Фермент пероксидаза бывает активным в мясе. Биохимические исследования мяса

Помогите найти фото или картинку где будет показано взаимодействие перекиси водорода с картофелем или мясом. и получил лучший ответ

Ответ от Елена Казакова[гуру]

С помощью опыта выяснить наличие в клубнях картофеля ферментов,
расщепляющих перекись водорода
Оборудование, реактивы. Штатив лабораторный с пробирками, пипетки с метками на 1 мл; кусочки сырого и вареного картофеля (или сырого и вареного мяса) ; пероксид водорода (3%-ый раствор или 0,5%-ый раствор) ; лучинка; спички.
Ход работы. В одну пробирку помещают ломтики сырого картофеля, в другую – вареного (в третью и четвертую пробирки можно положить кусочки сырого и вареного мяса, соответственно) . В каждую пробирку с помощью пипетки приливают 0,5 мл 3%-ного раствора пероксида водорода (Н2О2).
При выделении пузырьков опустить в каждую из этих пробирок тлеющую лучинку.
Наблюдения.
В пробирках с сырым картофелем (или мясом) будет наблюдаться бурное образование пузырьков («вскипание») . Тлеющая лучинка, помещенная в пробирку, вспыхивает.
В пробирках с вареным картофелем и вареным мясом пероксид водорода не расщеплается, пузырьки не выделяются.
Обсуждение результатов. Образование пузырьков в пробирках с сырым картофелем или мясом объясняется присутствием в клетках фермента пероксидазы – у растений (или каталазы – в мышцах) , которые расщепляют перекись водорода до воды и кислорода. Молекулярный кислород выделяется в виде пузырьков. Наличие кислорода можно определить с помощью тлеющей лучинки, которая вспыхивает, если ее внести в пробирку с выделяющимися пузырьками.
В пробирках с вареным картофелем и вареным мясом пероксид водорода не расщепляется, т. к. при варке ферменты (вещества белковой природы) денатурируют – происходит нарушение третичной структуры фермента и утрата его каталитической активности.
Токсичный (ядовитый) пероксид водорода образуется в некоторых растительных и животных клетках в качестве побочного продукта метаболизма (при биологичесом окислении) . Это соединение токсично для клеток и пероксидаза (или каталаза) , содержащиеся в пероксисомах, обеспечивают эффективное его удаление. Под действием ферментов каталазы (мышц, крови) или пероксидазы (картофеля, элодеи) пероксид водорода тотчас расщеплается до молекулярного кислорода и воды, согласно уравнению:
Каталаза (пероксидаза)
2Н2О2 = 2Н2О + О2
Каталаза – один из наиболее быстроработающих ферментов. При 0 градусах С одна молекула каталазы разлагает в 1 с до 40000 молекул пероксида водорода. Одна молекула фермента за 1 минуту расщепляет до 5 миллионов молекул пероксида водорода, защищая клетку от отравления. Локализуется каталаза в микротельцах и пероксисомах. Пероксидаза и каталаза относятся к классу оксидоредуктаз, т. к. реакция расщепления перикиси водорода является окислительно-восстановительной.
Аналогично, если капнуть пероксид водорода на лист элодеи, то будет наблюдаться бурное выделение пузырьков газа – кислорода.
Наиболее сильнодействующая пероксидаза содержится в хрене. Ее специально получают для молекулярно-генетических исследований.
Выводы. В живых клетках содержатся ферменты – вещества белковой природы, ускоряющие ход биохимических реакций за счет снижения энергии активации. В этом опыте можно оп-ределить наличие в сырых продуктах фермента каталазы – в клетках животных (или пероксидазы – в клетках растений) . При термической денатурации происходит необратимая денатурация фермента (разрушение его третичной структуры и утрата каталитической активности) . Утрата каталитической активности каталазы (пероксидазы) после кипячения продуктов подтверждает белковую природу ферментов.

-острый миелолейкоз

-хронический лимфолейкоз

+недифференцируемый лейкоз

-острый лимфолейкоз

-хронический миелолейкоз

/\173. В патогенезе нарушения коагуляционного механизма гемостаза имеет значение

-уменьшение количества тромбоцитов

-нарушение функции тромбоцитов

-вазопатия

+дефицит фактора VIII

-дефект тромбоцитарных рецепторов IIb-IIIa

/\174. Для тромбоцитопении характерно

-дефицит плазменных факторов свертывания

-удлинение времени свертывания крови

-гематомный тип кровоточивости

+петехиальный тип кровоточивости

-время кровотечения в норме

/\175. Адгезия и агрегация тромбоцитов снижается при

-избытке кальция и магния

-дефиците VIII ф свертывания крови

-повышении в крови концентрации АДФ

-избытке тромбоксана А2

+дефиците фактора Виллебранда

/\176. Наследственный дефицит прокоагулянтов имеет место при

+гемофилиях

-дефиците витамина К

-печеночной недостаточности

-образовании антител к прокоагулянтам

-нарушении карбоксилирования факторов протромбинового комплекса

/\177. Для гемофилии А характерно

-аутосомно-рецессивный тип наследования

-дефицит IX ф свертывания крови

-петехии, экхимозы

+гемартрозы

-удлинение времени кровотечения

/\178. Для болезни Виллебранда характерно

-уменьшение длительности капиллярного кровотечения

-укорочение времени свертывания крови

-повышенная агрегационная способность тромбоцитов

-нарушение синтеза фактора VIII

+снижение прокоагулянтной активности фактора VIII

/\179.В патогенезе гиперкоагуляции при ДВС - синдроме имеет значение

+активацией "внешнего" и "внутреннего" механизмов свертывания крови

-гипофибриногенемия

-активацией фибринолитической системы крови

-избыток антитромбина III

-тромбоцитопатия

/\180. В патогенезе гипокоагуляции при ДВС - синдроме имеет значение

+коагулопатия и тромбоцитопения потребления

-избыток прокоагулянтов

-поступление в кровь большого количества тканевого тромбопластина

-активация ингибиторов фибринолиза



-дефицит антитромбина III

/\181. Наиболее выраженная стадия ДВС-синдрома у новорожденных

+гипокоагуляции

-гиперкоагуляции

-переходная

-восстановления

-терминальная

/\181. К клиническим проявлениям геморрагической болезни новорожденных относятся

+мелена, кровотечение из пупочной ранки

-желтушность кожи и слизистых

-ядерная желтуха

-гипербилирубинемия

-отеки

/\182. При гемофилии А нарушается

+Образование активной протромбиназы

-Переход протромбина в тромбин

-Переход фибриногена в фибрин

-Вторая фаза свертывания крови

-Третья фаза свертывания крови

/\183. Гиперкоагуляция крови наблюдается при

-Избытке протеина С

-Избытке протеина S

-Избытке антитромбина-III

+Резистентности фактора V к протеину С

-афибриногенемии

/\184. Этиологические факторы экзогенного происхождения, вызывающие поражение нервной системы

+алкогольная интоксикация

-повреждение нейронов при печеночной коме

-ишемия мозга

-гипогликемия

-повреждение нейронов при уремии

/\185. По нервным проводникам в нервную систему поступают

-стрептококковый экзотоксин

-менингококки

-пневмококки

-кишечная палочка

+вирус бешенства

/\186. Причина спонгиозной трансмиссивной энцефалопатии

-Цитомегаловирусы

-Энтеровирусы

-Вирусы бешенства

-Вирус герпеса

+Прионы

/\187. Вирусы, которые образуют внутриклеточные включения в нейронах

-Цитомегаловирусы

-Энтеровирусы

+Вирусы бешенства

-Вирус герпеса

-Вирус полимиелита

/\188. Дефицит торможения - это

+выход нижележащих отделов ЦНС из-под контроля вышележащих отделов

-снижение нервных влияний на постсинаптические структуры

/\189. Денервационный синдром - это

-нарушение транспорта трофогенов и образование патотрофогенов

-снижение афферентной импульсации в нейрон

-выход нижележащих отделов ЦНС из-под контроля вышележащих отделов

+снижение нервных влияний на постсинаптические структуры

-группа гиперактивных нейронов

/\190. Первичный дефицит торможения развивается вследствие

-чрезмерной стимуляции нервной системы

+нарушения структуры и функции тормозных нейронов

-повышения синтеза возбуждающих медиаторов

/\191. Вторичный дефицит торможения развивается вследствие

+действия деполяризующих агентов возбуждающих аминокислот, приводящих к чрезмерной активности нейронов

-нарушения структуры и функции тормозных нейронов

-нарушения структуры и функции возбуждающих синапсов

-снижения синтеза возбуждающих медиаторов

-избытка нисходящих тормозных влияний при разрушении участков нервной системы

/\192. Последствием синдрома растормаживания может быть

-развитие дистрофических изменений в нейронах и иннервируемых структурах

+образование ГПУВ (генератора патологически усиленного возбуждения)

-развитие синдрома денервации

-развитие атрофии органа

-развитие синдрома деафферентации

/\193. Генератор патологически усиленного возбуждения (ГПУВ) – это

+агрегат гиперактивных взаимодействующих нейронов, продуцирующих неконтролируемый поток импульсов

-совокупность каскадных мембранных и внутриклеточных процессов

-комплекс изменений в синаптических структурах

-нарушение трофики, обусловленное выпадением или изменением нервных влияний

Комплекс изменений, возникающих в постсинаптических нейронах, органах и тканях после выпадения нервных влияний на эти структуры

/\194. Значение образования ГПУВ

-способствует образованию разлитого торможения

+является детерминантой патологической системы и способствует образованию патологической системы

-способствует образованию физиологической системы

-усиливает трофическое влияние нейрона на иннервируемые структуры

-тормозит развитие нейропатологических процессов

/\195. К медленным гиперкинезам относится

-судороги

+атетоз

-тики

-хорея

-тремор

/\196. Неврозы могут привести к развитию

+язвенной болезни двенадцатиперстной кишки

-менингита

-спонгиозной трансмиссивной энцефалопатии

-энцефалита

-болезни Альцгеймера

/\197. Для центральных параличей характерно:

-сохранение произвольных движений

-ослабление сухожильных рефлексов

+усиление сухожильных рефлексов

-отсутствие патологических рефлексов

-понижение тонуса мышц

/\198. Для периферических параличей характерно

-усиление спинальных рефлексов

-появление патологических рефлексов

-гипертрофия мышц

+мышечная гипотония

-гипертонус мышц

/\203. К медиаторам боли относится

-физиологические концентрации адреналина

-энкефалины

-эндорфины

+брадикинин

-динорфин

/\204.Ощущение боли формируется в

-ноцицепторах

-нервных стволах

-спинном мозге

-ретикулярной формации

+нейронах таламуса и коры больших полушарий

/\205. Наиболее восприимчивы к боли

+кожа и слизистые

-печень

-головной мозг

-спинной мозг

-миокард

/\206. Фантомная боль – это боль

-в левой руке и левой лопатке при приступе стенокардии

-над ключицей при остром гепатите или раздражении париетальной брюшины

-при заболеваниях головного мозга

+в отсутсвующей части тела, чаще всего после ампутации конечностей

-опоясывающая боль при панкреатите

/\207.В патогенезе фантомной боли имеют важное значение

-повышение чувствительности ноцицепторов

-увеличение проводимости нервных стволов

-повышение возбудимости коры головного мозга

Образование ампутационной невромы и формирование генератора патологически усиленного возбуждения в спинном мозге

-угнетение возбудимости ствола мозга

/\208.К антиноцицептивной системе относится

-брадикинин

+желатинозная субстанция

-ионы Н, К

-гистамин

-субстанция Р

/\209.Снижение болевой чувствительности при растирании кожи и массаже обусловлено

-снижением чувствительности ноцицепторов

-блокадой нервных проводников

-снижением возбудимости нейронов ретикулярной формации

-угнетением возбудимости нейронов таламуса

+активацией желатинозной субстанции спинного мозга

/\211. Ведущим звеном патогенеза диабетической гиперосмоляльной комы является

+гипергликемия

-кетоз

-лактатацидемия

-гипоксия

-гиперазотемия

/\212. Причиной ишемического инсульта может быть

+тромбоз или эмболия сосудов мозга

-разрыв аневризмы сосудов мозга

-дистония сосудов мозга

-артериальная гиперемия мозга

-снижение свертываемости крови

/\213. Причиной геморрагического инсульта может быть

+артериальная гипертензия

-стенозирующий атеросклероз сосудов мозга

-тромбоз и эмболия сосудов мозга

-ангиоспазм сосудов мозга

-повышение гематокрита

/\214. При ишемическом инсульте в отличие от геморрагического в клинической картине чаще преобладает

-Отек мозга

+Очаговая симптоматика

-Кровь в спинномозговой жидкости

-Сдавление ткани мозга

-Повышение внутричерепного давления

/\215. Мозжечковая атаксия, расстройства памяти на текущие события, нистагм, дизартрия, дисфагия, икота, головокружение характерны для повреждения

+Позвоночной артерии (задняя нижняя мозжечковая артерия)

-Передней мозговой артерии

-Средней мозговой артерии

-Задней мозговой артерий

-Пиальных артерий

/\216. Парез или спастический паралич конечностей (проксимального отдела руки и дистального отдела ноги), потеря чувствительности на противоположной поражению стороне наблюдается при повреждении

-Позвоночной артерии (задняя нижняя мозжечковая артерия)

+Передней мозговой артерии

-Средней мозговой артерии

-Задней мозговой артерии

-Пиальных артерий

/\217. У больного М., 64 лет, диагноз «ишемический инсульт», выявлено: положительный рефлекс «Бабинского» слева, потеря чувствительности на левой стороне тела.

Мясо относят к скоропортящимся продуктам. В процессе хранения оно может подвергаться различным изменениям. Эти изменения возникают под действием собственных ферментов самого мяса (загар) или в процессе жизнедеятельности микроорганизмов (ослизнение, плесневение, покраснение, посинение, свечение, гниение). Наиболее опасный вид порчи мяса - гниение, поскольку разрушается белок и образуются вещества, вредные для организма.

Для определения свежести мяса применяют органолептические и лабораторные методы. Согласно ГОСТ 7269 – 79 «Мясо. Методы отбора образцов и органолептические методы определения свежести» оценивают внешний вид, цвет, консистенцию, запах мяса, состояние жира и сухожилий, а также прозрачность и аромат бульона (проба варкой). Каждый отобранный образец анализируют отдельно. ГОСТ 23392-78 «Мясо. Методы химического и микроскопического анализа свежести» предусматривает определение летучих жирных кислот, постановку реакции с 5%-ным раствором медного купороса в бульоне и бактериоскопию мазков-отпечатков.

Указанные ГОСТы распространяются на говядину, баранину, свинину и мясо других видов убойного скота, на мясные субпродукты (кроме печени, легких, почек, селезенки и мозгов).

По степени свежести мясо и мясные субпродукты могут быть свежими, сомнительной свежести и несвежими.



ОТБОР ПРОБ. От исследуемой туши или ее части отбирают три куска мышц массой не менее 200 г каждый в области зареза напротив 4-5-го шейного позвонка, в области лопатки и из группы заднебедренных мышц. От охлажденных или замороженных блоков мяса и субпродуктов или от отдельных мясных блоков сомнительной свежести также проводят отбор целого куска массой не менее 200 г. Каждую пробу заворачивают в пергаментную бумагу или целлюлозную пленку. Разрешается упаковывать пробы в пищевую полиэтиленовую пленку. Каждую пробу помечают простым карандашом с указанием ткани или органа и номера туши. Все пробы, отобранные от одной туши, упаковывают вместе в бумажный пакет и укладывают в металлический закрывающийся ящик. Ящик опечатывают или пломбируют в случае, если ветеринарная лаборатория находится вне места отбора проб. К отобранным пробам прилагают сопроводительный документ с обозначением даты и места отбора проб, вида мяса или субпродуктов, номера туши, причины и цели исследования и подписью отправителя.

Микроскопия мазков-отпечатков. Поверхность исследуемых мышц обжигают спиртовым тампоном или стерилизуют раскаленным шпателем. Стерильными ножницами вырезают кусочки размером 2x1,5x2,5 см. Срезы прикладывают к предварительно профламбированному предметному стеклу (по 3 отпечатка на двух предметных стеклах). Мазки-отпечатки подсушивают на воздухе, фиксируют над пламенем горелки, окрашивают по Граму (ГОСТ 21237-75 «Мясо. Методы бактериологического анализа») и микроскопируют.

Мясо и мясные субпродукты считают свежими, если нет следов распада мышечной ткани (плохая окрашиваемость препарата), отсутствует микрофлора или в поле зрения видны единичные (до 10 клеток) кокки и палочки.

Мясо и мясные субпродукты относят к сомнительной свежести, если находят следы распада мышечной ткани, поперечная исчерченность волокон слаборазличима, ядра мышечных волокон в состоянии распада, а в поле зрения мазка-отпечатка обнаруживают 11 -30 кокков или палочек.

Определение продуктов первичного распада белков в бульоне (реакция с сернокислой медью)

Метод основан на соединении иона меди с первичными продуктами распада белков, в результате чего в бульоне из несвежего мяса появляются хлопья или желеобразный осадок голубоватого или зеленоватого цвета.

Суть этого метода заключается в осаждении белков нагреванием и образовании в фильтрате комплексов сернокислой меди с оставшимися продуктами первичного распада белков, которые выпадают в осадок.

20 г фарша, приготовленного из исследуемой пробы, помещают в коническую колбу на 100 мл, заливают 60 мл воды, тщательно перемешивают, закрывают часовым стеклом, ставят в кипящую водяную баню и доводят до кипения. Горячий бульон фильтруют через плотный слой ваты толщиной не менее 0,5 см в пробирку, помещенную в химический стакан с холодной водой. Если после фильтрации в бульоне видны хлопья белка, то его дополнительно фильтруют через фильтровальную бумагу. В пробирку наливают 2 мл фильтрата и добавляют 3 капли 5%-ного раствора сернокислой меди. Пробирку встряхивают 2-3 раза и ставят в штатив. Реакцию читают через 5 мин.

Результат реакции. Мясо и мясные субпродукты считают свежими, если при добавлении раствора сернокислой меди бульон остается прозрачным. Мясо и мясные субпродукты относят к категории сомнительной свежести, если при добавлении раствора сернокислой меди происходит помутнение бульона, а в бульоне из размороженного мяса - интенсивное помутнение с образованием хлопьев.

Мясо и мясные субпродукты считают свежими, если при добавлении раствора сернокислой меди наблюдается образование желеобразного осадка, а в бульоне из размороженного мяса - наличие крупных хлопьев.

Реакция с формалином (формалиновая реакция). Метод основан на окислении бензидини перекисью водорода в присутствии фермента мяса – пероксидазы.

Пробу мяса освобождают от жира и соединительной ткани. Навеску в 10 г помещают в ступку, тщательно измельчают ножницами, прибавляют 10 мл физиологического раствора и 10 капель децинормального раствора едкого натра. Мясо растирают пестиком, полученную кашицу переносят стеклянной палочкой в колбу и нагревают до кипения для осаждения белков. Колбу охлаждают водопроводной водой, после чего содержимое нейтрализуют добавлением 5 капель 5 %-ного раствора щавелевой кислоты и через фильтровальную бумагу фильтруют в пробирку. Если вытяжка мутная, ее вторично фильтруют и центрифугируют. 2 мл вытяжки, подготовленной, как описано выше, наливают в пробирку и к ней добавляют 1 мл нейтрального формалина.

Результат реакции. Если фильтрат прозрачный или слегка мутный, мясо считается полученным от здорового животного; если же он превращается в плотный сгусток или в нем образуются хлопья, мясо считается полученным от больного животного или убитого в состоянии агонии.

Реакция на пероксидазу. В присутствии фермента пероксидазы перекись водорода окисляет бензидин, образуя парахинондамид, который дает соединение сине-зеленого цвета, переходящего в бурый. В вытяжках из свежего мяса (доброкачественного) реакция на пероксидазу положительная. Показатели этой рекации для оценки свежести мяса имеют такое же значение, как и определение рН.

В пробирку вносят 2 мл вытяжки, приготовленной из мясного фарша и дистиллированной воды в соотношении 1:4, добавляют 5 капель 0,2 %-ного спиртового раствора бензидина, содержимое пробирки взбалтывают, после чего добавляют две капли 1 %-ного раствора перекиси водорода.

Результат реакции. Мясо свежее, если вытяжка приобретает сине-зеленый цвет, переходящий в течение 1-2 мин в буро-коричневый (положительная реакция); несвежее, если вытяжка либо не приобретает специфический сине-зеленый цвет, либо сразу появляется буро-коричневый (отрицательная реакция).

Микробиологические методы -определение количества вещества в сырье на основе использования микробиологических культур на биологических подопытных животных. Эти методы основаны на том, что для жизнедеятельности, роста и размножения микроорганизмов необходима среда оптимального состава (6).

Органолептические методы предусматривают определение: внешнего вида и цвета; состояния мышц на разрезе; консистенции; запаха; прозрачности и аромата бульона.

Каждый отобранный образе и анализируют отдельно.

Аппаратура и материалы

  • · Весы лабораторные общего назначения по ГОСТ 24104--2001 4 с наибольшим пределом взвешивания 200 г, допускаемая погрешность 20 мг.
  • · Скальпель медицинский по ГОСТ 21240--89.
  • · Пинцет медицинский по ГОСТ 21241--89.
  • · Мясорубка бытовая по ГОСТ 4025--95 или электромясорубка бытовая по ГОСТ 20469--95. Колба коническая Кн-100 по ГОСТ 25336--82.
  • · Баня водяная электрическая
  • · Ножницы медицинские по ГОСТ 21239--93.
  • · Нож.
  • · Воронки по ГОСТ 25336--82, тип ВФ
  • · Цилиндры мерные по ГОСТ 1770--74. вместимостью 25, 100 см 3 .
  • · Стаканы по ГОСТ 25336--82, тип В или Н. вместимостью 50 см-".
  • · Стекло часовое.
  • · Палочки стеклянные.
  • · Бумага фильтровальная по ГОСТ 12026--76.
  • · Марля бытовая по ГОСТ 11109-90.
  • · Вода дистиллированная по ГОСТ 6709--72.

Определение внешнего вида и нвста поверхности тушки, покровной и внутренней жировой ткани и брюшной серозной оболочки проводят путем внешнего осмотра.

Определение состояния мышц на разрезе

Бедренные мышцы разрезают поперек мышечных волокон. Для определения атажностн мышц фильгровальную бумагу прикладывают к поверхности мышечного разреза на 2 с.

Дня определения липкости мышц прикасаются пальцем к поверхности мышечного среза. Цвет мышц определяют визуально при дневном рассеянном свете.

Определение консистенции

На поверхности тушки кролика в области бедренных мышц легким образуют ямку и следят за временем ее выравнивания.

Определение запаха

Подготовка к испытанию

Для определения запаха жира берут внутреннюю жировую ткань от каждого образца не менее 20 г. Каждую пробу измельчают ножницами, вытапливают в химических стаканах на водяной бане и охлаждают до температуры 20 1 С.

На территории Российской Федерации действует ГОСТ Р 53228--2(ГОСТ 20235.0-74 С. 3)

Проведение испытания

Запах внутреннего жира определяют органолептически при помешивании его чистой стеклянной палочкой.

Запах поверхности тушки и брюшной полости определяют органолептически.

Для определения запаха глубинных слоев чистым ножом делают разрез мыши. Особое внимание обращают на запах слоев мышечной ткани, прилегающих к костям.

Определение прозрачности и аромата бульона

Подготовка к анализу

От каждого образца (тушки) вырезают скальпелем куски мышц массой по 25 г из области бедра, лопатки, спины, зареза и дважды измельчают их на мясорубке.

Фарш тщательно перемешивают и берут навеску.

Для приготовления мясного бульона взвешивают 20 г фарша на лабораторных весах, помещают в коническую колбу вместимостью 100 см- и заливают 60 см 3 дистиллированной поды. Содержимое колбы тщательно перемешивают. Колбу закрывают часовым стеклом и ставят на кипящую водяную баню на 10 мин.

Проведение анализа

Запах мясного бульона определяют в процессе нагревания до 80 "С -- 85 "С в момент появления паров, выходящих из приоткрытой колбы, путем ощущения их аромата. Прозрачность бульона устанавливают визуально путем осмотра 20 см 3 бульона, налитого в мерный цилиндр вместимостью 25 см 3 и диаметром 20 мм.

Органолептический метод

Мясо кролика (домашний) весом 2 кг хорошее, кровоподтеков не наблюдалось, без посторонних запохов, без кровяных сгустков, без пятен от желчи. Запах свойственный данному виду мяса, цвет бело розовый. Бульен получился прозрачный, без характерного запаха из чего следует, что мясо свежее.

Реакция на пероксидазу

Сущность реакции заключается в том, что перекись водорода в присутствии фермента пероксидазы окисляет бензидин, образуя при этом парахинондиимид, который с недоокисленным бензидином дает соединение сине-зеленого цвета, переходящего в бурый (цветная реакция). Активность пероксидазы, как и всякого фермента зависит от рН среды. В пробирку наливают 2 мл фильтрата вытяжки(1:4), добавляют 5 капель0,2%-ного спиртового раствора бензидина, содержимое взбалтывают, после чего добавляют2 капли1%-ного раствора перекиси водорода. Реакцию читают в течение1-2 минут.

Вытяжка сначало преобрела сине-зеленый цвет, потом в течении 1-2 минут переходила в буро-коричневый проведение данного анализа говорит о том что мясо свежее.

Метод основан на способности фермента пероксидазы принимать участие в процессах окисления за счет кислорода пероксида водорода. Присутствие пероксидазы устанавливают, используя реакции с гваяколом, бензидином, амидопирином (пирамидоном). При температуре 80 °C пероксидаза инактивируется. Следовательно, если в исследуемом изделии пероксидаза обнаруживается, тепловая обработка считается недостаточной.

Аппаратура, материалы, реактивы . Весы лабораторные; пробирки химические диаметром 15 мм; пробки корковые; штатив для пробирок; ступка фарфоровая диаметром 7 - 9 см; капельницы; часы песочные на 1, 2 мин.; воронки стеклянные диаметром 4 - 5 см; пипетки вместимостью 1 и 20 см 3 ; колбы конические вместимостью 50 и 100 см 3 ; бумага фильтровальная; вата; гваякол, спиртовой раствор с массовой долей 1% (1 г гваякола растворяют этиловым спиртом в мерной колбе на 100 см 3); бензидин, спиртовой раствор с массовой долей 0,02% (20 мг бензидина растворяют в 100 см 3 этилового спирта); амидопирин, спиртовой раствор с массовой долей 2% (2 г амидопирина растворяют в 98 см 3 этилового спирта); спирт этиловый; пероксид водорода (30 - 35%), раствор с массовой долей 10%; кислота уксусная ледяная; ацетат натрия безводный; вода дистиллированная.

Проведение испытания . Окислительно-восстановительные свойства пероксидазы проявляются в строго определенном интервале pH. Наиболее интенсивная окраска наблюдается в интервале значений pH от 4,4 до 6,9; менее интенсивная при pH 3,4 и выше; не проявляется при pH выше 10,4.

При анализе используют ацетатный буферный раствор с pH 4,9.

Измельченную навеску, взятую из внутренней части жареного изделия в количестве 10 г и взвешенную с точностью до 0,01 г, растирают в ступке с 20 см 3 дистиллированной воды и фильтруют через бумажный фильтр или слой ваты в коническую колбу. Затем отбирают в пробирку 0,5 см 3 фильтрата, добавляют 0,5 см 3 ацетатного буфера, 0,5 см 3 спиртового раствора гваякола, 0,25 см 3 свежеприготовленного раствора пероксида водорода и встряхивают. При достаточной термической обработке мясного изделия раствор остается бесцветным, при недостаточной, в зависимости от количества сохраненной пероксидазы, окраска может быть от светло-голубой до темно-синей и проявляется в течение 1 мин.

При использовании спиртового раствора бензидина или спиртового раствора амидопирина в пробирку отбирают 1 см 3 фильтрата, добавляют 1 см 3 одного из указанных растворов, а также 0,5 см 3 раствора пероксида водорода и встряхивают. При наличии пероксидазы в течение 1 мин. появляется соответственно сине-зеленое или сине-фиолетовое окрашивание. При достаточной тепловой обработке изменения цвета не происходит.



Учитывая, что в мясе больных животных и в несвежем мясе происходит инактивация фермента пероксидазы, для окончательного суждения о качестве тепловой обработки кулинарных изделий необходимо проверить наличие пероксидазы в мясном полуфабрикате. При отсутствии пероксидазы в полуфабрикате достаточность тепловой обработки определяют пробой на фосфатазу.

Проба на фосфатазу

Качественная реакция. Метод основан на способности фермента фосфатазы расщеплять бариевую соль паранитрофенилфосфата при температуре 38 °C, освобождая паранитрофенол, который окрашивает среду в желтый цвет.

Весы лабораторные; плитка электрическая; баня водяная; ступка фарфоровая диаметром 7-9 см; цилиндр вместимостью 1 см 3 ; воронка делительная вместимостью 250 см 3 ; пробки корковые; капельница; воронки стеклянные диаметром 4-5 см; марля; бумага фильтровальная; вата стеклянная; бариевая соль паранитрофосфата, насыщенный раствор; гидроксид натрия, раствор массовой концентрации 400 г/дм 3 (Д = 1,43 г/куб. см); хлорид магния, раствор массовой концентрации 5 г/ дм 3 ; ацетатный буфер pH 5,4; вода дистиллированная.

Проведение испытания. Измельченную навеску, взятую из внутренней части изделия в количестве 20 г и взвешенную с точностью до 0,01 г, переносят в ступку и растирают, добавляя постепенно 50 см 3 дистиллированной воды. Полученную взвесь процеживают через двойной слой марли, а оставшуюся в марле навеску отжимают, затем вытяжку фильтруют через сухой складчатый фильтр и делят пополам. Одну часть (фильтрат 1) исследуют непосредственно, другую (фильтрат 2) переносят в коническую колбу, доводят до кипения и снова фильтруют - эта часть фильтрата является контрольной.

Для проверки активности фосфатазы в пробирку отмеривают 1 см 3 фильтрата 1, прибавляют 2 капли раствора хлорида магния массовой концентрации 5 г/дм 3 , 2 капли ацетатного буфера (pH 5,4) и 0,5 см 3 раствора бариевой соли паранитрофенилфосфата.

Для контроля во вторую пробирку отмеривают 1 см 3 фильтрата 2 и добавляют те же реактивы, что и в первую. Обе пробирки помещают на 1 ч в водяную баню или термостат при температуре 37-38 °C. Затем в обе пробирки добавляют по капле раствора гидроксида натра.

При достаточной тепловой обработке кулинарного изделия окраска в обеих пробирках не меняется. При недостаточной тепловой обработке раствор желтеет.

Определение остаточной активности кислой фосфатазы (количественное определение). Метод основан на фотометрическом определении в продукте интенсивности развивающейся окраски, зависящей от остаточной активности кислой фосфатазы, выраженной массовой долей фенола.

Аппаратура, материалы, реактивы. Весы лабораторные; потенциометр с погрешностью измерения ± 0,06 pH; фотоэлектроколориметр или спектрофотометр для измерения в видимой области спектра; ультратермостат или водяная баня; воронки; колбы мерные вместимостью 500 и 1000 см 3 ; пипетки градуированные на 1; 5; 10 см 3 ; палочки стеклянные; пробирки; бумага фильтровальная; груша резиновая; кислота лимонная; цитрат натрия 5-водный; динатриевая соль фенилфосфорной кислоты, раствор массовой концентрации 2 г/дм 3 , свежеприготовленный; кислота трихлоруксусная, кристаллическая, растворы массовой концентрации 50 и 200 г/дм 3 ; гидроксид натрия, раствор C(NaOH) = 0,5 моль/дм 3 ; вода дистиллированная; фенол; толуол; вольфрамат натрия; сульфат лития 1-водный; кислота ортофосфорная плотностью 1,72 г/см 3 ; кислота соляная плотностью 1,19 г/см 3 ; бром.

Подготовка к испытанию. Ацетатный буфер : в мерной колбе вместимостью 1000 см 3 в дистиллированной воде растворяют 13,88 г цитрата натрия и 0,588 г лимонной кислоты, доливают водой до метки и перемешивают, pH буфера 6,5. Затем добавляют 1 см 3 толуола. Раствор хранят в холодильнике при температуре 4 ±1°C не более 12 сут.

Реактив Фолина: 100 г вольфрамата натрия и 25 г молибдата натрия растворяют в 700 см 3 дистиллированной воды. К раствору добавляют 50 см 3 ортофосфорной кислоты и 100 см 3 соляной кислоты. Смесь осторожно кипятят в течение 10 ч в колбе вместимостью 2000 см 3 с обратным холодильником, после чего охлаждают и добавляют 150 г сульфата лития, 50 см 3 воды и несколько капель брома. Остаток брома отгоняют кипячением смеси без холодильника в вытяжном шкафу, охлаждают, переносят в мерную колбу вместимостью 1000 см 3 , доводят объем дистиллированной водой до метки, перемешивают и фильтруют. Реактив должен быть золотисто-желтого цвета без зеленого оттенка; его хранят в склянке с притертой пробкой в темном месте не более 6 мес.

Стандартный раствор : 2 г фенола (взвешивают с точностью до 0,001 г) растворяют в воде в мерной колбе вместимостью 1000 см 3 , доводят объем до метки и перемешивают. Отбирают пипеткой с помощью резиновой груши 5 см 3 раствора в колбу вместимостью 500 см 3 , добавляют около 300 см 3 дистиллированной воды, вносят 25 г кристаллической трихлоруксусной кислоты. После растворения содержимое колбы доводят до метки дистиллированной водой и перемешивают. Полученный раствор содержит 20 мкг фенола в 1 см 3 .

Построение градуировочного графика . В пробирки вносят следующие объемы стандартного раствора: 0; 0,25; 0,5; 1,0; 1,5; 2,0 см 3 , что соответствует массе фенола: 0; 5; 10; 20; 30; 40 мкг. Доводят объем каждой пробирки до 2,5 см 3 , добавляя соответствующий объем раствора трихлоруксусной кислоты массовой концентрации 50 г/дм 3 (2,5; 2,25; 2,0; 1,5; 1,0; 0,5 см 3), и перемешивают. В каждую пробирку добавляют 5 см 3 раствора гидроксида натрия, перемешивают, выдерживают 10 мин., добавляют 1,5 см 3 реактива Фолина, разведенного дистиллированной водой в соотношении 1:2, и перемешивают.

Через 30 мин. измеряют оптическую плотность растворов по отношению к раствору трихлоруксусной кислоты массовой концентрации 50 г/дм 3 на фотоэлектроколориметре с применением светофильтра с длиной волны 600 ± 10 нм в кювете с расстоянием между рабочими гранями 10 мм или спектрофотометра при длине волны 600 нм в кювете аналогичного размера.

По полученным средним данным по трем стандартным растворам на миллиметровой бумаге размером 20x20 см строят градуировочный график. На оси абсцисс откладывают значение массовой доли фенола (микрограмм в 9 см 3 окрашенного раствора); на оси ординат - значение соответствующей оптической плотности (Д). Градуировочный график должен проходить через начало координат.

Проведение испытания. От объединенной пробы, подготовленной к испытанию, берут 2 навески массой по 1 г (с точностью до 0,001 г) и переносят в две пробирки (контрольную и опытную).

В пробирки вносят по 10 см 3 ацетатного буфера pH 6,5, тщательно перемешивают стеклянной палочкой и настаивают в течение 20 мин. при температуре 20 °C, периодически перемешивая.

В контрольную пробирку добавляют 5 см 3 (200 г/дм 3) раствора трихлоруксусной кислоты, перемешивают и добавляют 5 см 3 (2 г/дм 3) раствора динатриевой соли фенилфосфорной кислоты, выдерживают 10 мин и фильтруют.

В опытную пробирку добавляют 5 см 3 (2 г/дм 3) раствора динатриевой соли фенилфосфорной кислоты и помещают в термостат при температуре 39 ± 1 °C на 1 ч, затем добавляют 5 см 3 200 г/дм 3 раствора трихлоруксусной кислоты, выдерживают 10 мин. и фильтруют.

Для проведения цветной реакции из контрольной и опытной пробирок отбирают по 2,5 см 3 безбелкового фильтрата. Цветную реакцию проводят по методу, описанному выше.

Массу фенола в навеске определяют по градуировочному графику.

Обработка результатов. Массовую долю фенола (X, %) вычисляют по формуле:

m 1 - масса фенола в опытной пробирке, найденная по

градуировочному графику, мкг;

m 2 - масса фенола в контрольной пробирке, найденная по

градуировочному графику, мкг;

m - масса анализируемой пробы, г;

10 - коэффициент пересчета;

20 - разведение;

2,5 - объем фильтрата, отобранный для цветной реакции,

Вычисление проводят до 0,0001.

За окончательный результат испытания принимают среднее арифметическое результатов двух параллельных определений, допустимое расхождение между которыми при P = 0,95 не должно превышать 10% по отношению к среднему арифметическому.

Окончательный результат определяют до 0,001.

Анализ результатов работы: сделать выводы о влиянии сульфитации на активность окислительно-восстановительных процессов, сравнить активность каталазы в разных образцах.

Контрольные вопросы

1. Что такое ферменты?

2. Какими свойствами обладают ферменты?

3. Какие факторы влияют на активность ферментов?

4. Какой принцип положен в основу классификации ферментов? Сколько классов ферментов включает их классификация?

5. Какова роль окислительно-восстановительных ферментов?

6. Каковы строение и механизм действия дегидрогеназ?

7. Каковы строение и механизм действия полифенолоксидазы?

8. Каковы строение и механизм действия аскорбатоксидазы?

9. Каковы строение и механизм действия липоксигеназы?

10. Каковы строение и механизм действия пероксидазы?

11. Каковы строение и механизм действия каталазы?

12. Какова роль каталазы в пищевых технологиях и в процессах жизнедеятельности клетки?

13. Как определить активность каталазы?

Задания к теме

1. Каким свойством обладают ферменты?

а) Специфичность действия.

б) Способность сдвигать равновесие в системе.

в) Термостабильность.

г) Универсальность действия.

2. Какая из аминокислот наиболее часто входит в активный центр фермента?

а)Серин, б)Глицин, в)Валин, г)Метионин.

3. Для чего служит каталитический центр фермента?

а) Присоединение кофермента.

б) Превращение субстрата.

в) Связывание эффекторов.

4. Какой класс ферментов ускоряет реакции распада с участием воды?

а) Оксидоредуктазы, б) Трансферазы, в) Гидролазы, г) Лиазы.

5. Какие реакции ускоряют ферменты класса лигаз?

а) Негидролитический распад органических молекул.

в) Реакции синтеза.

6. Что такое кофермент?

б) Небелковое, легко отделяющееся от фермента вещество, участвующее в катализе.

в) Неактивный предшественник фермента.

г) Активатор фермента.

7. Для чего служит контактный участок?

а) Присоединение кофермента.

б) Превращение субстрата.

в) Связывание эффекторов.

г) Присоединение и ориентация субстрата.

8. Что такое изоэнзимы?

а) Ферменты, катализирующие реакции изомеризации.

б) Денатурированные энзимы.

в) Ферменты, имеющие разную четвертичную структуру, но катализирующие одну и ту же реакцию.

г) Энзимы, имеющие одинаковую брутто-формулу, но разное строение.

9. Какие реакции ускоряют ферменты класса лиаз?

а) Негидролитический распад и синтез с образованием двойных связей.

б) Реакции переноса функциональных групп.

в) Реакции изомеризации.

г) Окислительно-восстановительные реакции.

10. Что такое простетическая группа?

а) Фермент, связанный с субстратом.

б) Небелковая часть молекулы фермента, легко отделяющаяся от него.

в) Небелковая часть молекулы, прочно связанная с апоферментом.

г) Фрагмент одного из витаминов.

Проверь себя

1. Совокупность каталитического и субстратного центров фермента называется:

а) апофермент, б) активный центр фермента, в) аллостерически участок.

2. Небелковая часть сложного фермента, ответственная за катализ называется:

а) кофермент, б) кофактор, в) апофермет.

3. Клеточные ферменты, локализованные в цитоплазме, проявляют максимальную активность при рН, близком к:

а) 7, б) 2-3, в) 4-5, г) 9-10.

4. В состав кофермента входит витамин:

а) А, б) В 6 , в) В 2 , г) К.

5. Ферменты, катализирующие синтез биологических молекул с участием АТФ относятся к классу:

а) трансфераз, б) лигаз, в) гидролаз, г) лиаз, д) изомераз.