переходах изменяется вращательная энергия. Поэтому электронные спектры обычно представляют собой электронно-колебательные полосы. При высоком разрешении обнаруживается и вращательная структура.

Молекулярные спектры веществ: а – гладкий контур, б – следы колебательной структуры, в – спектр поглощения паров антрацена с четкой колебательной структурой

Электронные спектры молекул Электронные спектры обусловлены переходами между электронными энергетическими уровнями. Чем определяются электронные спектры? Для атомов электронной конфигурацией атомов Для молекул электронной конфигурацией молекул Электронные переходы в молекулах, как правило, имеют энергию, соответствующую УФ- и видимой областям электромагнитного спектра.

Колебательные молекулярные спектры обусловлены квантовыми переходами между колебательными уровнями энергии молекул. Экспериментально наблюдают ИК-спектры поглощения и спектры комбинационного рассеяния (КР-спектры) полученной энергии. В простейшем случае двухатомную молекулу представляют моделью двух взаимодействующих точечных масс M 1 и M 2. При переходе между соседними колебательными уровнями поглощается фотон с энергией h = Ev+1 – Ev и частотой. F

Существуют два основных вида колебаний в молекулах: валентные (), при которых атомы совершают колебания вдоль связей, – связи попеременно то растягиваются, то укорачиваются (симметричные и асимметричные колебания); деформационные (), при которых происходит изменение валентных углов между связями одного атома (ножничные, маятниковые, веерные, крутильные колебания). Валентное симметричное (s) Деформационное антисимметричное (аs) (маятниковое) Валентное антисимметричное (as), (a) Деформационное веерное () Деформационное симметричное (s) (ножничное) Деформационное крутильное ()

Нормальные колебания молекулы воды (s) = 3652 см-1 (as) = 3756 см-1 N = 3 n-6 = 3 x 3 – 6 = 3 (s) = 1595 см-1

Частота колебаний зависит от массы атомов (легче атом – выше частота) C – H 3000 см-1 C – D 2200 см-1 C – O 1100 см-1 C – Cl 700 см-1 Частота колебаний зависит от энергии связи (связь прочнее – выше частота) C С 2143 см-1 C = O 1715 см-1 C – O 1100 см-1

Типичные частоты колебаний функциональных групп, см-1 Группа Диапазон частот Валентные колебания Группа Диапазон частот Деформационные колебания (O – H) 3600 – 3000 (O – H), (N – H) 1650 – 1550 (C C), (C N) 2400 – 2100 (C – H) 1450 – 1250 (P – H), (C – H) 2250 – 2100 (C – O), (C – N) 1300 – 1000 (C = O) 1850 – 1650 (C – H), (N – H) 950 – 800 (C = C), (N = O) 1750 - 1600 (Si – O), (P = O) 700 – 550 (N = N) 1650 - 1450 (S – O) 650 - 450 (Si – O), (P = O) 1300 - 1000 (S – O) 1000 – 800 (C – Cl) 750 - 690

Литература 1. Основы аналитической химии. Кн. 2. Методы химического анализа. / Под ред. Ю. А. Золотова. 2 -е изд. М. : Высшая школа, 2004. 2. Аналитическая химия. Физические и физико-химические методы анализа. Под ред. О. М. Петрухина. М. : Химия, 2001. 3. Васильев В. П. Аналитическая химия. Кн. 2. Физико-химические методы анализа. М. : Дрофа, 2004. Дополнительная литература 1. Кристиан Г. Аналитическая химия. В 2 -х т. М. : БИНОМ, 2009. 2. Аналитическая химия. Проблемы и подходы: В 2 т. / Под ред. Р. Кельнера, Ж-М. Мерме, М. Отто, Н. Видмера. М. : Мир, 2004. 3. Отто М. Современные методы аналитической химии. В 2 т. М. : Техносфера, 2003. 4. Кузяков Ю. Я. , Семененко К. А. , Зоров Н. Б. Методы спектрального анализа. М. : МГУ, 1990. 5. Казицына Л. А. , Куплетская Н. Б. Применение УФ-, ИК- и ЯМР- спектроскопии в органической химии. М. : Высшая школа, 1971.

На сегодняшний день специалисты в отрасли медицинской диагностики располагают гигантскими возможностями для точного определения особенностей анатомического строения и функционирования систем внутренних органов. Применение существующих ныне инструментальных методов исследования помогает выявить малейшие отклонения от нормальных показателей. Несмотря на то что проведение лабораторно-диагностических проб и скрининг-тестов в большей мере позволяет узнать о нарушениях, развивающихся на клеточном уровне, по их результатам можно судить и о сбоях в работе конкретных органов и систем.

Большинство процедур применяются с целью выявления определенных патологий. При этом преимущественная часть лабораторных и инструментальных методов исследования признана универсальной. К проведению таких диагностических процедур прибегают специалисты разного профиля.

При комплексном обследовании пациента применяют лабораторные и инструментальные методы исследования. Соответственно, условно их разделяют на две группы. Начать, пожалуй, следует с лабораторных процедур, самыми распространенными из которых являются:

  • общий анализ крови;
  • биохимический анализ крови;
  • анализы мочи и кала;
  • исследования мокроты;
  • мазки.

Данные виды исследований относятся к категории скрининг-тестов. Их преимуществом считают невысокую стоимость, точность и безопасность для здоровья пациента.

Клинический (общий) анализ крови

Это первое, что рекомендуют сдать обследуемому при подозрении на какое-либо заболевание инфекционного или хронического характера. Среди лабораторных и инструментальных методов исследования этот является главным способом оценки форменных и количественных характеристик элементов крови. Для проведения процедуры забор биоматериала осуществляют из капилляров пальца. По содержанию и форме эритроцитов, лейкоцитов и тромбоцитов можно заподозрить у пациента заболевания крови, выявить воспалительные процессы, протекающие в организме бессимптомно. Помимо данных о кровяных тельца анализ позволяет получить сведения об уровне гемоглобина и числе ретикулоцитов.

Биохимическое исследование крови

Анализ помогает узнать о точном содержании в крови электролитов и ферментов, свидетельствующих о состоянии конкретного органа. Во время скрининга также определяют количество белка и глюкозы, наличие токсических продуктов метаболизма, которые в норме должны выводиться из организма почками. Если кровь для общего анализа берут у больного из пальца, то для биохимического исследования ее забор осуществляется из вены.

Что можно узнать по результатам анализа мочи

В норме этот биоматериал абсолютно стерилен. Проводится исследование с целью выявления в нем белка, глюкозы и кетоновых тел. Анализ осуществляют под микроскопом, благодаря которому при развитии патологического процесса в моче можно обнаружить эпителиальные клетки, эритроциты и лейкоциты, болезнетворные палочки и бактерии. В первую очередь исследование проводят больным с дисфункцией почек или подозрением на инфекцию мочевыводящих путей. Во втором случае приоритетным методом исследования станет бактериологический посев мочи, результаты которого помогут не только определить тип микробного возбудителя, но и подобрать подходящие препараты, ведь к некоторым группам антибиотиков болезнетворные микроорганизмы могут проявлять стойкость.

Исследование кала

Чаще всего прохождение данного анализа вызвано необходимостью диагностики и оценки результатов терапии болезней желудочно-кишечного тракта, печени, поджелудочной железы. Несмотря на то что особой подготовки к проведению исследования не требуется, пациенту важно за несколько дней до процедуры воздержаться от приема лекарственных препаратов, способных изменить характер каловых масс (слабительные и ферментные средства, висмут- и железосодержащие добавки и т. п.).

Первым делом в клинической лаборатории изучают цвет, консистенцию фекалий. Так, светлые, содержащие жир каловые массы могут свидетельствовать о механической желтухе. Опорожнения водянистого характера с остатками непереваренной пищи говорят, как правило, о воспалительном процессе в тонком кишечнике. Если накануне сдачи анализа пациент употреблял продукты, вызывающие брожение, его кал будет обладать кислым запахом и пенистой консистенцией. Черный цвет фекалий зачастую обусловлен кровотечениями в верхних отделах пищеварительной системы, но причиной окраски биоматериала могут быть вполне естественные факторы (например, употребление исследуемым накануне процедуры черники, черной смородины, свеклы). Подтверждением кровотечения в желудочно-кишечном тракте служит кашицеобразная консистенция каловых масс.

Разновидности мазка

Процедура представляет собой микроскопическое изучение биологического материала, взятого с поверхности слизистой органа. Анализ мазка широко применяется в гинекологии: у женщин берут мазок с шейки матки или стенок влагалища. При мужской урологической диагностике забор биоматериала осуществляют из уретры. Также мазок берется со слизистой горла, носа, стенок прямой кишки.

Скрининг-тест мокроты

Это один из доступных инструментальных методов исследования органов дыхания, который помогает установить характер патологического процесса, а иногда - даже определить его этиологию. Зачастую анализ назначают при подозрении на такие заболевания легких и дыхательных путей:

  • туберкулез;
  • абсцесс и гангрена;
  • синдром бронхоспазма;
  • пневмония;
  • силикоз;
  • обтурационный ателектаз;
  • хронический бронхит;
  • бронхоэктаз.

Благодаря инструментальным методам исследования органов дыхания специалистам удается поставить диагноз и конкретизировать нюансы заболевания (степень тяжести, стадия, осложнения и т. д.). При этом именно результаты лабораторного анализа мокроты являются основополагающими задают нужное направление в ходе дальнейшей диагностики. Так, если в ней обнаруживают клетки злокачественных структур, делают выводы о эндобронхиальном расположении опухоли или ее распаде, что уточняется после проведения более информативных инструментальных методов исследования. Каких именно - подробно читайте об этом далее.

Ни одну из вышеупомянутых процедур нельзя назвать абсолютно точной и достоверной. Для конкретизации показателей лабораторного анализа прибегают к инструментальным методам исследования. В медицине они используются сравнительно недавно. Например, самые «молодые» из методов современной диагностики применяются на практике не более тридцати лет (КТ, МРТ). Некоторые из ныне используемых инструментальных методов исследования универсальны, так как могут применяться при изучении различных органов и систем.

Флюорография

Представляет собой разновидность скрининг-теста, который проводят для определения состояния легких и грудной клетки. Принцип исследования заключается в фотографировании верхней части торса. После съемки полученное рентгеновское изображение выводится на экран, а оттуда - на пленку с различным размером кадра (до 110х110 мм). Флюорографию рекомендуется проходить взрослым не реже 1 раза в год. Основная задача этого исследования - выявление скрыто протекающей формы онкологического (злокачественной опухоли) или инфекционного заболевания (туберкулеза легких).

Электроэнцефалография

Если говорить о простейших инструментальных и лабораторных методах исследования в нейрохирургии, в первую очередь стоит выделить именно этот. В ходе процедуры регистрируется электрическая активность головного мозга. Сканирование осуществляется безболезненно, а потому не приносит дискомфорта и неприятных ощущений пациенту. Суть исследования заключается в том, что к голове человека прикрепляют более двух десятков электродов, с помощью которых фиксируется активность мозга в состоянии покоя. После этого процедуру проводят еще раз, но уже иначе, подвергая пациента воздействию внешних раздражителей, яркого света, предлагая глубоко и учащенно дышать, повернуть голову в сторону и т. д. Запись, которая выглядит как множество ломаных линий, расшифровывается специалистом, а пациенту на руки выдают текстовое заключение. Электроэнцефалография помогает обнаружить разновидности эпилепсии, аномальные особенности головного мозга, заболевания метаболического характера.

Инструментальные методы исследования сердечно-сосудистой системы

К таковым, в первую очередь, относится электрокардиография - быстрый, доступный и не вызывающий дискомфорта способ диагностики. Деятельность сердца, выраженная электрическими импульсами, фиксируется в записи на движущейся ленте. По положению запечатленных линий кардиологи определяют степень активности отделов сердца, что дает возможность сделать вывод о заболевании сердца, связанного с нарушением ритма, качеством кровоснабжения, последствиями инфаркта миокарда.

ЭКГ по показанию врача может проводиться на протяжении суток. Такой инструментальный метод исследования сердца позволит получить больше информации о его работе на фоне приема сильнодействующих медикаментов или в период повышенной физической нагрузки.

Говоря о диагностике сосудистой системы, чаще всего подразумевают прохождение ангиографии. Для определения заболевания, вызванного нарушениями в работе сердца, применяют метод коронарографии. Чтобы исследовать коронарные артерии сердца, пациенту вводят катетер через бедренную артерию. При невозможности паховой катеризации прибор внедряют в лучевую артерию на запястье. Коронарография - это одна из сложнейших исследовательских процедур, которая выглядит следующим образом:

  1. Катетер продвигают к аорте. Сам процесс манипуляции отображается на мониторе в режиме реального времени.
  2. Как только устройство достигает исследуемых сосудов, подается контрастное вещество, которое вводят по очереди в правую и левую коронарные артерии.
  3. В момент, когда гадолиний заполняет просвет сердечных сосудов, врачи делают серию снимков в разных проекциях.

Эхокардиография (проще говоря, УЗИ сердца) представляет собой неинвазивный инструментальный метод исследования больных с патологиями сердечно-сосудистой системы. На сегодняшний день это безопасный и высокоинформативный метод, который назначают даже пациентам младшей возрастной группы. Особенно эффективна эхокардиография при диагностике пороков у новорожденных.

Ультразвуковой скрининг

Представляет собой безболезненный и безопасный метод инструментального исследования, подготовки к которому, как правило, не требуется. Принцип осуществления процедуры заключается в способности внутренних органов отражать ультразвуковые волны. При этом изображение выводится на экран. Костные и хрящевые структуры выглядят белыми, а жидкая среда - темной. Благодаря УЗИ можно определить точный размер и форму внутреннего органа, заметить малейшее структурное изменение в нем. Наибольшую популярность УЗИ приобрело в гинекологии и акушерстве. Вероятные пороки развития плода выявляют на ранних сроках беременности. Этот инструментальный метод исследования позволяет следить и за состоянием организма матери, расположением и кровоснабжением матки, плаценты.

Эндоскопия

Несмотря на то что УЗИ считается информативным методом инструментального исследования в медицине, применяют его далеко не во всех отраслях. Например, он вовсе не подходит для изучения полых и полостных органов, поэтому для диагностики кишечника или желудка прибегают к другим процедурам. Среди инструментальных методов исследования пищеварения стоит отметить эндоскопию. Диагностическую манипуляцию осуществляют с помощью гибкого волоконного прибора, оснащенного оптическим прибором - эндоскопом. Длина его трубки может достигать полутора метров, а диаметр - более чем 1,3 см.

Широкое применение метода эндоскопии объясняется также возможностью специалистов в ходе процедуры брать образцы ткани для гистологического исследования. Отдельные модели эндоскопов оснащены электрическими зондами, которые позволяют быстро и безболезненно проводить несложные хирургические манипуляции (удаление полипов, внутренних геморроидальных узлов и т. д.).

Рентгенологическое исследование

Один из самых первых методов инструментального исследования ЖКТ, костных тканей, легких. В основе процедуры лежит принцип прохождения лучей рентгеновского излучения через внутренние структуры. В сравнении с рентгенограммой более информативным методом является рентгеноскопия, недостатками которой является получение относительно высокой дозы радиации. Если это позволяет предполагаемый диагноз, рентгеноскопию стараются заменить альтернативной и более безопасной исследовательской процедурой.

Компьютерная и магнитно-резонансная томография

КТ - это усовершенствованная разновидность рентгенографии, отличающаяся высоким разрешением и точностью изображения. Во время исследования аппарат делает несколько снимков по заданным специалистом параметрам. После того как компьютер проанализирует полученные данные, двухмерное изображение подается на экран. Проекции во многом напоминают анатомические срезы, что особенно удобно при изучении головного мозга, почек, печени, поджелудочной, легких.

МРТ (магнитно-резонансная томография) представляет собой вид комплексного обследования органа, в котором используется мощное магнитное поле. Данный метод является самым дорогостоящим и сложным. При выборе способа диагностики головного или спинного мозга (особенно накануне предстоящего хирургического вмешательства) у врачей не остается сомнений: информативнее, чем МРТ, метода исследования не найти. Однако в сравнении с компьютерной томографией, магнитно-резонансная имеет некоторые недостатки:

  • для получения каждого изображения потребуется больше времени;
  • не применяется для обследования сердца;
  • не подходит лицам, страдающим клаустрофобией, поскольку процедура требует погружения пациента в камеру гигантского томографа.

Подготовка к лабораторным и инструментальным методам исследования

Для прохождения большинства современных диагностических процедур не требуется специальной предварительной подготовки. И все же следует обратить внимание на рекомендации, касающиеся отдельных видов обследования:

  • Общий и биохимический анализы крови всегда сдают натощак. Разрешается пить воду.
  • Перед сбором анализа мочи важно провести соответствующие гигиенические процедуры. Посуда для биоматериала должна быть стерильной.
  • За 2-3 дня до сдачи анализа кала желательно отказаться от еды, насыщенной железом и вызывающей брожение.
  • Если урологом или гинекологом назначено бактериологическое исследование мазка, пациенту следует не проводить туалет мочеполовой сферы непосредственно перед процедурой. За сутки воздержаться от половых контактов.
  • К любым инструментальным инвазивным исследованиям ЖКТ необходимо тщательно готовиться. В течение трех дней, предшествующих диагностике, пациенту нужно соблюдать диету, снижающую газообразование в кишечнике, употреблять только легкую пищу. При колоноскопии исследуемому назначается слабительный препарат («Фортранс» или «Дюфалак») в индивидуальной дозировке.
  • УЗИ сердца, ЭКГ, исследования сосудов проводят до занятий лечебной гимнастикой и приема лекарств.

Обычно лечащий врач разъясняет пациенту правила подготовки к диагностическим процедурам. Только их соблюдение может гарантировать достоверный результат исследования.

Инструментальные методы анализа - количественные аналитические методы, для выполнения которых требуется электрохимическая оптическая, радиохимическая и иная аппаратура. К инструментальным методам анализа обычно относят:

¾ электрохимические методы - потенциометрию, полярографию, кондуктометрию и др.;

¾ методы, основанные на испускании или поглощении излучения,- эмиссионный спектральный анализ, фотометрические методы, рентгеноспектральный анализ и др.;

¾ масс-спектральный анализ;

¾ методы, основанные на измерении радиоактивности.

Все инструментальные (физические и физико-химические) методы основаны на измерении физических величин, характеризующих объект анализа (пробу).

Измеряемая в ходе анализа физическая величина, функционально связанная с содержанием только определяемого компонента Х в исследуемом объекте, называется аналитическим сигналом.

Для каждого метода характерен свой аналитический сигнал. В таблице 1 приведены примеры сигналов и соответствующих им методов, относящихся к двум важнейшим группам – оптическим и электрохимическим методам анализа.

Таблица 1

Примеры инструментальных методов анализа

Зависимость аналитического сигнала от содержания Х называют градуировочной функцией . Ее записывают как уравнение вида I = f (C). В этом уравнении символом С обозначают содержание Х, выраженное в единицах количества вещества (моль), единицах массы (кг, г) или концентрации (моль/л и др.); эти величины прямо пропорциональны друг другу. Величину сигнала в общем случае обозначают символом I , хотя в отдельных методах используют специфические обозначения (таблица 1). В каждом методе градуировочные функции однотипны, но точный вид градуировочной функции для конкретной методики зависит от природы Х и условий измерения сигнала.



Во многих методах зависимость сигнала от концентрации описывается нелинейными функциями, например, в люминесцентном анализе – показательной (I = kC n ), в потенциометрии - логарифмической (I = I 0 + k lgC ), и т.д. Однако все градуировочные функции схожи тем, что по мере возрастания С величина I изменяется непрерывно, а каждому значению С соответствует единственное значение I .

Рисунок 1

Типичные градуировочные графики для некоторых инструментальных методов

lgС
I
С
С
I
I

К наиболее применимым электрохимическим методам анализа относятся потенциометрический, полярографический и кондуктометрический.

§2. Классификация оптических методов

К оптическим методам относятся рефрактометрия, поляриметрия, абсорбционные оптические методы.

Рефрактометрический анализ основан на измерении показателя преломления (рефракции) веществ, по которому следует судить о природе вещества, чистоте и содержании в растворах.

Преломление луча света возникает на границе двух сред, если среды имеют различную плотность. Отношение синуса угла падения (α) к синусу угла преломления (β) называют относительным показателем преломления (п) второго вещества по отношению к первому и является величиной постоянной:

Показатель преломления вещества зависит от его природы, а также от длины волны света и от температуры.

Поляриметрический метод основан на свойстве некоторых веществ изменять направление световых колебаний.

Вещества, обладающие свойством изменять направление колебаний при прохождении через них поляризованного света, называются оптически активными. У поляризованного луча, пропущенного через слой раствора оптически активного вещества, меняется направление колебаний, а плоскость поляризации оказывается повернутой на некоторый угол, называемый углом поворота плоскости поляризации, который зависит от поворота плоскости поляризации, концентрации и толщины слоя раствора, длины волны поляризованного луча и температуры.

Оптические абсорбционные методы - это методы анализа, основанные на поглощении электромагнитного излучения анализируемыми веществами. Именно оптические абсорбционные методы получили широкое распространение в научно-исследовательских и сертификационных лабораториях. При поглощении света атомы и молекулы поглощающих веществ переходят в новое возбужденное состояние.

В зависимости от вида поглощающих веществ и способа трансформирования поглощенной энергии различают атомно-абсорбционный, молекулярно-абсорбционный анализ, нефелометрию и люминесцентный анализ.

Атомно-абсорбционный анализ основан на поглощении световой энергии атомами анализируемых веществ.

Молекулярный абсорбционный анализ основан на поглощении света молекулами анализируемого вещества и сложными ионами в ультрафиолетовой, видимой и инфракрасной областях спектра (спектрофотометрия, фотоколориметрия, ИК-спектроскопия).

Фотоколориметрия и спектрофотометрия основаны на взаимодействии излучения с однородными системами, их обычно объединяют в одну группу фотометрических методов анализа.

Нефелометрия основана на поглощении и рассеянии световой энергии взвешенными частицами анализируемого ве-щества.

Люминесцентный (флуорометрический) анализ основан на измерении излучения, возникающего в результате выделения энергии возбужденными молекулами анализируемого вещества.

Люминесценцией называют свечение атомов, ионов, молекул и других более сложных частиц вещества, которое возникает в результате перехода в них электронов при возвращении из возбужденного в нормальное состояния.

§3. Основные законы фотометрического анализа и формулы.

Фотометрический анализ относится к абсорбционным методам, т.е. основан на измерении поглощения света веществом. Он включает спектрофотометрию, фотоколориметрию и визуальную фотометрию, которую обычно называют колориметрией.

Каждое вещество поглощает излучение с определенными (характерные только для него) длинами волн, т.е. длина волны поглощаемого излучения индивидуальна для каждого вещества, и на этом основан качественный анализ по светопоглошению.

Основой количественного анализа является закон Бугера-Ламберта-Бера:

А = e l c

где А = –lg (I / I 0) = –lg T – оптическая плотность;

I 0 и I – интенсивность потока света, направленного на поглощающий раствор и прошедшего через него;

с – концентрация вещества, моль/л;

l – толщина светопоглощающего слоя;

e - молярный коэффициент светопоглощения;

T - коэффициент пропускания.

Для определения концентрации анализируемого вещества наиболее часто используют следующие методы:

1) молярного коэффициента светопоглощения;

2) градуировочного графика;

3) добавок;

4) дифференциальной фотометрии;

5) фотометрического титрования.

Метод молярного коэффициента поглощения . При работе по этому методу определяют оптическую плотность нескольких стандартных растворов А ст, для каждого раствора рассчитывают e = А ст / ( ст) и полученное значение e усредняют. Затем измеряют оптическую плотность анализируемого раствора А х и рассчитывают концентрацию с х по формуле

с х = А х /(el ).

Ограничением метода является обязательное подчинение анализируемой системы закону Бугера-Ламберта-Бера, по крайней мере, в области исследуемых концентраций.

Метод градуировочного графика. Готовят серию разведений стандартного раствора, измеряют их поглощение, строят график в координатах А ст – С ст. Затем измеряют поглощение анализируемого раствора и по графику определяют его концентрацию.

Метод добавок. Этот метод применяют при анализе растворов сложного состава, так как он позволяет автоматически учесть влияние «третьих» компонентов. Сущность его заключается в следующем. Сначала определяют оптическую плотность А х анализируемого раствора, содержащего определяемый компонент неизвестной концентрации с х, а затем в анализируемый раствор добавляют известное количество определяемого компонента (с ст) и вновь измеряют оптическую плотность А х+ст.

Оптическая плотность А х анализируемого раствора равна

А х = e l c х,

а оптическая плотность анализируемого раствора с добавкой стандартного

А х+ст = e l (c х + с ст).

Концентрацию анализируемого раствора находим по формуле:

с х = с ст А х / (А х+ст – А х).

Метод дифференциальной фотометрии. Если в обычной фотометрии сравнивается интенсивность света, прошедшего через анализируемый раствор неизвестной концентрации, с интенсивностью света, прошедшего через растворитель, то в дифференциальной фотометрии второй луч света проходит не через растворитель, а через окрашенный раствор известной концентрации – так называемый раствор сравнения.

Фотометрическим методом можно определять также компоненты смеси двух и более веществ. Эти определения основаны на свойстве аддитивности оптической плотности:

А см = А 1 + А 2 + …+ А n

где А см - оптическая плотность смеси; А 1 , А 2 , А n – оптические плотности для различных компонентов смеси.

Фотометрические методы анализа применяются для контроля разнообразных производственных процессов. Эти методы могут быть применены для анализа больших и малых содержаний, но особенно ценной их особенностью является возможность определения примесей (до 10 -5 ...10 -6 %). Методы абсорбционной спектроскопии используют в химической, металлургической, фармацевтической и других отраслях, а также в медицине и сельскохозяйственном производстве.

§4. Лабораторная работа

ИНСТРУМЕНТАЛЬНЫЕ МЕТОДЫ АНАЛИЗА. КЛАССИФИКАЦИЯ МЕТОДОВ. ОПТИЧЕСКИЕ МЕТОДЫ АНАЛИЗА. МОЛЕКУЛЯРНО-АБСОРБЦИОННАЯ СПЕКТРОСКОПИЯ .

Физико-химические или инструментальные методы анализа основаны на измерении с помощью приборов (инструментов) физических параметров анализируемой системы, которые возникают или изменяются в ходе выпол­нения аналитической реакции.

Бурное развитие физико-химических методов анализа было вызвано тем, что классические методы химического анализа (гравиметрия, титриметрия) уже не могли удовлетворять многочисленные запросы химической, фарма­цевтической, металлургической, полупроводниковой, атомной и других от­раслей промышленности, требовавших повышения чувствительности методов до 10 -8 – 10 -9 %, их селективности и экспрессности, что позволило бы управ­ лять технологическими процессами по данным химического анализа, а также выполнять их в автоматическом режиме и дистанционно.

Ряд современных физико-химических методов анализа позволяют одно­временно в одной и той же пробе выполнять как качественный, так и количе­ственный анализ компонентов. Точность анализа современных физико-хими­ческих методов сопоставима с точностью классических методов, а в некото­рых, например в кулонометрии, она существенно выше.

К недостаткам некоторых физико-химических методов следует отнести дороговизну используемых приборов, необходимость применения эталонов. Поэтому классические методы анализа по-прежнему не потеряли своего зна­чения и применяются там, где нет ограничений в скорости выполнения ана­лиза и требуется высокая его точность при высоком содержании анализируе­мого компонента.

КЛАССИФИКАЦИЯ ФИЗИКО - ХИМИЧЕСКИХ

МЕТОДОВ АНАЛИЗА

В основу классификации физико-химических методов анализа положена природа измеряемого физического параметра анализируемой системы, вели­чина которого является функцией количества вещества. В соответствии с этим все физико-химические методы делятся на три большие группы:

- электрохимические;

- оптические и спектральные;

- хроматографические .

Электрохимические методы анализа основаны на измерении электриче­ских параметров: силы тока, напряжения, равновесных электродных потен­циалов, электрической проводимости, количе-ства электричества, величины которых пропорциональны содержанию вещества в анализируемом объекте.

Оптические и спектральные методы анализа основаны на измерении пара­метров, характеризующих эффекты взаимодействия электромагнитного излу­чения с веществами: интенсивности излучения возбужденных атомов, погло­щения монохроматического излучения, показателя преломления света, угла вращения плоскости поляризованного луча света и др.

Все эти параметры являются функцией концентрации вещества в анали­зируемом объекте.

Хроматографические методы - это методы разделения однородных много­компонентных смесей на отдельные компоненты сорбционными методами в динамических условиях. В этих условиях компоненты распределяются меж­ду двумя несмешивающимися фазами: подвижной и неподвижной. Распреде­ление компонентов основано на различии их коэффициентов распределения между подвижной и неподвижной фазами, что при- водит к различным скоро­стям переноса этих компонентов из неподвижной в подвижную фазу. После разделения количественное содержание каждого из компонентов может быть определено различными методами анализа: классическими или инструментальными.

МОЛЕКУЛЯРНО-АБСОРБЦИОННЫЙ

СПЕКТРАЛЬНЫЙ АНАЛИЗ

Молекулярно-абсорбционный спектральный анализ включает в себя спек­трофотометрический и фотоколориметрический виды анализа.

Спектрофотометрический анализ основан на определении спектра по­глощения или измерении светопоглощения при строго определенной длине волны, которая соответствует максимуму кривой поглощения исследуемого вещества.

Фотоколориметрический анализ базируется на сравнении интенсивности окрасок исследуемого окрашенного и стандартного окрашенного растворов определенной концентрации.

Молекулы вещества обладают определенной внутренней энергией Е, со­ставными частями которой являются:

Энергия движения электронов Е эл находящихся в электростати-ческом поле атомных ядер;

Энергия колебания ядер атомов друг относительно друга Е кол ;

- энергия вращения молекулы Е вр

И математически выражается как сумма всех указанных выше энергий:

Е = Е эл + Е кол + Е вр.

При этом, если молекула вещества поглощает излучение, то ее первона­чальная энергия Е 0 повышается на величину энергии поглощенного фотона, то есть:

Е Δ = Е 1 – Е 0 = = hC / λ .

Из приведенного равенства следует, что чем меньше длина волны λ, тем больше частота колебаний и, следовательно, больше Е, то есть энергия, сооб­щенная молекуле вещества при взаимодействии с электромагнитным излуче­нием. Поэтому характер взаимодействия лучевой энергии с веществом в зави­симости от длины волны света λ будет различен.

Совокупность всех частот (длин волн) электромагнитного излучения называют электромагнитным спектром . Интервал длин волн разбивают на области:

ультрафиолетовая (УФ) примерно 10-380 нм, видимая 380-750 нм, инфракрасная (ИК) 750-100000 нм.

Области электромагнитного спектра

γ-излучение рентген вакуум УФ ближн. УФ видимая

______________ │_______│_______________│______│_

λ(нм) …… 10 100 380 750

ближн. ИК далекая ИК радиоволны

λ(нм) 1000 10000 100000 ….

Энергии, которую сообщают молекуле вещества излучения УФ- и види­мой части спектра, достаточно, чтобы вызвать изменение электронного со­стояния молекулы.

Энергия ИК-лучей меньше, поэтому ее оказывается достаточно только для того, чтобы вызвать изменение энергии колебательных и вращательных переходов в молекуле вещества. Таким образом, в различных частях спектра можно получить различную информацию о состоянии, свойствах и строении веществ.

ЗАКОНЫ ПОГЛОЩЕНИЯ ИЗЛУЧЕНИЯ

В основе спектрофотометрических методов анализа лежат два основных закона. Первый из них - закон Бугера Ламберта, второй закон - закон Бера. Объединенный закон Бугера - Ламберта Бера имеет следующую формулировку:

Поглощение монохроматического света окрашенным раствором прямо пропорционально концентрации поглощающего свет вещества и толщине слоя раствора, через который он проходит.

Закон Бугера - Ламберта - Бера является основным законом светопоглощения и лежит в основе большинства фотометрических методов анализа. Математически он выражается уравнением:

I = Ι 0 · 10 - КС l

Или lg I / Ι 0 = К · C · l

Величину lg I /Ι 0 называют оптuческой плотностью поглощающего вещества и обозначают буквами D или А . Тогда закон можно записать так: D = К · C · l

Отношение интенсивности потока монохроматического излучения, про­шедшего через испытуемый объект, к интенсивности первоначального потока излучения называется

nрозрачностью, или nроnусканием , раствора и обознача­ется буквой Т:

Т =­ I / Ι 0

Это соотношение может быть выражено в процентах. Величина Т, харак­теризующая пропускание слоя толщиной 1 см, называется коэффициентом nро­пускания. Оптическая плотность D и пропус-кание Т связаны между собой соотно­шением

D = -lg Т

Или, если Т выражено в процентах,

D = 2 - 1gТ.

D и Т являются основными величинами, характеризующими поглощение раствора данного вещества с определенной его концентрацией при опреде­ленной длине волны и толщине поглощаю­щего слоя.

Зависимость D (С) имеет прямолинейный характер, а Т(С) или Т(l) - экспоненци­альный. Это строго соблюдается только для монохроматических потоков из­лучений.

Величина коэффициента погашения К зависит от способа выражения концентрации вещества в растворе и толщины поглощаю­щего слоя. Если концентрация выражена в молях на литр, а толщина слоя - в санти­метрах, то он называется молярным коэффи­циентом погашения , обозначается символом ε и равен оптической плотности раствора с концентрацией 1 моль/л, помещенного в кювету с толщиной слоя 1 см.

Величина молярного коэффициента светопоглощения зависит:

От природы растворенного вещества;

Длины волны монохроматического света;

Температуры;

Природы растворителя.

Причины несоблюдения закона Бyгера - Ламберта - Бера.

1. Закон выведен и справедлив только для монохроматического света, поэтому недостаточная монохроматизация может вызвать отклонение закона и тем в большей степени, чем меньше монохроматизация света.

2. В растворах могут протекать различные процессы, которые изменяяют концентрацию поглощающего вещества или его природу: гидролиз, ионизация, гидратация, ассоциация, полимеризация, комплексообразование и др.

3. Светопоглощение растворов существенно зависит от рН раствора. При изменении рН раствора могут изменяться:

Степень ионизации слабого электролита;

Форма существования ионов, что приводит к изменению светопоглощения;

Состав образующихся окрашенных комплексных соединений.

Поэтому закон справедлив для сильно разбавленных растворов, и область его применения ограничена.

ВИЗУАЛЬНАЯ КОЛОРИМЕТРИЯ

Интенсивность окраски растворов можно измерять различными методами. Среди них выделяют субъективные (визуальные) методы колориметрии и объективные, то есть фотоколориметрические.

Визуальными называют такие методы, при которых оценку интенсивности окраски испытуемого раствора делают невооруженным глазом. При объективных методах колориметрического определения для измерения интенсивности окраски испытуемого раствора вместо непосредственного наблюдения пользуются фотоэлементами. Определение в этом случае проводят в специальных приборах - фотоколориметрах, поэтому метод получил название фотоколориметрического.

Цвета видимого излучения:

Интервал длин Основной цвет

волн, нм

340-450 фиолетовый

450-495 синий

495-570 зеленый

570-590 желтый

590-620 оранжевый

620-750 красный

К визуальным методам относятся:

Метод стандартных серий;

Метод колориметрического титрования, или дублирования;

Метод уравнивания.

Метод стандартных серий. При выполнении анализа методом стандартных серий интенсивность окраски анализируемого окра-шенного раствора сравнивают с окрасками серии специально при-готовленных стандартных растворов (при одинаковой толщине слоя).

Метод колориметрического титрования (дублирования) основан на сравне­нии окраски анализируемого раствора с окраской другого раствора - контрольного. Контрольный раствор содержит все компоненты исследуемого рас­твора, за исключением определяемого вещества, и все использовавшиеся при подготовке пробы реактивы. К нему добавляют из бюретки стандартный рас­твор определяемого вещества. Когда этого раствора будет добавлено столько, что интенсивности окраски контрольного и анализируемого растворов урав­няются, считают, что в анализируемом растворе содержится столько же опре­деляемого вещества, сколько его было введено в контрольный раствор.

Метод уравнивания отличается от описанных выше визуальных колори­метрических методов, в которых подобие окрасок стандартного и испытуемо­го растворов достигается изменением их концентрации. В методе уравнива­ния подобие окрасок достигается изменением толщины слоев окрашенных растворов. Для этой цели при определении концентрации веществ использу­ют колориметры сливания и погружения.

Достоинства визуальных методов колориметрического анализа:

Техника определения проста, нет необходимости в сложном дорогосто­ящем оборудовании;

Глаз наблюдателя может оценивать не только интенсивность, но и от­тенки окраски растворов.

Недостатки: - необходимо готовить стандартный раствор или серии стандартных рас­творов;

Невозможно сравнивать интенсивность окраски раствора в присутствии других окрашенных веществ;

При длительном сравнивании интенсивности окраски глаз человека утом­ляется, и ошибка определения увеличивается;

Глаз человека не столь чувствителен к небольшим изменениям опти­ческой плотности, как фотоэлектрические устройства, вследствие это­го невозможно обнаружить разницу в концентрации примерно до пяти относительных процентов.

ФОТОЭЛЕКТРОКОЛОРИМЕТРИЧЕСКИЕ МЕТОДЫ

Фотоэлектроколориметрия применяется для измерения поглощения света или пропускания окрашенными растворами. Приборы, используемые для этой цели, называются фотоэлектроколориметрами (ФЭК).

Фотоэлектрические методы измерения интенсивности окраски связаны с использованием фотоэлементов. В отличие от приборов, в которых сравнение окрасок производится визуально, в фотоэлектроколориметрах приемником световой энергии является прибор фотоэлемент . В этом приборе световая энергия преобразует в электрическую. Фотоэлементы позволяют проводить колориметрические определения не только в видимой, но также в УФ- и ИК-областях спектра. Измерение световых потоков с помощью фотоэлектрических фотометров более точно и не зависит от особенностей глаза наблюдателя. Применение фотоэлементов позволяет автоматизировать определение концентрации веществ в химическом контроле технологических процессов. Вследствие этого фотоэлектрическая колориметрия значительно шире используется в практике заводских лабораторий, чем визуальная.

На рис. 1 показан обычный порядок расположения узлов в приборах для измерения пропускания или поглощения растворов.

Рис .1 Основные узлы приборов для измерения по­глощения излучения: 1 - источник излучения; 2 - монохроматор; 3 - кюветы для растворов; 4 - преобразователь; 5 - индикатор сигнала.

Фотоколориметры в зависимости от числа используемых при измерениях фотоэлементов делятся на две группы: однолучевые (одноплечие) - приборы с одним фотоэлементом и двухлучевые (двуплечие) - с двумя фотоэлементами.

Точность измерений, получаемая на однолучевых ФЭК, невелика. В заводских и научных лабораториях наиболее широкое распространение получил фотоэлектрические установки, снабженные двумя фотоэлементами. В основу конструкции этих приборов по­ложен принцип уравнивания интенсивности двух световых пучков при помощи переменной щелевой диафрагмы, то есть принцип оп­тической компенсации двух све­товых потоков путем изменений раскрытия зрачка диафрагмы.

Принципиальная схема при­бора представлена на рис. 2. Свет от лампы накаливания 1 с помощью зеркал 2 разделяется на два параллельных пучка. Эти световые пучки проходят через светофильтры 3, кюветы с раство­рами 4 и попадают на фотоэлементы 6 и 6" , которые включены на гальванометр 8 по дифферен­циaльнoй схеме. Щелевая диаф­рагма 5 изменяет интенсивность светового потока, падающего на фотоэлемент 6 . Фотометрический нейтральный клин 7 служит для ослабления светового потока, падающего на фотоэле­мент 6".

Рис.2. Схема двухлучевого фотоэлектроколориметра

ОПРЕДЕЛЕНИЕ КОНЦЕНТРАЦИИ В ФОТОЭЛЕКТРОКОЛОРИМЕТРИИ

Для определения концентрации анализируемых веществ в фотоэлектро­колориметрии применяют:

Метод сравнения оптических плотностей стандартного и исследуемого окрашенных растворов;

- метод определения по среднему значению молярного коэффициента светопоглощения;

- метод градуировочного графика;

Метод добавок.

Метод сравнения оптических плотностей стандартного и исследуемого окрашенных растворов. Для определения готовят эталонный раствор определяемо­гo вещества известной концен-трации, которая приближается к концентрацииисследуемого рас-твора. Определяют оптическую плотность этого раствора при

Определенной длине волны D эт . Затем определяют оптическую плотность ис­следуемого раствора D х при той же длине волны и при той же толщине слоя. Сравнивая значения оптических плотностей исследуемого и эталонного рас­творов, находят неизвестную концентрацию определяемого вещества.

Метод сравнения применим при однократных анализах и требует обяза­тельного соблюдения основного закона светопоглощения.

Метод градуировочноro графика. Д ля определения концентрации вещества этим методом готовят серию из 5-8 стан-дартных растворов различной кон­центрации. При выборе интервала концентраций стандартных растворов руководствуются следующими положениями:

Ø он должен охватывать область возможных измерений концентрации исследуемого раствора;

Ø оптическая плотность исследуемого раствора должна соответствовать примерно середине градуировочной кривой;

Ø желательно, чтобы в этом интервале концентраций соблюдался основной закон светопоглощения, то есть график зависимости был прямолинейным;

Ø величина оптической плотности должна находиться в пределах 0, 14… 1,3.

Измеряют оптическую плотность стандартных растворов и строят график зависимости D (С). Определив D х исследуемого раствора, по градуировочному графику находят С х (рис. 3).

Этот метод позволяет определить концентрацию вещества даже в тех случаях, когда основной закон светопоглощения не соблюдается. В таком случае готовят большое количество стандартных растворов, отличающихся по концентрации не более чем на 10 %.

Рис. 3 . Зависимость оптической плотности раствора от концентра­ции (калибровочная кривая)

Метод добавок - это разновидность метода сравнения, осно-ванный на сравнении о п тической плотности исследуемого раствора и того же раствора с добавкой известно количества определяемого вещества.

Применяют его для устранения ме ш ающего влияния посто - ронних примесей, определения малых количеств анализируемого вещества в присутствии больших количеств посторонних веществ. Метод требует обязательного соблюдения основного закона свето - поглощения.

СПЕКТРОФОТОМЕТРИЯ

Это метод фотометрического анализа, в котором определение содержания вещества производят по поглощению им монохроматического света в види­мой, УФ- и ИК-областях спектра. В спектрофотометрии, в отличие от фото­метрии, монохроматизация обеспечивается не светофильтрами, а монохроматорами, позволяющими непрерывно изменять длину волны. В качестве монохроматоров используют призмы или дифракционные решетки, которые обеспечивают значительно более высокую монохроматичность света, чем светофильтры, поэтому точность спектрофотометрических определений выше.

Спектрофотометрические методы , по сравнению с фотоколориметрическими , позволяют решать более широкий круг задач:

Ø проводить количественное определение веществ в широком интервал длин волн (185-1100 нм);

Ø осуществлять количественный анализ многокомпонентных систем (одновременное определение нескольких веществ);

Ø определять состав и константы устойчивости светопоглощающих комплексных соединений;

Ø определять фотометрические характеристики светопоглощающих соединений.

В отличие от фотометров монохроматором в спектрофо - тометрах служит призма или дифракционная решетка, позволяя - ющая непрерывно менять длину волны. Существуют приборы для измерений в видимой, УФ- и ИК-областях спектра. Принципи - альная схема спектрофотометра практически не зависит от спектральной области.

Спектрофотометры, как и фотометры, бывают одно- и двулучевые. В двулучевых приборах световой поток каким-либо способом раздваивают или внутри монохроматора, или по выходе из него: один поток затем проходит через испытуемый раствор, другой - через растворитель.

Однолучевые приборы особенно удобны при выполнении количественных определений, основанных на измерении оптической плотности при о д ной длине волны. В этом случае простота прибора и легкость эксплуатации представляют существенное преимущество. Большая скорость и удобство измерения при работе с двулучевыми приборами полезны в качественном анализе, когда для получения спектра оптическая плотность должна быть измерена в большом интервале длин волн. Кроме того, двулучевое устройств о легко приспособить для автоматической записи непрерывно меняющейся оптической плотности: во всех современных регистрирующих спектрофото - метрах для этой цели используют именно двулучевую систему.

И одно-, и двулучевые приборы пригодны для измерений видимого и УФ-излучений. В основе ИК-спектрофотометров, выпускаемых промышленностью, всегда лежит двулучевая схема, поскольку их обычно используют для развертки и записи большой области спектра.

Количественный анализ однокомпонентных систем проводится теми же методами, что и в фотоэлектроколориметрии:

- методом сравнения оптических плотностей стандартного и исследуемого растворов;

- методом определения по среднему значению молярного коэффициента светопоглощения;

- методом градуировочного графика,

И не имеет никаких отличительных особенностей.

СПЕКТРОФОТОМЕТРИЯ В КАЧЕСТВЕННОМ АНАЛИЗЕ

Качественный анализ в ультрафиолетовой части спектра. Ультрафиолетовые спектры поглощения обычно имеют две-три, иногда пять и более полос по­глощения. Для однозначной идентификации исследуемого вещества записывают его спектр поглощения в различных растворителях и сравнивают полученные данные с соответствующими спектрами сходных веществ известного состава. Если спектры поглощения исследуемого вещества в разных paстворителях совпадают со спектром известного вещества, то можно с большой долей вероятности сделать заключение об идентичности химического состава этих соединений. Для идентификации неизвестного вещества по его спектру поглощения необходимо располагать достаточным количеством спектров поглощения органических и неорганических веществ. Существуют атласы, в которых приведены спектры поглощения очень многих, в основном органических веществ. Особенно хорошо изучены ультрафиолетовые спектры аромати - ческих углеводородов.

При идентификации неизвестных соединений следует также обратить вни­мание на интенсивность поглощения. Очень многие органические соедине­ния обладают полосами поглощения, максимумы которых расположены при одинаковой длине волны λ, но интенсивность их различна. Например, в спект­ре фенола наблюдается полоса поглощения при λ = 255 нм, для которой мо­лярный коэффициент поглощения при максимуме поглощения ε mах = 1450. При той же длине волны ацетон имеет полосу, для которой ε mах = 17.

Качественный анализ в видимой части спектра. Идентификацию окрашен­ного вещества, например красителя, также можно проводить, сравнивая его спектр поглощения в видимой части со спектром сходного красителя. Спект­ры поглощения большинства красителей описаны в специальных атласах и руководствах. По спектру поглощения красителя можно сделать заключе­ние о чистоте красителя, потому что в спектре примесей имеется ряд полос поглощения, которые отсутствуют в спектре красителя. По спектру поглоще­ния смеси красителей можно также сделать заключение о составе смеси, осо­бенно если в спектрах компонентов смеси имеются полосы поглощения, рас­положенные в разных областях спектра.

Качественный анализ в инфракрасной области спектра.

Поглощение ИК-излучения связано с увеличением колебательной и вра­щательной энергий ковалентной связи, если оно приводит к изменению дипольного момента молекулы . Это значит, что почти все молекулы с ковалентными связями в той или иной мере способны к поглощению в ИК-области.

Инфракрасные спектры многоатомных ковалентных соединений обычно очень сложны: они состоят из множества узких полос поглощения и сильно отличаются от обычных УФ- и видимых спектров. Различия вытекают из природы взаимодействия поглощающих молекул и их окружения. Это взаимодей­ствие (в конденсированных фазах) влияет на электронные переходы в хромофоре, поэтому линии поглощения уширяются и стремятся слиться в широкие полосы поглощения. В ИК -спектре, наоборот, частота и коэффициент поглощения, соответствующие отдельной связи, обычно мало меняются с измене­нием окружения (в том числе с изменением остальных частей молекулы). Линии тоже расширяются, но не настолько, чтобы слиться в полосу.

Обычно по оси ординат при построении ИК - спектров откладывают пропускание в процентах, а не оптическую плотность. При таком способе построения полосы поглощения выглядят как впадины на кривой, а не как максимумы на УФ-спектрах.

Образование инфра­красных спектров связано с энергией колебаний молекул. Колебания могут быть направлены вдоль валентной связи между атомами молекулы, в таком случае они называются валентными. Различают симметричные валентные колебания, в которых атомы колеблются в одинаковых направлениях, и асим­мeтpичныe валентные колебания, в которых атомы колеблются в противопо­ложных направлениях. Если колебания атомов происходят с изменением угла между связями, они называются деформационными. Такое разделение весьма условно, потому что при валентных колебаниях происходит в той или иной степени деформация углов и наоборот. Энергия деформационных колебаний обычно меньше, чем энергия валентных колебаний, и полосы поглощения, обусловленные деформационными колебаниями, располагаются в области более длинных волн.

Колебания всех атомов молекулы обусловливают полосы поглощения, индивидуальные для молекул данного вещества. Но среди этих колебаний можно выделить колебания групп атомов, которые слабо связаны с колебаниями атомов остальной части молекулы. Полосы поглощения, обусловленные такими колебаниями, называют характеристическими полосами. Они наблюдаются, как правило, в спектрах всех молекул, в которых имеются данные группы атомов. Примером характеристических полос могут служить полосы 2960 и 2870 см -1 . Первая полоса обусловлена асимметричными валентными колебаниями связи С-Н в метильной группе СН 3 , а вторая - симметричны­ми валентными колебаниями связи С-Н этой же группы. Такие полосы с небольшим отклонением (±10 см -1) наблюдаются в спектрах всех насы­щенных углеводородов и вообще в спектре всех молекул, в которых имеются СН 3 - группы.

Другие функциональные группы могут влиять на положение характеристической полосы, причем разность частот может составлять до ±100 см -1 , но такие случаи немногочисленны, и их можно учитывать на основании литературных данных.

Качественный анализ в инфракрасной области спектра проводится двумя способами.

1. Снимают спектр неизвестного вещества в области 5000-500 см -1 (2 - 20 мк) и отыскивают сходный спектр в специальных каталогах или таблицах. (или при помощи компьютерных баз данных)

2. В спектре исследуемого вещества отыскивают характерис-тические полосы, по которым можно судить о составе вещества.