Строение животной и растительной клетки. Растительная клетка и ее строение

Клетка - основная форма организации живой материи, элементарная единица организма. Она представляет собой самовоспроизводящуюся систему, которая обособлена от внешней среды и сохраняет определенную концентрацию химических веществ, но одновременно осуществляет постоянный обмен со средой.

Клетка - основная структурная единица одноклеточных, колониальных и многоклеточных организмов. Единственная клетка одноклеточного организма универсальна, она выполняет все функции, необходимые для обеспечения жизни и размножения. У многоклеточных организмов клетки чрезвычайно разнообразны по размеру, форме и внутреннему строению. Это разнообразие связано с разделением функций, выполняемых клетками в организме.

Несмотря на огромное разнообразие, клетки растений характеризуются общностью строения - это клетки эукариотические , имеющие оформленное ядро. От клеток других эукариот - животных и грибов - их отличают следующие особенности: 1) наличие пластид; 2) наличие клеточной стенки, основным компонентом которой является целлюлоза; 3) хорошо развитая система вакуолей; 4) отсутствие центриолей при делении; 5) рост путем растяжения.

Форма и размеры растительных клеток очень разнообразны и зависят от их положения в теле растения и функций, которые они выполняют. Плотно сомкнутые клетки чаще всего имеют форму многогранников, что определяется их взаимным давлением, на срезах они обычно выглядят как 4 – 6-угольники. Клетки, диаметр которых по всем направлениям приблизительно одинаков, называются паренхимными . Прозенхимными называются клетки сильно вытянутые в длину, длина превышает их ширину в 5-6 и более раз. В отличие от клеток животных, взрослые клетки растений всегда имеют постоянную форму, что объясняется присутствием жесткой клеточной стенки.

Размеры клеток большинства растений колеблются от 10 до 100 мкм (чаще всего 15-60 мкм), они видны только под микроскопом. Более крупными обычно бывают клетки, запасающие воду и питательные вещества. Мякоть плодов арбуза, лимона, апельсина состоит из столь крупных (несколько миллиметров) клеток, что их можно увидеть невооруженным глазом. Очень большой длины достигают некоторые прозенхимные клетки. Например, лубяные волокна льна имеют длину около40 мм, а крапивы – 80 мм, при этом величина их поперечного сечения остается в микроскопических пределах.

Число клеток в растении достигает астрономических величин. Так, один лист дерева насчитывает более 100 млн. клеток.

В растительной клетке можно различить три основные части: 1) углеводную клеточную стенку , окружающую клетку снаружи; 2) протопласт – живое содержимое клетки, - прижатый в виде довольно тонкого постенного слоя к клеточной стенке, и 3) вакуоль – пространство в центральной части клетки, заполненное водянистым содержимым – клеточным соком . Клеточная стенка и вакуоль являются продуктами жизнедеятельности протопласта.

2.2. Протопласт

Протопласт – активное живое содержимое клетки. Протопласт представляет собой чрезвычайно сложное образование, дифференцированное на различные компоненты, называемые органеллами (органоидами) , которые постоянно в нем встречаются, имеют характерное строение и выполняют специфические функции (рис. 2.1 ). К органеллам клетки относятся ядро , пластиды , митохондрии , рибосомы , эндоплазматическая сеть , аппарат Гольджи , лизосомы , микротельца . Органеллы погружены в гиалоплазму , которая обеспечивает их взаимодействие. Гиалоплазма с органеллами, за вычетом ядра, составляет цитоплазму клетки. От клеточной стенки протопласт отделен наружной мембраной – плазмалеммой , от вакуоли - внутренней мембраной – тонопластом . В протопласте осуществляются все основные процессы обмена веществ.

Рис. 2.1. Строение растительной клетки по данным электронной микроскопии : 1 – ядро; 2 – ядерная оболочка; 3 – ядерная пора; 4 – ядрышко; 5 – хроматин; 6 – кариоплазма; 7 – клеточная стенка; 8 – плазмалемма; 9 – плазмодесмы; 10 – агранулярная эндоплазматическая сеть; 11 – гранулярная эндоплазматическая сеть; 12 – митохондрия; 13 – рибосомы; 14 – лизосома; 15 – хлоропласт; 16 – диктиосома; 17 – гиалоплазма; 18 – тонопласт; 19 – вакуоль.

Химический состав протопласта очень сложен и разнообразен. Каждая клетка характеризуется своим химическим составом в зависимости от физиологических функций. Основными классами конституционных , т. е. входящих в состав протопласта, соединений являются: вода (60-90%), белки (40-50% сухой массы протопласта), нуклеиновые кислоты (1-2%), липиды (2-3%), углеводы и другие органические соединения. В состав протопласта входят и неорганические вещества в виде ионов минеральных солей (2-6%). Белки, нуклеиновые кислоты, липиды и углеводы синтезируются самим протопластом.

Помимо конституционных веществ, в клетке присутствуют запасные вещества (временно выключенные из обмена) и отбросы (конечные его продукты). Запасные вещества и отбросы получили обобщенное название эргастических веществ. Эргастические вещества, как правило, накапливаются в клеточном соке вакуолей в растворенном виде или образуют включения – оформленные частицы, видимые в световой микроскоп. К эргастическим обычно относят вещества вторичного синтеза, изучаемые в курсе фармакогнозии, - терпеноиды, алкалоиды, полифенольные соединения.

По физическим свойствам протопласт представляет собой многофазный коллоидный раствор (плотность 1,03-1,1). Обычно это гидрозоль, т.е. коллоидная система с преобладанием дисперсионной среды – воды. В живой клетке содержимое протопласта находится в постоянном движении, его можно заметить под микроскопом по передвижению органоидов и включений. Движение может быть вращательным (в одном направлении) или струйчатым (направление токов в разных тяжах цитоплазмы различно). Ток цитоплазмы называется также циклозом . Он обеспечивает лучшую транспортировку веществ и способствует аэрации клетки.

Цитоплазма -обязательная часть живой клетки, где происходят все процессы клеточного обмена, кроме синтеза нуклеиновых кислот, совершающегося в ядре. Основу цитоплазмы составляет ее матрикс , или гиалоплазма , в который погружены органеллы.

Гиалоплазма – сложная бесцветная, оптически прозрачная коллоидная система, она связывает все погруженные в нее органеллы, обеспечивая их взаимодействие. Гиалоплазма содержит ферменты и активно участвует в клеточном метаболизме, в ней протекают такие биохимические процессы, как гликолиз, синтез аминокислот, синтез жирных кислот и масел и др. Она способна к активному движению и участвует во внутриклеточном транспорте веществ.

Часть структурных белковых компонентов гиалоплазмы формирует надмолекулярные агрегаты со строго упорядоченным расположением молекул - микротрубочки и микрофиламенты . Микротрубочки – это тонкие цилиндрические структуры диаметром около 24 нм и длиной до нескольких микрометров. Их стенка состоит из спирально расположенных сферических субъединиц белка тубулина. Микротрубочки участвуют в ориентации образуемых плазмалеммой целлюлозных микрофибрилл клеточной стенки, во внутриклеточном транспорте, поддержании формы протопласта. Из них образуются нити веретена деления во время митоза, жгутики и реснички. Микрофиламенты представляют собой длинные нити толщиной 5-7 нм, состоящие из сократительного белка актина. В гиалоплазме они образуют пучки – цитоплазматические волокна, или принимают вид трехмерной сети, прикрепляясь к плазмалемме, пластидам, элементам эндоплазматической сети, рибосомам, микротрубочкам. Считается, что, сокращаясь, микрофиламенты генерируют движение гиалоплазмы и направленное перемещение прикрепленных к ним органелл. Совокупность микротрубочек и микрофиламентов составляет цитоскелет .

В основе структуры цитоплазмы лежат биологические мембраны –тончайшие (4-10 нм) пленки, построенные в основном из фосфолипидов и белков – липопротеидов. Молекулы липидов образуют структурную основу мембран. Фосфолипиды располагаются двумя параллельными слоями таким образом, что их гидрофильные части направлены наружу, в водную среду, а гидрофобные остатки жирных кислот – внутрь. Часть молекул белков располагается несплошным слоем на поверхности липидного каркаса с одной или обеих его сторон, часть их погружена в этот каркас, а некоторые проходят через него насквозь, образуя в мембране гидрофильные «поры» (рис. 2.2 ). Большинство мембранных белков представлено различными ферментами.

Рис. 2.2. Схема строения биологической мембраны : Б – молекула белка; Фл – молекула фосфолипида.

Мембраны – живые компоненты цитоплазмы. Они отграничивают протопласт от внеклеточной среды, создают внешнюю границу органелл и участвуют в создании их внутренней структуры, во многом являясь носителем их функций. Характерной особенностью мембран является их замкнутость, непрерывность – концы их никогда не бывают открытыми. В некоторых особенно активных клетках мембраны могут составлять до 90% сухого вещества цитоплазмы.

Одноизосновных свойств биологических мембран – их избирательная проницаемость (полупроницаемость): одни вещества проходят через них с трудом или вообще не проходят (барьерное свойство), другие проникают легко. Избирательная проницаемость мембран создает возможность подразделения цитоплазмы на изолированные отсеки – компартменты – различного химического состава, в которых одновременно и независимо друг от друга могут протекать различные биохимические процессы, часто противоположные по направлению.

Пограничными мембранами протопласта являются плазмалемма – плазматическая мембрана и тонопласт – вакуолярная мембрана. Плазмалемма – наружная, поверхностная мембрана цитоплазмы, обычно плотно прилегает к клеточной стенке. Она регулирует обмен веществ клетки с окружающей средой, воспринимает раздражения и гормональные стимулы, координирует синтез и сборку целлюлозных микрофибрилл клеточной стенки. Тонопласт регулирует обмен веществ между протопластом и клеточным соком.

Рибосомы – маленькие (около 20 нм), почти сферические гранулы, состоящие из рибонуклеопротеидов – комплексов РНК и различных структурных белков. Это единственные органеллы эукариотической клетки, которые не имеют мембран. Рибосомы располагаются в цитоплазме клетки свободно, или же прикрепляются к мембранам эндоплазматической сети. Каждая клетка содержит десятки и сотни тысяч рибосом. Располагаются рибосомы поодиночке либо группами из 4-40 (полирибосомы , или полисомы ), где отдельные рибосомы связаны между собой нитевидной молекулой информационной РНК, несущей информацию о структуре белка. Рибосомы (точнее, полисомы) – центры синтеза белка в клетке.

Рибосома состоит из двух субъединиц (большой и малой), соединенных между собой ионами магния. Субъединицы образуются в ядре, а именно в ядрышке, сборка рибосом осуществляется в цитоплазме. Рибосомы обнаружены также в митохондриях и пластидах, но их размер меньше и соответствует размеру рибосом прокариотических организмов.

Эндоплазматическая сеть (эндоплазматический ретикулум) представляет собой разветвленную трехмерную сеть каналов, пузырьков и цистерн, ограниченных мембранами, пронизывающую гиалоплазму. Эндоплазматическая сеть в клетках, синтезирующих белки, состоит из мембран, несущих на наружной поверхности рибосомы. Такая форма получила название гранулярной , или шероховатой (рис. 2.1 ). Эндоплазматическая сеть, не имеющая рибосом, называется агранулярной , или гладкой . Агранулярная эндоплазматическая сеть принимает участие в синтезе жиров и других липофильных соединений (эфирные масла, смолы, каучук).

Эндоплазматическая сеть функционирует как коммуникационная система клетки и используется для транспортировки веществ. Эндоплазматические сети соседних клеток соединяются через цитоплазматические тяжи – плазмодесмы , которые проходят сквозь клеточные стенки. Эндоплазматическая сеть – центр образования и роста клеточных мембран. Она дает начало таким компонентам клетки, как вакуоли, лизосомы, диктиосомы, микротельца. При посредстве эндоплазматической сети осуществляется взаимодействие между органеллами.

Аппарат Гольджи названпоимениитальянскогоученого К. Гольджи, впервые описавшего его в животных клетках. В клетках растений аппарат Гольджи состоит из отдельныхдиктиосом , или телец Гольджи и пузырьков Гольджи . Каждая диктиосома представляет собой стопку из 5-7 и более уплощенных округлых цистерн диаметром около 1 мкм, ограниченных мембраной (рис. 2.3). По краям диктиосомы часто переходят в систему тонких ветвящихся трубок. Число диктиосом в клетке сильно колеблется (от 10-50 до нескольких сотен) в зависимости от типа клетки и фазы ее развития. Пузырьки Гольджи различного диаметра отчленяются от краев диктиосомных цистерн или краев трубок и направляются обычно в сторону плазмалеммы или вакуоли.

Рис. 2.3. Схема строения диктиосомы.

Диктиосомы являются центрами синтеза, накопления и выделения полисахаридов, прежде всего пектиновых веществ и гемицеллюлоз матрикса клеточной стенки и слизей. Пузырьки Гольджи транспортируют полисахариды к плазмалемме. Особенно развит аппарат Гольджи в клетках, интенсивно секретирующих полисахариды.

Лизосомы –органеллы, отграниченные от гиалоплазмы мембраной и содержащие гидролитические ферменты, способные разрушать органические соединения. Лизосомы растительных клеток представляют собой мелкие (0,5-2 мкм) цитоплазматические вакуоли и пузырьки – производные эндоплазматической сети или аппарата Гольджи. Основная функция лизосом - локальный автолиз – разрушение отдельных участков цитоплазмы собственной клетки, заканчивающееся образованием на ее месте цитоплазматической вакуоли. Локальный автолиз у растений имеет в первую очередь защитное значение: при временном недостатке питательных веществ клетка может сохранять жизнеспособность за счет переваривания части цитоплазмы. Другая функция лизосом – удаление изношенных или избыточных клеточных органелл, а также очищение полости клетки после отмирания ее протопласта, например при образовании водопроводящих элементов.

Микротельца – мелкие (0,5-1,5 мкм) сферические органеллы, окруженные одной мембраной. Внутри находится тонкогранулярный плотный матрикс, состоящий из окислительно-восстановительных ферментов. Наиболее известны из микротелец глиоксисомы и пероксисомы . Глиоксисомы участвуют в превращении жирных масел в сахара, что происходит при прорастании семян. В пероксисомах происходят реакции светового дыхания (фотодыхания), при этом в них окисляются продукты фотосинтеза с образованием аминокислот.

Митохондрии - округлые или эллиптические, реже нитевидные органеллы диаметром 0,3-1 мкм, окруженные двумя мембранами. Внутренняя мембрана образует выросты в полость митохондрии – кристы , которые значительно увеличивают ее внутреннюю поверхность. Пространство между кристами заполнено матриксом . В матриксе находятся рибосомы, более мелкие, чем рибосомы гиалоплазмы, и нити собственной ДНК ( рис. 2.4).

Рис. 2.4. Схемы строения митохондрии в трехмерном изображении (1) и на срезе (2): ВМ – внутренняя мембрана митохондрии; ДНК – нить митохондриальной ДНК; К – криста; Ма – матрикс; НМ – наружная мембрана митохондрии; Р – митохондриальные рибосомы.

Митохондрии называют силовыми станциями клетки. В них осуществляется внутриклеточное дыхание , в результате которого органические соединения расщепляются с высвобождением энергии. Эта энергия идет на синтез АТФ – окислительное фосфорилирование . По мере необходимости энергия, запасенная в АТФ, используется для синтеза различных веществ и в различных физиологических процессах. Число митохондрий в клетке колеблется от нескольких единиц до нескольких сотен, особенно их много в секреторных клетках.

Митохондрии являются постоянными органеллами, которые не возникают заново, а распределяются при делении между дочерними клетками. Увеличение числа митохондрий происходит за счет их деления. Это возможно благодаря наличию в митохондриях собственных нуклеиновых кислот. Митохондрии способны к независимому от ядра синтезу некоторых своих белков на собственных рибосомах под контролем митохондриальной ДНК. Однако эта их независимость неполная, так как развитие митохондрий происходит под контролем ядра, и митохондрии, таким образом, являются полуавтономными органеллами.

Пластиды –органеллы, характерные только для растений. Различают три типа пластид: 1) хлоропласты (пластиды зеленого цвета); 2) хромопласты (пластиды желтого, оранжевого или красного цвета) и лейкопласты (бесцветные пластиды). Обычно в клетке встречаются пластиды только одного типа.

Хлоропласты имеют наибольшее значение, в них протекает фотосинтез. Они содержат зеленый пигмент хлорофилл , придающий растениям зеленый цвет, и пигменты, относящиеся к группе каротиноидов . Каротиноиды имеют окраску от желтой и оранжевой до красной и коричневой, но обычно она маскируется хлорофиллом. Каротиноиды делят на каротины , имеющие оранжевую окраску, и ксантофиллы , имеющие желтую окраску. Это липофильные (жирорастворимые) пигменты, по химической структуре они относятся к терпеноидам.

Хлоропласты растений имеют форму двояковыпуклой линзы и размеры 4-7 мкм, они хорошо видны в световой микроскоп. Число хлоропластов в фотосинтезирующих клетках может достигать 40-50. У водорослей роль фотосинтетического аппарата выполняют хроматофоры . Их форма разнообразна: чашевидная (хламидомонада), лентовидная (спирогира), пластинчатая (пиннулярия) и др. Хроматофоры значительно крупнее, число их в клетке – от 1 до 5.

Хлоропласты имеют сложное строение. От гиалоплазмы они отграничены двумя мембранами – наружной и внутренней. Внутреннее содержимое называется строма . Внутренняя мембрана формирует внутри хлоропласта сложную, строго упорядоченную систему мембран, имеющих форму плоских пузырьков, называемых тилакоидами . Тилакоиды собраны в стопки - граны , напоминающие столбики монет. Граны связаны между собой тилакоидами стромы (межгранными тилакоидами), проходящими через них насквозь вдоль пластиды (рис. 2.5 ). Хлорофиллы и каротиноиды встроены в мембраны тилакоидов гран. В строме хлоропластов находятся пластоглобулы – сферические включения жирных масел, в которых растворены каротиноиды, а также рибосомы, сходные по величине с рибосомами прокариот и митохондрий, и нити ДНК. Часто в хлоропластах встречаются крахмальные зерна, это так называемый первичный , или ассимиляционный крахмал – временное хранилище продуктов фотосинтеза.

Рис. 2.5. Схема строения хлоропласта в трехмерном изображении (1) и на срезе (2): Вм – внутренняя мембрана; Гр – грана; ДНК – нить пластидной ДНК; НМ – наружная мембрана; Пг – пластоглобула; Р – рибосомы хлоропласта; С – строма; ТиГ – тилакоид граны; ТиМ – межгранный тилакоид.

Хлорофилл и хлоропласты образуются только на свету. Растения, выращенные в темноте, не имеют зеленой окраски и называются этиолированными . Вместо типичных хлоропластов в них образуются измененные пластиды, не имеющие развитой внутренней мембранной системы, - этиопласты .

Основная функция хлоропластов – фотосинтез , образование органических веществ из неорганических за счет энергии света. Центральная роль в этом процессе принадлежит хлорофиллу. Он поглощает энергию света и направляет ее на осуществление реакций фотосинтеза. Эти реакции подразделяются на светозависимые и темновые (не требующие присутствия света). Светозависимые реакции состоят в преобразовании световой энергии в химическую и разложении (фотолизе) воды. Они приурочены к мембранам тилакоидов. Темновые реакции – восстановление углекислого газа воздуха водородом воды до углеводов (фиксация СО 2) – протекают в строме хлоропластов.

В хлоропластах, как и в митохондриях, происходит синтез АТФ. В этом случае источником энергии служит солнечный свет, поэтому его называют фотофосфорилированием . Хлоропласты участвуют также в синтезе аминокислот и жирных кислот, служат хранилищем временных запасов крахмала.

Наличие ДНК и рибосом указывает, как и в случае митохондрий, на существование в хлоропластах своей собственной белоксинтезирующей системы. Действительно, большинство белков мембран тилакоидов синтезируется на рибосомах хлоропластов, тогда как основное число белков стромы и липиды мембран имеют внепластидное происхождение.

Лейкопласты - мелкие бесцветные пластиды. Они встречаются в основном в клетках органов, скрытых от солнечного света, таких как корни, корневища, клубни, семена. Строение их в общих чертах сходно со строением хлоропластов: оболочка из двух мембран, строма, рибосомы, нити ДНК, пластоглобулы аналогичны таковым хлоропластов. Однако, в отличие от хлоропластов, у лейкопластов слабо развита внутренняя мембранная система.

Лейкопласты – это органеллы, связанные с синтезом и накоплением запасных питательных веществ, в первую очередь крахмала, редко белков и липидов. Лейкопласты, накапливающие крахмал, называются амилопластами . Этот крахмал имеет вид зерен, в отличие от ассимиляционного крахмала хлоропластов, он называется запасным , или вторичным . Запасной белок может откладываться в форме кристаллов или аморфных включений в так называемых протеинопластах , жирные масла – в виде пластоглобул в элайопластах .

Часто в клетках встречаются лейкопласты, не накапливающие запасные питательные вещества, их роль еще до конца не выяснена. На свету лейкопласты могут превращаться в хлоропласты.

Хромопласты - пластиды оранжевого, красного и желтого цвета, который обусловлен пигментами, относящимися к группе каротиноидов. Хромопласты встречаются в клетках лепестков многих растений (ноготки, лютик, одуванчик), зрелых плодов (томат, шиповник, рябина, тыква, арбуз), редко - корнеплодов (морковь), а также в осенних листьях.

Внутренняя мембранная система в хромопластах, как правило, отсутствует. Каротиноиды чаще всего растворены в жирных маслах пластоглобул (рис. 2.6), и хромопласты имеют более или менее сферическую форму. В некоторых случаях (корнеплоды моркови, плоды арбуза) каротиноиды откладываются в виде кристаллов различной формы. Кристалл растягивает мембраны хромопласта, и он принимает его форму: зубчатую, игловидную, серповидную, пластинчатую, треугольную, ромбовидную и др.

Рис. 2.6. Хромопласт клетки мезофилла лепестка лютика: ВМ – внутренняя мембрана; НМ – наружная мембрана; Пг – пластоглобула; С – строма.

Значение хромопластов до конца еще не выяснено. Большинство из них представляют собой стареющие пластиды. Они, как правило, развиваются из хлоропластов, при этом в пластидах разрушаются хлорофилл и внутренняя мембранная структура, и накапливаются каротиноиды. Это происходит при созревании плодов и пожелтении листьев осенью. Косвенное биологическое значение хромопластов состоит в том, что они обусловливают яркую окраску цветков и плодов, привлекающую насекомых для перекрестного опыления и других животных для распространения плодов. В хромопласты могут превращаться и лейкопласты.

Пластиды всех трех типов образуются из пропластид – мелких бесцветных телец, которые находятся в меристематических (делящихся) клетках корней и побегов. Пропластиды способны делиться и по мере дифференциации превращаются в пластиды разного типа.

В эволюционном смысле первичным, исходным типом пластид являются хлоропласты, из которых произошли пластиды остальных двух типов. В процессе индивидуального развития (онтогенеза) почти все типы пластид могут превращаться друг в друга.

Пластиды имеют много общих черт с митохондриями, отличающих их от других компонентов цитоплазмы. Это, прежде всего, оболочка из двух мембран и относительная генетическая автономность, обусловленная наличием собственных рибосом и ДНК. Такое своеобразие органелл легло в основу представления, что предшественниками пластид и митохондрий были бактерии, которые в процессе эволюции оказались встроенными в эукариотическую клетку и постепенно превратились в хлоропласты и митохондрии.

Ядро – основная и обязательная часть эукариотической клетки. Ядро является центром управления обменом веществ клетки, ее ростом и развитием, контролирует деятельность всех других органелл. Ядро хранит генетическую информацию и передает ее дочерним клеткам в процессе клеточного деления. Ядро имеется во всех живых растительных клетках, исключение составляют только зрелые членики ситовидных трубок флоэмы. Клетки с удаленным ядром, как правило, быстро погибают.

Ядро – самая крупная органелла, его размер составляет 10-25 мкм. Очень большие ядра у половых клеток (до 500 мкм). Форма ядра чаще сферическая или эллипсоидальная, но в сильно удлиненных клетках может быть линзовидной или веретеновидной.

Клетка, как правило, содержит одно ядро. В молодых (меристематических) клетках оно обычно занимает центральное положение. По мере роста центральной вакуоли ядро смещается к клеточной стенке и располагается в постенном слое цитоплазмы.

По химическому составу ядро резко отличается от остальных органелл высоким (15-30%) содержанием ДНК – вещества наследственности клетки. В ядре сосредоточено 99% ДНК клетки, она образует с ядерными белками комплексы – дезоксирибонуклеопротеиды. В ядре содержатся также в значительных количествах РНК (в основном иРНК и рРНК) и белки.

Структура ядра одинакова у всех эукариотических клеток. В ядре различают хроматин и ядрышко , которые погружены в кариоплазму ; от цитоплазмы ядро отделено ядерной оболочкой с порами (рис. 2.1 ).

Ядерная оболочка состоит из двух мембран. Наружная мембрана, граничащая с гиалоплазмой, несет прикрепленные рибосомы. Оболочка пронизана довольно крупными порами, благодаря которым обмен между цитоплазмой и ядром значительно облегчен; через поры проходят макромолекулы белка, рибонуклеопротеиды, субъединицы рибосом и др. Наружная ядерная мембрана в некоторых местах объединяется с эндоплазматической сетью.

Кариоплазма (нуклеоплазма , или ядерный сок) – основное вещество ядра, служит средой для распределения структурных компонентов – хроматина и ядрышка. В ней содержатся ферменты, свободные нуклеотиды, аминокислоты, иРНК, тРНК, продукты жизнедеятельности хромосом и ядрышка.

Ядрышко - плотное, сферическое тельце диаметром 1-3 мкм. Обычно в ядре содержатся 1-2, иногда несколько ядрышек. Ядрышки являются основным носителем РНК ядра, состоят из рибонуклеопротеидов. Функция ядрышек – синтез рРНК и образование субъединиц рибосом.

Хроматин - важнейшая часть ядра. Хроматин состоит из молекул ДНК, связанных с белками, - дезоксирибонуклеопротеидов. Во время деления клетки хроматин дифференцируется в хромосомы . Хромосомы представляют собой уплотненные спирализованные нити хроматина, они хорошо различимы в метафазе митоза, когда можно подсчитать число хромосом и рассмотреть их форму. Хроматин и хромосомы обеспечивают хранение наследственной информации, ее удвоение и передачу из клетки в клетку.

Число и форма хромосом (кариотип ) одинаковы во всех клетках тела организмов одного вида. В ядрах соматических (неполовых) клеток содержится диплоидный (двойной) набор хромосом – 2n. Он образуется в результате слияния двух половых клеток с гаплоидным (одинарным) набором хромосом – n. В диплоидном наборе каждая пара хромосом представлена гомологичными хромосомами, происходящими одна от материнского, а другая от отцовского организма. Половые клетки содержат по одной хромосоме из каждой пары гомологичных хромосом.

Число хромосом у разных организмов варьирует от двух до нескольких сотен. Как правило, каждый вид имеет характерный и постоянный набор хромосом, закрепленный в процессе эволюции данного вида. Изменение хромосомного набора происходит только в результате хромосомных и геномных мутаций. Наследственное кратное увеличение числа наборов хромосом получило название полиплоидии , некратное изменение хромосомного набора – анеуплоидии . Растения – полиплоиды характеризуются более крупными размерами, большей продуктивностью, устойчивостью к неблагоприятным факторам внешней среды. Они представляют большой интерес как исходный материал для селекции и создания высокопродуктивных сортов культурных растений. Полиплоидия также играет большую роль в видообразовании у растений.

Деление клетки

Возникновение новых ядер происходит за счет деления уже существующих. При этом ядро в норме никогда не делится простой перетяжкой пополам, поскольку такой способ не может обеспечить совершенно одинакового распределения наследственного материала между двумя дочерними клетками. Это достигается с помощью сложного процесса деления ядра, называемого митозом .

Митоз –это универсальная форма деления ядра, сходная у растений и животных. В нем различают четыре фазы: профазу , метафазу , анафазу и телофазу (рис. 2.7 ). Период между двумя митотическими делениями называется интерфаза .

В профазе в ядре начинают выявляться хромосомы. Сначала они имеют вид клубка из перепутанных нитей. Затем хромосомы укорачиваются, утолщаются и располагаются упорядоченно. В конце профазы исчезает ядрышко, а ядерная оболочка фрагментируется на отдельные короткие цистерны, неотличимые от элементов эндоплазматической сети, кариоплазма смешивается с гиалоплазмой. На двух полюсах ядра появляются скопления микротрубочек, из которых впоследствии образуются нити митотического веретена .

В метафазе хромосомы окончательно обособляются и собираются в одной плоскости посередине между полюсами ядра, образуя метафазную пластинку . Хромосомы образованы двумя сложенными по длине одинаковыми хроматидами , каждая из которых содержит одну молекулу ДНК. Хромосомы имеют перетяжку - центромеру , которая делит их на два равных или неравных плеча. В метафазе хроматиды каждой хромосомы начинают отделяться друг от друга, связь между ними сохраняется только в области центромеры. К центромерам прикрепляются нити митотического веретена. Они состоят из параллельно расположенных групп микротрубочек. Митотическое веретено – это аппарат специфической ориентации хромосом в метафазной пластинке и распределения хромосом по полюсам клетки.

В анафазе каждая хромосома окончательно разделяется на две хроматиды, которые становятся сестринскими хромосомами. Затем с помощью нитей веретена одна из пары сестринских хромосом начинает двигаться к одному полюсу ядра, вторая – к другому.

Телофаза наступает, когда сестринские хромосомы достигают полюсов клетки. Веретено исчезает, группирующиеся по полюсам хромосомы деконденсируются и удлиняются – они переходят в интерфазный хроматин. Появляются ядрышки, вокруг каждого из дочерних ядер собирается оболочка. Каждая дочерняя хромосома состоит всего из одной хроматиды. Достройка второй половины, осуществляемая путем редупликации ДНК, происходит уже в интерфазном ядре.

Рис. 2.7. Схема митоза и цитокинеза клетки с числом хромосом 2 n =4 : 1 – интерфаза; 2,3 – профаза; 4 – метафаза; 5 – анафаза; 6 – телофаза и образование клеточной пластинки; 7 – завершение цитокинеза (переход к интерфазе); В – митотическое веретено; КП – формирующаяся клеточная пластинка; Ф – волокна фрагмопласта; Хм – хромосома; Яд – ядрышко; ЯО – ядерная оболочка.

Продолжительность митоза колеблется от 1 до 24 часов. В результате митоза и последующей интерфазы клетки получают одинаковую наследственную информацию и содержат идентичные по числу, размеру и форме с материнскими клетками хромосомы.

В телофазе начинается деление клетки – цитокинез . Сначала между двумя дочерними ядрами появляются многочисленные волокна, совокупность этих волокон имеет форму цилиндра и называется фрагмопласт (рис. 2.7 ). Как и нити веретена, волокна фрагмопласта образованы группами микротрубочек. В центре фрагмопласта, в экваториальной плоскости между дочерними ядрами, скапливаются пузырьки Гольджи, содержащие пектиновые вещества. Они сливаются друг с другом и дают начало клеточной пластинке , а ограничивающая их мембрана становится частью плазмалеммы.

Клеточная пластинка имеет форму диска и растет центробежно по направлению к стенкам материнской клетки. Волокна фрагмопласта контролируют направление движения пузырьков Гольджи и рост клеточной пластинки. Когда клеточная пластинка достигает стенок материнской клетки, образование перегородки и обособление двух дочерних клеток заканчиваются, фрагмопласт исчезает. После завершения цитокинеза обе клетки приступают к росту, достигают размера материнской клетки и затем могут снова делиться или переходят к дифференциации.

Мейоз (редукционное деление ядра) – особый способ деления, при котором в отличие от митоза происходит редукция (уменьшение) числа хромосом и переход клеток из диплоидного состояния в гаплоидное. У животных мейоз – основное звено гаметогенеза (процесса образования гамет), а у растений – спорогенеза (процесса образования спор). Если бы не было мейоза, число хромосом при слиянии клеток во время полового процесса должно было бы удваиваться до бесконечности.

Мейоз состоит из двух последовательных делений, в каждом из которых можно выделить те же четыре стадии, что и в обычном митозе (рис.2.8 ).

В профазе первого деления, как и в профазе митоза, хроматин ядра переходит в конденсированное состояние – образуются типичные для данного вида растения хромосомы, ядерная оболочка и ядрышко исчезают. Однако при мейозе гомологичные хромосомы располагаются не в беспорядке, а попарно, контактируя друг с другом по всей их длине. При этом спаренные хромосомы могут обмениваться между собой отдельными участками хроматид. В метафазе первого деления гомологичные хромосомы образуют не однослойную, а двухслойную метафазную пластинку. В анафазе первого деления гомологичные хромосомы каждой пары расходятся по полюсам веретена деления без продольного разъединения их на изолированные хроматиды. В результате в телофазе у каждого из полюсов деления оказывается уменьшенное вдвое, гаплоидное число хромосом, состоящих не из одной, а из двух хроматид. Распределение гомологичных хромосом по дочерним ядрам носит случайный характер.

Сразу после телофазы первого деления начинается второй этап мейоза – обычный митоз с разделением хромосом на хроматиды. В результате этих двух делений и следующего за ними цитокинеза образуются четыре гаплоидные дочерние клетки – тетрада . При этом между первым и вторым ядерными делениями интерфаза, а, значит, и редупликация ДНК, отсутствуют. При оплодотворении диплоидный набор хромосом восстанавливается.

Рис. 2.8. Схема мейоза при числе хромосом 2 n =4 : 1 – метафаза I (гомологичные хромосомы собраны попарно в метафазной пластинке); 2 – анафаза I (гомологичные хромосомы отдаляются друг от друга к полюсам веретена без расщепления на хроматиды); 3 – метафаза II (хромосомы располагаются в метафазной пластинке в один ряд, их число уменьшено вдвое); 4 – анафаза II (после расщепления дочерние хромосомы отдаляются друг от друга); 5 – телофаза II (образуется тетрада клеток); В – митотическое веретено; Хм 1 – хромосома из одной хроматиды; Хм 2 – хромосома из двух хроматид.

Значение мейоза состоит не только в обеспечении постоянства числа хромосом у организмов из поколения в поколение. Благодаря случайному распределению гомологичных хромосом и обмену их отдельными участками, образующиеся в мейозе половые клетки содержат разнообразнейшие сочетания хромосом. Это обеспечивает разнообразие хромосомных наборов, повышает изменчивость признаков у последующих поколений и, таким образом, дает материал для эволюции организмов.

Клетки разных царств имеют много общих черт, но есть и существенные различия.

Мы рассмотрим клетки 4-х живых организмов - животных, растений, грибов и бактерий.

Опишем их общие органоиды и то, что различает их.

Бактериальная клетка

Отличается от всех остальных как самая просто устроенная.

Клеточная оболочка - основные функции - защита и обмен веществ. Запасное питательное вещество уникально, в других живых клетках его нет - это углевод муреин.

Мембрана - как и у остальных живых клеток, основная функция - защита и обмен веществ.

Цитоплазма

Рибосомы - синтезируют белок.
Мезосомы - осуществление окислительно-восстановительных процессов.
Ядра нет, есть нуклеоид - кольцевая ДНК и РНК.
Жгутитки - обеспечивают движение.

Клетка растений

Клеточная стенка - функции те же, запасное питательное вещество - углевод - крахмал, целлюлоза и т.п.
Мембрана - защита и обмен веществ, небольшое отличие - есть плазмодесмы - что-то вроде мостиков между соседними клетками в многоклеточных растениях.
Цитоплазма - внутренняя полужидкая среда, содержит питательные вещества.
Рибосомы - есть, но немного, синтезируют белок.
Ядро - центр генетической информации клетки.
ЭПС (эндоплазматический ретикулум), гладкий (без рибосом) - обеспечивает транспорт веществ, поддерживает форму клетки, шероховатый - рибосомы на нем обеспечивают синтез белка.
Цитоплазма - внутренняя полужидкая среда, содержит питательные вещества.
Хлоропласт - обязательный органойд исключительно растительной клетки. Функция - фотосинтез.
Вакуоль - тоже именно растительный органойд - запас клеточного сока.
Митохондрия - синтез АТФ - обеспечение клетки энергией.
Лизосомы - пищеварительные органеллы.
Аппарат Гольджи - производит лизосомы и хранит питательные вещества.
Микрофиламенты - белковые нити - “рельсы” для передвижения некоторых органелл, участвуют в делении клетки.
Микротрубочки - примерно то же самое, что микрофиламенты, только толще.

Клетка животных

Клеточной стенки нет, нет хлоропластов, нет вакуолей.

Остальные органеллы те же, что и у растительной клетки, есть одно “добавление” - компонент ТОЛЬКО животной клетки - центриоли - участвуют в делении клетки, отвечая за правильное расхождение хромосом.

Клетка грибов

Рисунки животной клетки никогда не встречаются в ЕГЭ, да и строение клетки рассматривается только в сравнении с животной и растительной.

По строению она очень похожа на животную, только нет центриолей и есть клеточная стенка, запасное питательное вещество которой - гликоген.

Расскажи друзьям!

Строение растительной клетки изучает наука - физиология растений. Клетка является основной структурной единицей как растительного , так и животного организма . Она представляет собой наименьшую часть организма, обладающую свойствами живого

Одноклеточные и многоклеточные растения

Есть растения одноклеточные и многоклеточные . К первым относятся некоторые , состоящие только из одной клетки, и в этом случае такая клетка несет в себе все присущие ей функции.

Многоклеточные растения представляют собой не простую сумму клеток, а единый организм , в котором они образуют различные ткани и органы, находящиеся во взаимодействии друг с другом.

Структурные элементы растительной клетки

Клетки растений весьма разнообразны как по размерам и форме, так и по выполняемым ими функциям, но в основном состоят из одних и тех же частей.

Строение взрослой растительной клетки

  1. - оболочка,
  2. - срединная пластинка,
  3. - межклетник,
  4. - плазмодесмы,
  5. - плазмалемма,
  6. - тонопласт,
  7. - вакуоля,
  8. - цитоплазма,
  9. - капелька масла,
  10. - митохондрия,
  11. - хлоропласт,
  12. - граны в хлоропласте,
  13. - крахмальное зерно в хлоропласте,
  14. - ядро,
  15. - ядерная оболочка,
  16. - ядрышко,
  17. - хроматин.

Каждая взрослая живая клетка состоит из:

  • оболочки,
  • протоплазмы,
  • вакуоли.

Оболочка придает растительной клетке определенную форму. Под оболочкой находится протоплазма , обычно плотно прижатая к оболочке. Центральную часть клетки занимает вакуоля , наполненная клеточным соком. У молодых клеток вакуоли нет и протоплазма заполняет всю полость клетки.

Рассмотрим подробнее строение растительной клетки, для этого опишем все ее составные части.

Протоплазма

Протоплазма - это живое вещество организма; в ней протекают сложнейшие реакции обмена, характерные для жизни.

В протоплазме находится большое количество мембран-пленок, в образовании которых большую роль играют соединения белков с фосфатидами (жироподобными веществами). Благодаря наличию мембран у протоплазмы имеются огромные внутренние поверхности, на которых и протекают процессы адсорбции (поглощения) и десорбции (выделения) веществ и их передвижение, происходящие с большой скоростью.

Большое количество мембран, разделяющих содержимое клетки, позволяет различным веществам, находящимся в клетке, не перемешиваться и передвигаться одновременно в противоположных направлениях.

Однако физико-химические свойства мембран непостоянны; они непрерывно изменяются в зависимости от внутренних и внешних условий, что дает возможность саморегулирования биохимических процессов.

Химический состав протоплазмы

Химический состав протоплазмы очень сложен. Она состоит из органических и неорганических соединений, находящихся как в коллоидном, так и в растворенном состоянии.

Удобным объектом для изучения химического состава протоплазмы является плазмодий фикомицетов, представляющий собой голую, лишенную оболочки протоплазму.

Ниже приведен суммарный состав протоплазмы фикомицетов (в % от сухого веса):

Водорастворимые органические вещества………………………………………………… 40,7

Из них: сахара……………………………………………………………………………………………….. 14,2
белки………………………………………………………………………………………………………………. 22
аминокислоты, органические основания и другие азотные соединения….. 24,3

Не растворимые в воде органические вещества ……………………………………….. 55,9

Из них: нуклеопротеиды……………………………………………………………………………….. 32,2
свободные нуклеиновые кислоты ……………………………………………………………….. 2,5
глобулины (простые белки) …………………………………………………………………………… 0,5
липопротеиды………………………………………………………………………………………………… 4,8
нейтральные жиры………………………………………………………………………………………… 6,8
фитостеролы (высокомолекулярные спирты) ………………………………………………. 3.2
фосфатиды……………………………………………………………………………………………………….. 1,3
другие органические вещества………………………………………………………………………. 4,6

Минеральные вещества………………………………………………………………………………….. 3,4

Химический состав протоплазмы близок к приведенному выше, но он может изменяться в зависимости от вида, возраста и органа растения.

В протоплазме содержится до 80% воды (в протоплазме покоящихся семян - 5-15%). Она пропитывает всю коллоидную систему протоплазмы, являясь ее структурным элементом. В протоплазме все время происходят химические реакции, для протекания которых необходимо, чтобы реагирующие соединения были в растворе.

Цитоплазма

Основной частью протоплазмы является цитоплазма , представляющая собой полужидкое содержимое клетки и заполняющее ее внутреннее пространство.

В цитоплазме расположены ядро, пластиды, митохондрии (хондриосомы), рибосомы и аппарат Гольджи.

Наружная мембрана цитоплазмы, граничащая с клеточной оболочкой, называется плазмалеммой. Плазмалемма легко пропускает воду и многие ионы, но задерживает крупные молекулы.

На границе цитоплазмы с вакуолью тоже образуется мембрана, называемая тонопластом.

В цитоплазме расположена эндоплазматическая сеть, представляющая собой систему ветвящихся мембран, соединенных с наружной мембраной. Мембраны эндоплазматической сети образуют каналы и расширения, на поверхности которых и протекают все химические реакции.

Важнейшие свойства цитоплазмы - вязкость и эластичность. Вязкость цитоплазмы изменяется в зависимости от температуры: при повышении температуры вязкость уменьшается и, наоборот, при понижении - увеличивается. При большой вязкости обмен веществ в клетке снижается, при малой - возрастает.

Эластичность цитоплазмы проявляется в ее способности возвращаться к исходной форме после деформации, что указывает на определенную структуру цитоплазмы.

Цитоплазма способна к движению, которое тесно связано с окружающими условиями. Основу движения составляет сократимость белков цитоплазмы клеток. Повышение температуры ускоряет движение цитоплазмы, отсутствие кислорода останавливает его. Вероятно, движение цитоплазмы тесно связано с превращением веществ и энергии в растении.

Способность цитоплазмы реагировать на внешние условия и приспосабливаться к ним называется раздражимостью.

Наличие раздражимости характеризует живой организм. Ответная реакция цитоплазмы на воздействие температуры, света и влаги требует затраты энергии, которая выделяется в процессе дыхания. Листочки стыдливой мимозы при механическом раздражении быстро складываются, но при частом повторении раздражения перестают на него реагировать; последнее, по-видимому, объясняется недостатком энергии. Раздражимость цитоплазмы- основа всех видов движения и других явлений жизнедеятельности раст.

Ядро

Ядро - важнейший и самый крупный органоид клетки. Размеры ядра зависят от вида растения и состояния клетки (у высших растений в среднем от 5 до 25 мк). Форма ядра чаще всего шаровидная, у вытянутых клеток - овальная.

Живая клетка обычно имеет только одно ядро, но у высших растений сильно вытянутые клетки (из которых образуются лубяные волокна) содержат по нескольку ядер. В молодых клетках, не имеющих вакуоли, ядро обычно занимает центральное положение, у взрослых при образовании вакуолей оно отодвигается к периферии.

Ядро представляет собой коллоидную систему, но более вязкую, чем цитоплазма. Оно отличается от цитоплазмы и по химическому составу; в ядре содержатся основные и кислые белки и различные ферменты, а также большое количество нуклеиновых кислот, дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). ДНК преобладает в ядре и обычно не содержится в цитоплазме.

Ядро отделяется от цитоплазмы тонкой оболочкой, или ядерной мембраной, в которой находятся отверстия - поры. Через поры осуществляется обмен между ядром и цитоплазмой. Под мембраной находится ядерный сок, в который погружены одно или несколько ядрышек и хромосомы. В ядрышке содержатся рибонуклеиновая кислота (РНК), которая принимает участие в синтезе белка, и фосфорсодержащие белки.

Ядро принимает участие во всех жизненных процессах клетки; при его удалении клетка отмирает.

Пластиды

Пластиды имеются только в растительных клетках. Они хорошо видны в обычный микроскоп, так как более плотные и иначе преломляют свет, чем цитоплазма.
Во взрослой растительной клетке различают 3 типа пластид:

  • хлоропласты, имеющие зеленую окраску,
  • хромопласты желтые или оранжевые,
  • лейкопласты - бесцветные.

Размеры пластид зависят от вида растения и колеблются от 3-4 до 15-30 мк. Лейкопласты обычно мельче хлоропластов и хромопластов.

Митохондрии

Митохондрии встречаются во всех живых клетках и расположены в цитоплазме. Форма их весьма разнообразна и изменчива, размеры 0,2-5 мк. Количество митохондрий в клетке колеблется от десятков до нескольких тысяч. Они более плотны, чем цитоплазма, и имеют иной химический состав; в них содержится 30-40% белка, 28-38% липоидов и 1 - .6% рибонуклеиновой кислоты.

Митохондрии передвигаются в клетке вместе с цитоплазмой, но в некоторых клетках, по-видимому, они способны и к самостоятельному движению. Роль митохондрий в обмене веществ клетки очень велика.

Митохондрии являются центрами, в которых происходит дыхание и образование макроэргических связей, заключенных в аденозинтрифосфорной кислоте (АТФ) и имеющих большой запас энергии (стр. 70, 94-96).

Освобождение и перенос образующейся энергии происходят с участием большого числа ферментов, находящихся в митохондриях.

Аппарат Гольджи

В цитоплазме находится аппарат Гольджи , форма которого различна в разных клетках. Он может быть в виде дисков, палочек, зернышек. Аппарат Гольджи имеет много полостей, окруженных двухслойной оболочкой. Роль его сводится к накоплению и выведению из клетки различных веществ, вырабатываемых клеткой.

Рибосомы

Рибосомы - это субмикроскопические частицы, имеющие форму зернышек размером до 0,015 мк. Рибосомы содержат много белка (до 55%) и богаты рибонуклеиновой кислотой (35%), что составляет 65% всей рибонуклеиновой кислоты (РНК), находящейся в клетке.

В рибосомах из аминокислот синтезируются белки, что возможно только при наличии РНК. Рибосомы находятся в цитоплазме, ядре, пластидах и, возможно, в митохондриях.

Химический состав органоидов. В настоящее время благодаря созданию центрифуг, имеющих огромную скорость вращения (десятки тысяч оборотов в минуту), можно отделять различные части клетки друг от друга, так как они имеют разный удельный вес. Поэтому стало возможным изучать биохимические свойства каждой части клетки.

Для сравнения химического состава органоидов клетки приводим данные (табл. 1).

Химический состав органоидов растительной клетки
(в °/о от сухого вещества)

Органоид Белки Липоиды Нуклеиновые кислоты Примечание
Цитоплазма 80-95 2-3 1-2 Большая часть нуклеиновых кислот - ДНК
Ядра 50-80 8-40 10-30
Пластиды 30-45 20-40 0,5-3,0
Митохондрии 30-40 25-38 1-6
Рибосомы 50-57 3-4 35

Клеточная оболочка

Характерный признак растительной клетки — наличие прочной оболочки, которая придает клетке определенную форму и предохраняет протоплазму от повреждений. Оболочка может расти только при участии протоплазмы. Клеточная оболочка молодых клеток состоит в основном из целлюлозы (клетчатки), гемицеллюлоз и пектиновых веществ.

Молекулы целлюлозы имеют вид длинных цепочек, собранных в мицеллы, расположение которых неодинаково у разных клеток. У волокон льна, конопли и других, представляющих собой вытянутые в длину клетки, мицеллы целлюлозы расположены вдоль клетки под некоторым углом. У клеток с одинаковым диаметром мицеллы расположены по всем направлениям в виде сетки. В межмицеллярных пространствах оболочки находится вода.

В процессе жизни растительного организма в строении клеточной оболочки могут происходить изменения: оболочка может утолщаться и химически изменяться. Утолщение оболочки идет изнутри за счет жизнедеятельности протоплазмы, причем оно происходит не по всей внутренней поверхности клетки; всегда остаются не утолщенные места - поры, состоящие только из тонкой целлюлозной оболочки.

Через поры, расположенные в соседних клетках друг против друга, проходят тончайшие нити цитоплазмы - плазмодесмы, благодаря которым осуществляется обмен между клетками. Однако при очень сильном утолщении оболочек резко затрудняется обмен, в клетке остается очень мало протоплазмы, и такие клетки отмирают, например лубяные волокна льна и конопли.

В оболочке клетки могут происходить также химические изменения в зависимости от характера растительной ткани. В покровных тканях - эпидермисе - происходит кутинизация. При этом в межмицеллярных пространствах целлюлозной оболочки накапливается кутин - жироподобное вещество, трудно проницаемое для газов и воды.

Однако кутинизация не приводит к отмиранию клеток, так как отложения кутина не захватывают всей поверхности клетки. В клетках покровной ткани кутинизируется только наружная стенка, образуя так называемую кутикулу.

В оболочках клеток может также откладываться суберин - пробковое вещество, тоже жироподобное и непроницаемое для воды и газов. Отложение суберина, или опробковение, происходит быстро по всей поверхности оболочки, это нарушает обмен клетки и приводит к ее отмиранию. Может происходить и одревеснение оболочки. В этом случае она пропитывается лигнином, который приводит к остановке роста клетки, а в дальнейшем, при более сильном одревеснении, и к ее отмиранию.

Клеточный сок

Молодая растительная клетка полностью заполнена протоплазмой, но по мере роста клетки в ней появляются вакуоли, заполненные клеточным соком . Вначале вакуоли возникают в большом количестве в виде мелких капелек, затем отдельные вакуоли начинают сливаться в одну центральную и протоплазма оттесняется к стенкам клетки.

Все живые существа и организмы на состоят из клеток: растения, грибы, бактерии, животные, люди. Несмотря на минимальный размер, все функции целого организма выполняет клетка. Внутри нее протекают сложные процессы, от которых зависит жизнеспособность тела и работа его органов.

Вконтакте

Структурные особенности

Учёные занимаются изучением особенности строения клетки и принципов ее работы. Детально рассмотреть особенности структуры клетки можно только при помощи мощного микроскопа.

Все наши ткани — кожные покровы, кости, внутренние органы состоят из клеток, которые являются строительным материалом , бывают разных форм и размеров, каждая разновидность выполняет определённую функцию, но основные особенности их строения сходны.

Сначала выясним, что лежит в основе структурной организации клеток . В ходе проведенных исследований ученые установили, что клеточным фундаментом является мембранный принцип. Получается, что все клетки образованы из мембран, которые состоят из двойного слоя фосфолипидов, куда с наружной и внутренней стороны погружены молекулы белков.

Какое свойство характерно для всех типов клеток: одинаковое строение, а также функционал — регулирование процесса обмена веществ, использование собственного генетического материала (наличие и РНК ), получение и расход энергии.

В основе структурной организации клетки выделяются следующие элементы, выполняющие определенную функцию:

  • мембрана — клеточная оболочка, состоит из жиров и протеинов. Ее основная задача – отделять вещества, находящиеся внутри, от внешней среды. Структуру имеет полупроницаемую: способна пропускать и оксид углерода;
  • ядро – центральная область и главный компонент, отделяется от других элементов мембраной. Именно внутри ядра находится информация о росте и развитии, генетический материал, представленный в виде молекул ДНК, входящих в состав ;
  • цитоплазма — это жидкая субстанция, образующая внутреннюю среду, где происходят разнообразные жизненно важные процессы, содержит в себе очень много важных компонентов.

Из чего состоит клеточное содержимое, каковы функции цитоплазмы и ее основных компонентов:

  1. Рибосома — важнейший органоид, который необходим для процессов биосинтеза белков из аминокислот, белки выполняют огромное количество жизненно важных задач.
  2. Митохондрии – ещё один компонент, находящийся внутри цитоплазмы. Его можно описать одним словосочетанием – энергетический источник. Их функция заключается в обеспечении компонентов питанием для дальнейшего производства энергии.
  3. Аппарат Гольджи состоит из 5 – 8 мешочков, которые соединены между собой. Основная задача этого аппарата – передача протеинов в другие части клетки для обеспечения энергетического потенциала.
  4. Очистку от повреждённых элементов производят лизосомы .
  5. Транспортировкой занимается эндоплазматическая сеть, по которой белки перемещают молекулы полезных веществ.
  6. Центриоли отвечают за воспроизводство.

Ядро

Поскольку — клеточный центр, поэтому следует уделить его строению и функциям особое внимание. Данный компонент является важнейшим элементом для всех клеток: содержит наследственные признаки. Без ядра стали бы невозможными процессы размножения и передачи генетической информации . Посмотрите на рисунок, изображающий строение ядра.

  • Ядерная оболочка, которая выделена сиреневым цветом, пропускает внутрь нужные веществам и выпускает обратно через поры — маленькие отверстия.
  • Плазма представляет собой вязкую субстанцию, в ней находятся все остальные ядерные компоненты.
  • ядро размещается в самом центре, имеет форму сферы. Его главная функция – образование новых рибосом.
  • Если рассмотреть центральную часть клетки в разрезе, то можно увидеть малозаметные синие переплетения — хроматин, главное вещество, который состоит из комплекса белков и длинных нитей ДНК, несущих в себе необходимую информацию.

Клеточная мембрана

Давайте подробнее рассмотрим работу, строение и функции этого компонента. Ниже представлена таблица, наглядно показывающая важность внешней оболочки.

Хлоропласты

Это ещё один наиважнейший компонент. Но почему о хлоропластах не было упомянуто раньше, спросите вы. Да потому, что этот компонент содержится только в клетках растений. Главное различие между животными и растениями заключается в способе питания: у животных оно гетеротрофное, а у растений автотрофное. Это означает, что животные не способны создавать, то есть синтезировать органические вещества из неорганических – они питаются готовыми органическими веществами. Растения же, напротив, способны осуществлять процесс фотосинтеза и содержат особые компоненты — хлоропласты. Это пластиды зеленого оттенка, содержащие вещество хлорофилл. С его участием энергия света преобразуется в энергию химических связей органических веществ.

Интересно! Хлоропласты в большом объеме сосредоточены главным образом в надземной части растений — зелёных плодах и листьях.

Если вам зададут вопрос: назовите важную особенность строения органических соединений клетки, то ответ можно дать следующий.

  • многие из них содержат атомы углерода, которые обладают различными химическими и физическими свойствами, а также способны соединяться друг с другом;
  • являются носителями, активными участниками разнообразных процессов, протекающих в организмах, либо являются их продуктами. Имеются ввиду гормоны, разные ферменты, витамины;
  • могут образовывать цепи и кольца, что обеспечивает многообразие соединений;
  • разрушаются при нагревании и взаимодействии с кислородом;
  • атомы в составе молекул объединяются друг с другом с помощью ковалентных связей, не разлагаются на ионы и потому медленно взаимодействуют, реакции между веществами протекают очень долго — по нескольку часов и даже дней.

Строение хлоропласт

Ткани

Клетки могут существовать по одной, как в одноклеточных организмах, но чаще всего они объединяются в группы себе подобных и образуют различные тканевые структуры, из которых и состоит организм. В теле человека существует несколько видов тканей:

  • эпителиальная – сосредоточена на поверхности кожных покровов, органов, элементов пищеварительного тракта и дыхательной системы;
  • мышечная — мы двигаемся благодаря сокращению мышц нашего тела, осуществляем разнообразные движения: от простейшего шевеления мизинцем, до скоростного бега. Кстати, биение сердца тоже происходит за счёт сокращения мышечной ткани;
  • соединительная ткань составляет до 80 процентов массы всех органов и играет защитную и опорную роль;
  • нервная — образует нервные волокна. Благодаря ей по организму проходят различные импульсы.

Процесс воспроизводства

На протяжении всей жизни организма происходит митоз – так называют процесс деления, состоящий из четырёх стадий:

  1. Профаза . Две центриоли клетки делятся и направляются в противоположные стороны. Одновременно с этим хромосомы образуют пары, а оболочка ядра начинает разрушаться.
  2. Вторая стадия получила название метафазы . Хромосомы располагаются между центриолями, постепенно внешняя оболочка ядра полностью исчезает.
  3. Анафаза является третьей стадией, на протяжении которой продолжается движение центриолей в противоположном друг от друга направлении, а отдельные хромосомы также следуют за центриолями и отодвигаются друг от друга. Начинает сжиматься цитоплазма и вся клетка.
  4. Телофаза – окончательная стадия. Цитоплазма сжимается до тех пор, пока не появятся две одинаковые новые клетки. Формируется новая мембрана вокруг хромосом и появляется одна пара центриолей у каждой новой клетки.

Интересно! Клетки у эпителия делятся быстрее, чем у костной ткани. Все зависит от плотности тканей и других характеристик. Средняя продолжительность жизни основных структурных единиц составляет 10 дней.

Строение клетки. Строение и функции клетки. Жизнь клетки.

Вывод

Вы узнали каково строение клетки — самой важной составляющей организма. Миллиарды клеток составляют удивительно мудро организованную систему, которая обеспечивает работоспособность и жизнедеятельность всех представителей животного и растительного мира.

И грибов, клетки животных не имеют . Эта особенность была утеряна в далеком прошлом одноклеточными организмами, которые породили . Большинство клеток, как животных, так и растений, имеют размер от 1 до 100 мкм (микрометров) и поэтому видны только с помощью микроскопа.

Самые ранние ископаемые свидетельства животных датируются Вендским периодом (650-454 миллионов лет назад). Первое закончилось этим периодом, но в течение последующего , взрыв новых форм жизни привел к появлению многих основных групп фауны, известных сегодня. Есть свидетельства, что животные появились до раннего (505-438 миллионов лет назад).

Строение животных клеток

Схема строения клетки животных

  • - самовоспроизводящиеся органеллы, состоящие из девяти пучков микротрубочек и встречающиеся только в клетках животных. Они помогают в организации деления клеток, но не являются существенными для этого процесса.
  • - необходимы для передвижения клеток. В многоклеточных организмах реснички функционируют для перемещения жидкости или веществ вокруг неподвижной клетки, а также для или группы клеток.
  • - сеть мешочков, которая производит, обрабатывает и переносит химические соединения внутри и снаружи клетки. Он связан с двуслойной ядерной оболочкой, обеспечивающей трубопровод между ядром и .
  • Эндосомы - мембранно-связанные везикулы, образованные совокупностью сложных процессов, известных как , и обнаружены в цитоплазме практически любой клетки животных. Основным механизмом эндоцитоза является обратное тому, что происходит во время или клеточной секреции.
  • - отдел распределения и доставки химических веществ клетки. Он модифицирует белки и жиры, встроенные в эндоплазматический ретикулум, а также подготавливает их к экспорту за пределы клетки.
  • Промежуточные филаменты - широкий класс волокнистых белков, которые играют важную роль как структурных, так и функциональных элементов