Территория электротехнической информации WEBSOR. Пробой при высоком напряжении

Сейчас мы качественным образом рассмотрим некоторые ха­рактеристики полей вокруг проводников. Зарядим электри­чеством проводник, но на сей раз не сферический, а такой, у ко­торого есть острие или ребро (например, в форме, изображен­ной на фиг. 6.14). Тогда поле в этом месте окажется намного сильнее, чем в других местах. Причина в общих чертах состоит в том, что заряды стремятся как можно шире растечься по по­верхности проводника, а кончик острия всегда отстоит дальше всего от остальной поверхности. Поэтому часть зарядов на пла­стине течет к острию. Относительно малое количество заряда на нем может создать большую поверхностную плотность, а высокая плотность означает сильное поле близ проводника в этом месте.

Фиг. 6.14. Электрическое по­ле у острого края проводника очень велико.

Вообще в тех местах проводника, в которых радиус кривизны меньше, поле оказывается сильнее. Чтобы убедиться в этом, рас­смотрим комбинацию из большой и маленькой сфер, соединен­ных проводом, как показано на фиг. 6.15. Сам провод не будет сильно влиять на внешние поля; его дело - уравнять потен­циалы сфер. Возле какого шара поле окажется более напряжен­ным? Если радиус левого шара а, а заряд Q, то его потенциал примерно равен

(Конечно, наличие одного шара скажется на распределении за­рядов на другом, так что на самом деле ни на одном из них заря­ды не будут распределены симметрично. Но если нас интересует лишь примерная величина поля, то можно пользоваться форму­лой для потенциала сферического заряда.) Если меньший шар радиусом b обладает зарядом q, то его потенциал примерно ра­вен

Но j1=j2, так что

С другой стороны, поле у поверхности [см. уравнение (5.8)] пропорционально поверхностной плотности заряда, которая в свою очередь пропорциональна суммарному заряду, делен­ному на квадрат радиуса. Получается, что

Фиг. 6.15. Поле остроконеч­ного предмета можно прибли­женно считать полем двух сфер одинакового потенциала.

Значит, у поверхности меньшей сферы поле больше. Поля об­ратно пропорциональны радиусам.
Этот результат с технической точки зрения очень важен, потому что в воздухе возникает пробой, если поле чересчур велико. Какой-нибудь свободный заряд в воздухе (электрон или ион) ускоряется этим полем, и если оно очень сильное, то за­ряд может набрать до столкновения с атомом такую скорость, что вышибет из атома новый электрон. В итоге появляется все больше и больше ионов. Их движение и составляет искру, или разряд. Если вам требуется зарядить тело до высокого потен­циала так, чтобы оно не разрядилось в воздух, вы должны быть уверены, что поверхность тела гладкая, что на нем нет мест, где поле чересчур велико.

Сейчас мы качественным образом рассмотрим некоторые характеристики полей вокруг проводников. Зарядим электричеством проводник, но на сей раз не сферический, а такой, у которого есть острие или ребро (например, в форме, изображенной на фиг. 6.14). Тогда поле в этом месте окажется намного сильнее, чем в других местах. Причина в общих чертах состоит в том, что заряды стремятся как можно шире растечься по поверхности проводника, а кончик острия всегда отстоит дальше всего от остальной поверхности. Поэтому часть зарядов на пластине течет к острию. Относительно малое количество заряда на нем может создать большую поверхностную плотность, а высокая плотность означает сильное поле близ проводника в этом месте.

Вообще в тех местах проводника, в которых радиус кривизны меньше, поле оказывается сильнее. Чтобы убедиться в этом, рассмотрим комбинацию из большой и маленькой сфер, соединенных проводом, как показано на фиг. 6.15. Сам провод не будет сильно влиять на внешние поля; его дело — уравнять потенциалы сфер. Возле какого шара поле окажется более напряженным? Если радиус левого шара а, а заряд Q ,

(Конечно, наличие одного шара скажется на распределении зарядов на другом, так что на самом деле ни на одном из них заряды не будут распределены симметрично. Но если нас интересует лишь примерная величина поля, то можно пользоваться формулой для потенциала сферического заряда.) Если меньший шар радиусом b обладает зарядом q , то его потенциал примерно равен

Но φ 1 =φ 2 так что

С другой стороны, поле у поверхности [см. уравнение (5.8)] пропорционально поверхностной плотности заряда, которая в свою очередь пропорциональна суммарному заряду, деленному на квадрат радиуса. Получается, что

Значит, у поверхности меньшей сферы поле больше. Поля обратно пропорциональны радиусам.

Этот результат с технической точки зрения очень важен, потому что в воздухе возникает пробой, если поле чересчур велико. Какой-нибудь свободный заряд в воздухе (электрон или ион) ускоряется этим полем, и если оно очень сильное, то заряд может набрать до столкновения с атомом такую скорость, что вышибет из атома новый электрон. В итоге появляется все больше и больше ионов. Их движение и составляет искру, или разряд. Если вам требуется зарядить тело до высокого потенциала так, чтобы оно не разрядилось в воздух, вы должны быть уверены, что поверхность тела гладкая, что на нем нет мест, где поле чересчур велико.

Сейчас мы качественным образом рассмотрим некоторые характеристики полей вокруг проводников. Зарядим электричеством проводник, но на сей раз не сферический, а такой, у которого есть острие или ребро (например, в форме, изображенной на фиг. 6.14). Тогда поле в этом месте окажется намного сильнее, чем в других местах. Причина в общих чертах состоит в том, что заряды стремятся как можно шире растечься по поверхности проводника, а кончик острия всегда отстоит дальше всего от остальной поверхности. Поэтому часть зарядов на пластине течет к острию. Относительно малое количество заряда на нем может создать большую поверхностную плотность, а высокая плотность означает сильное поле близ проводника в этом месте.

Фигура 6.14. Электрическое поле у острого края проводника очень велико.

Вообще в тех местах проводника, в которых радиус кривизны меньше, поле оказывается сильнее. Чтобы убедиться в этом, рассмотрим комбинацию из большой и маленькой сфер, соединенных проводом, как показано на фиг. 6.15. Сам провод не будет сильно влиять на внешние поля; его дело - уравнять потенциалы сфер. Возле какого шара поле окажется более напряженным? Если радиус левого шара , а заряд , то его потенциал примерно равен

(Конечно, наличие одного шара скажется на распределении зарядов на другом, так что на самом деле ни на одном из них заряды не будут распределены симметрично. Но если нас интересует лишь примерная величина поля, то можно пользоваться формулой для потенциала сферического заряда.) Если меньший шар радиусом обладает зарядом , то его потенциал примерно равен

Но , так что

С другой стороны, поле у поверхности [см. уравнение (5.8)] пропорционально поверхностной плотности заряда, которая в свою очередь пропорциональна суммарному заряду, деленному на квадрат радиуса. Получается, что

(6.35)

Фигура 6.15. Поле остроконечного предмета можно приближенно считать полем двух сфер одинакового потенциала.

Значит, у поверхности меньшей сферы поле больше. Поля обратно пропорциональны радиусам.

Этот результат с технической точки зрения очень важен, потому что в воздухе возникает пробой, если поле чересчур велико. Какой-нибудь свободный заряд в воздухе (электрон или ион) ускоряется этим полем, и если оно очень сильное, то заряд может набрать до столкновения с атомом такую скорость, что вышибет из атома новый электрон. В итоге появляется все больше и больше ионов. Их движение и составляет искру, или разряд. Если вам требуется зарядить тело до высокого потенциала так, чтобы оно не разрядилось в воздух, вы должны быть уверены, что поверхность тела гладкая, что на нем нет мест, где поле чересчур велико.

Основные понятия о пробое

Мы рассмотрели различные физические явления, происходящие в диэлектрике под действием электрического поля не слишком высокой напряженности, когда диэлектрик остается практически непроводящей средой. Однако силы электрического поля при соответствующем увеличении напряженности могут привести к нарушению такого состояния. В результате диэлектрик из непроводящего состояния перейдет в состояние высокой проводимости, но не весь образец, на который подано напряжение, а только узкий канал, направленный от одного электрода к другому.

Явление образования в диэлектрике проводящего канала под действием электрического поля называют пробоем . Пробой может быть полным , если проводящий канал проходит от одного электрода к другому и замыкает их, неполным , если проводящий канал не достигает хотя бы одного из электродов, и частичным , если пробивается лишь газовое или жидкое включение твердого диэлектрика. У твердых диэлектриков кроме пробоя по объему возможен пробой по поверхности (в газе или в жидкости), называемый поверхностным пробоем .

Минимальное приложенное к образцу диэлектрика напряжение, приводящее к его пробою, называют пробивным напряжением ().

Вольт-амперная характеристика образца диэлектрика (или электрической изоляции), линейная при обычных напряжениях (U ), отклоняется от линейной с приближением U к U np (рис. 9.13). В момент пробоя ток через диэлектрик резко возрастает, так что . В месте пробоя возникает искра или электрическая дуга. Вследствие образования плазменного сильно проводящего канала пробоя между электродами образец оказывается короткозамкнутым, и напряжение на нем падает, несмотря на рост тока.

Рис. 9.13. Вольт-амперная характеристика электрической изоляции

Если пробой произошел в газообразном или жидком диэлектрике, то в силу подвижности молекул пробитый участок после снятия напряжения восстанавливает свои первоначальные свойства и значение U п p (но при условии, что мощность и длительность электрической дуги не были столь значительными, чтобы вызвать существенные изменения диэлектрика во всем его объеме). После пробоя твердого диэлектрика в нем остается след в виде пробитого (откуда и название «пробой»), прожженного или проплавленного отверстия чаще всего неправильной формы. Если вновь подать напряжение, то пробой, как правило, происходит по пробитому ранее месту при значительно пониженном напряжении.

В ряде случаев после пробоя диэлектрика в канале пробоя остаются проводящие продукты разложения, и диэлектрик теряет свои электроизоляционные свойства. Связанное с образованием проводящих следов («треков») повреждение поверхности твердого диэлектрика поверхностным пробоем называют трекингом .

Номинальное напряжение электрической изоляции должно быть меньше пробивного напряжения. Величину, равную отношению пробивного напряжения к номинальному напряжению, называют коэффициентом запаса электрической прочности .

Значение U np диэлектрика непосредственно связанно со временем приложения напряжения. Так, при кратковременных импульсах пробой происходит при больших напряжениях, чем в случае постоянного или длительно приложенного переменного напряжения.

Продолжительное воздействие электрического поля высокой напряженности приводит к необратимым процессам в диэлектрике, в результате которых его пробивное напряжение снижается, т.е. происходит электрическое старение изоляции . Вследствие такого старения срок службы изоляции ограничен. Кривую зависимости U np от времени приложения напряжения называют кривой жизни электрической изоляции . Пробивное напряжение (U np ) растет с увеличением толщины диэлектрика h .

Для характеристики способности материала противостоять разрушению в электрическом поле вводят понятие напряженности электрического поля, при которой происходит пробой:

Напряженность однородного электрического поля, приводящую к пробою, называют электрической прочностью . Электрическая прочность (Е пр ) является одним из важнейших параметров электроизоляционного материала.

Механизмы пробоя газообразных, жидких и твердых диэлектриков имеют существенные различия.

Пробой газов

Число электронов, образующихся в течение 1 с в 1 см 3 воздуха под действием радиоактивности Земли или космических лучей, составляет от 10 до 20. Эти электроны являются начальными зарядами, приводящими к пробою газа в сильном поле. При увеличении напряженности электрического поля электроны между двумя соударениями приобретают энергию, достаточную для ионизации молекул газа.

При заданных значениях давления газа и температуры ударная ионизация начинается при определенном значении напряженности поля. Эта напряженность поля (Е ) называется начальной напряженностью .

В некоторых газах (например в кислороде, углекислом газе, парах воды) отделившийся электрон при одной из ближайших встреч с другой нейтральной молекулой соединяется с ней, превращая ее в электроотрицательный ион.

Основную ионизацию ведут электроны. В результате, при столкновении с атомами и молекулами они порождают новые электроны. Освобожденные при этом «вторичные» электроны под действием поля, в свою очередь, вызывают ионизацию молекул газа. В результате этого процесса число электронов в газовом промежутке, лавинообразно нарастая, очень быстро увеличивается. Ударная ионизация электронами составляет основу пробоя газа.

Особенностью пробоя газа в неоднородном поле является возникновение частичного разряда в виде короны в местах, где напряженность поля достигает критических, значений, с дальнейшим переходом короны в искровой разряд и дугу при возрастании напряжения.

Пробой воздуха у поверхности твердого диэлектрика, называемый в технике поверхностным перекрытием, возникает обычно при более низких напряжениях, чем в том случае, когда между электродами имеется только воздух. На значение разрядного напряжения оказывает влияние форма электрического поля, обусловленная конфигурацией электродов и диэлектрика, частота напряжения, состояние поверхности диэлектрика, давления воздуха.

Пробой жидких диэлектриков

Жидкие диэлектрики отличаются значительно более высокими пробивными напряжениями, чем газы в нормальных условиях. Механизм пробоя и значение электрической прочности диэлектрических жидкостей зависят прежде всего от их чистоты. Электрический пробой тщательно очищенных жидкостей при кратковременном воздействии электрического поля происходит за счет сочетания двух процессов: ударной ионизации электронами и холодной эмиссии с катода. В соответствии с этим электрическая прочность тщательно очищенных жидкостей на два порядка выше, чем газов, и составляет примерно 100 МВ/м. Это объясняется тем, что требуется большая напряженность поля для того, чтобы электрон, двигаясь в более плотной среде с меньшей длиной свободного пробега (λ ), накопил энергию, достаточную для ионизации.

Природу пробоя загрязненных и технически чистых жидкостей определяют процессы, связанные с движением и перераспределением частиц примесей.


Под действием высокого напряжения эти процессы приводят к возникновению таких вторичных явлений, как образование мостиков из твердых частиц или пузырьков газа, т.е. проводящих каналов. В частности, при работе жидкости в сильных полях, особенно высокой частоты, происходит ее нагрев и образование пузырьков пара. Поэтому характер пробоя жидких диэлектриков зависит от множества факторов, определяемых в значительной мере видом, размером, количеством и распределением примесей. Наличие мостиков и цепочек из твердых частиц сильно искажает поле между электродами. В результате, пробой жидкости происходит в неоднородном поле, что, в свою очередь, приводит к снижению электрической прочности жидкости.

Резкое снижение Е пр происходит и при загрязнении жидкости влажными органическими волокнами (бумагой, текстилем), поскольку такие волокна способны образовывать мостики, обладающие повышенной проводимостью. Если мостик соприкасается с одним из электродов, то он служит игловидным продолжением этого электрода, в результате чего уменьшается межэлектродное расстояние и возрастает неоднородность поля. В случае «сухих» волокон мостики имеют высокое сопротивление и в меньшей мере влияют на Е пр жидкости. Наиболее часто встречающейся примесью в жидких диэлектриках является влага, которая может находиться в растворенном или эмульсионном состояниях.

Пробой твердых диэлектриков

Физическая картина пробоя твердых диэлектриков в разных случаях может быть различна. Наряду с ионизационными процессами к пробою могут приводить вторичные процессы, обусловленные сильным электрическим полем (нагрев, химические реакции, частичные разряды, механические напряжения в результате электрострикции, образование объемных зарядов на границах неоднородностей и т.д.). Поэтому различают несколько механизмов пробоя твердых диэлектриков: электрический, электротепловой, электрохимический и ионизационный.

Электрический пробой – это пробой, обусловленный ударной ионизацией или разрывом связей между частицами диэлектрика непосредственно под действием электрического поля.

Электрическая прочность (Е пр ) твердых диэлектриков при электрическом пробое лежит в сравнительно узких пределах – 100 – 1000 МВ/м, что близко к Е пр сильно сжатых газов и очень чистых жидкостей. Значение Е пр обусловлено главным образом внутренним строением диэлектрика (плотностью упаковки атомов, прочностью их связей) и слабо зависит от таких внешних факторов, как температура, частота приложенного напряжения, форма и размеры образца (за исключением очень малых толщин). Этот вид пробоя характерен для макроскопически однородных диэлектриков с малыми диэлектрическими потерями. Пробой этого вида протекает за время не более 10 -7 …10 -8 с и не обусловлен тепловой энергией. Значение электрической прочности при электрическом пробое, в некоторой степени зависит от температуры и сопровождается в своей начальной стадии разрушением диэлектрика в очень узком канале.

Электротепловой (тепловой ) пробой – это пробой, обусловленный тепловыми процессами, протекающими в диэлектрике при воздействии на него электрического поля и приводящими к разрушению диэлектрика. Тепловой пробой возникает в том случае, когда количество тепла, выделяющегося в диэлектрике за счет диэлектрических потерь, превышает количество тепла, которое может рассеиваться в данных условиях; при этом нарушается тепловое равновесие, и процесс приобретает лавинообразный характер.

Явление теплового пробоя сводится к разогреву материала в электрическом поле до температур, соответствующих расплавлению, растрескиванию, обугливанию и пр. Значение пробивной напряженности при тепловом пробое является характеристикой не только материала, но и изделия, в противоположность электрическому и ионизационному пробою, где пробивная напряженность может служить характеристикой материала, а именно его электрической прочности.

Пробивное напряжение, обусловленное нагревом диэлектрика, зависит от частоты напряжения, условий охлаждения, температуры окружающей среды и др. Кроме того, электротепловое (пробивное) напряжение зависит от теплостойкости материала. Органические диэлектрики (например, полистирол) имеют более низкие значения «электротепловых» пробивных напряжений, чем неорганические (кварц, керамика), при прочих равных условиях, хотя бы только вследствие их малой теплостойкости.

Электрохимический пробой обусловлен химическими процессами, приводящими к изменениям в диэлектрике под действием электрического поля. Химические изменения (старение) при высоком напряжении возникают вследствие электролиза, наличия озона в воздухе и т.п. Электрическое старение особенно существенно при воздействии постоянного напряжения и сказывается в меньшей мере при переменном напряжении.

Ионизационный пробой – это пробой, обусловленный ионизационными процессами вследствие частичных разрядов в диэлектрике. Он наиболее характерен для диэлектриков с воздушными включениями (например, бумажной изоляции). При больших напряженностях поля в воздушных порах происходит ионизация воздуха, образование озона, ускоренных ионов, выделение тепла. Все эти процессы приводят к постепенному разрушению изоляции и снижению Е пр .

Как указывалось, в твердых диэлектриках помимо объемного возможен и поверхностный пробой , т.е. пробой в жидком или газообразном диэлектрике, прилегающем к поверхности твердой изоляции. Так как Е пр жидкостей и особенно газов ниже Е пр твердых диэлектриков, а нормальная составляющая напряженности электрического поля непрерывна на границе раздела, то при одинаковом расстоянии между электродами в объеме и на поверхности пробой, в первую очередь, будет происходить по поверхности твердого диэлектрика. Чтобы не допустить поверхностный пробой, необходимо удлинить возможный путь разряда по поверхности. Поэтому поверхность изоляторов делают гофрированной, а в конденсаторах оставляют неметаллизированные закраины диэлектрика. Поверхностное U пр повышают также путем герметизации поверхности электрической изоляции лаками, компаундами, жидкими диэлектриками с высокой электрической прочностью.

Пробой макроскопически неоднородных диэлектриков

Большинству диэлектриков, применяющихся на практике, присущи неоднородности различных видов. Так, например, керамические диэлектрики состоят из нескольких фаз (кристаллической и стекловидной), обладающих разными электрическими свойствами, и имеют большее или меньшее количество пор (воздушных включений). Прессованные и намоточные изделия имеют слоистое строение, их чередующиеся слои также обладают неодинаковыми диэлектрическими свойствами.

Ввиду малых Е пр , ε и γ газовых включений пористого диэлектрика, находящегося в сильном электрическом поле, в этих включениях возникают («зажигаются») частичные разряды. Именно возникновение этих разрядов часто и является основным процессом, приводящим к пробою пористого диэлектрика (ионизационному пробою).

Для повышения электрической прочности пористых диэлектриков их пропитывают, заполняя поры жидким или твердеющим электроизоляционным материалом с высокой электрической прочностью. Так, для непропитанной кабельной бумаги Е пр = 3…5МВ/м, а для пропитанной компаундом Е пр = 40…80 МВ/м.

Основная задача системы зажигания современного бензинового двигателя - формирование импульсов высокого напряжения, необходимых для воспламенения топливно-воздушной смеси.

Первоначальное воспламенение смеси происходит от энергии, выделяющейся в шнуре пробоя. В объеме шнура электрическая искра вызывает практически мгновенный термический нагрев молекул смеси, их ионизацию и химическую реакцию между ними.

Если выделившейся при этом энергии достаточно для начала реакции горения смеси в оставшемся объеме камеры сгорания, то воспламенение смеси произойдет, и цилиндр отработает нормально.

В противном случае возможен пропуск воспламенения. Поэтому система зажигания играет одну из ключевых ролей в обеспечении надежного воспламенения топливно-воздушной смеси.

Проверка элементов системы зажигания - обязательная операция при проведении диагностических работ

Проверка элементов системы зажигания включает в себя достаточно обширный перечень действий с применением разнообразных методик. К числу последних относится анализ осциллограммы высоковольтного пробоя и горения искры, полученный с помощью мотортестера.

Вкратце напомним характерные моменты этой осциллограммы.

Время накопления - это время, в течение которого происходит накопление энергии в магнитном поле катушки. Оно определяется блоком управления в соответствии с заложенной в него программой либо коммутатором зажигания. Когда-то давно время накопления зависело от угла замкнутого состояния контактов, но подобные системы уже безнадежно устарели, и рассматриваться нами не будут.

Время горения - это время существования тока между электродами свечи. Зависит от очень многих факторов и составляет 1..2 мс.

В момент размыкания первичной цепи системы зажигания во вторичной катушке генерируется высоковольтный импульс. Значение напряжения, при котором происходит пробой искрового промежутка, называется напряжением пробоя. При анализе осциллограммы это значение необходимо измерить и оценить.

Поговорим о том, каким образом это можно сделать, от чего оно будет зависеть.

Самый важный тезис, который обязательно необходимо озвучить, прежде чем продолжить разговор, заключается в следующем: система зажигания современного двигателя является частью системы управления двигателем, исполнительным механизмом этой системы.

В чём коренное отличие современной системы от системы с центробежным и вакуумным регуляторами, известной по автомобилям ВАЗ классической компоновки?

Отличие заключается в самом главном. Если ранее в перечень задач системы зажигания входило формирование времени накопления энергии в катушке и регулировка угла опережения зажигания в зависимости от оборотов коленчатого вала и нагрузки на двигатель, то функция современной системы зажигания заключается только в генерации высоковольтных импульсов и распределении их по цилиндрам двигателя. Задача расчёта оптимального УОЗ и времени накопления возложена на электронный блок управления двигателем. Для грамотного анализа осциллограмм необходимо четко представлять, как функционирует система управления двигателем в части управления системой зажигания.

Для правильного понимания методик диагностики нужно знать принцип работы того или иного элемента, видеть причинно-следственные связи, и прежде всего совершенно необходимо иметь представление о том, как происходит пробой искрового промежутка.

Рассмотрим в упрощенном виде механизм формирования шнура пробоя. В общем случае газы и их смеси являются идеальными изоляторами. Но в результате действия ионизирующего космического излучения в воздухе всегда присутствуют свободные электроны и соответственно, положительно заряженные ионы - остатки молекул. Поэтому, если газ разместить между двумя электродами и подать на них напряжение, между электродами возникнет электрический ток. Однако величина этого тока очень незначительна вследствие малого количества электронов и ионов.

Рассматриваемый вариант является идеальным. Между плоскими электродами, находящимися на малом расстоянии друг от друга, формируется однородное электрическое поле. Однородным называют поле, напряжённость которого в любой точке остаётся неизменной. Внутри искрового промежутка электроны движутся к положительно заряженному электроду, получая ускорение вследствие действия на них электрического поля. При определенном значении напряжения на электродах приобретенной электроном кинетической энергии становится достаточно для ударной ионизации молекул.

Сказанное поясняет рисунок:

Свободный электрон 1 при соударении с нейтральной молекулой расщепляет ее на электрон 2 и положительный ион. Электроны 1 и 2 при дальнейшем соударении с нейтральными молекулами снова расщепляют их на электроны 3 и 4 и положительные ионы, и т. д.

Аналогичное явление происходит и при движении положительно заряженных ионов:

Возникает лавинообразное размножение положительных ионов и электронов при соударении положительных ионов с нейтральными молекулами.

Таким образом, процесс идет по нарастающей, и ионизация в газе быстро достигает очень большой величины. Это явление вполне аналогично снежной лавине в горах, для зарождения которой бывает достаточно ничтожного комка снега. Поэтому и описанный процесс был назван ионной лавиной.

В результате между электродами возникает значительный электрический ток, который создает сильно нагретый и ионизированный канал. Температура в канале достигает 10 000К. Напряжение, при котором возникает ионная лавина, и есть ранее рассмотренное напряжением пробоя. Оно обозначается Uпр. После пробоя сопротивление канала стремится к нулю, сила тока достигает десятков ампер, а напряжение падает.

Первоначально процесс протекает в очень узкой зоне, но вследствие быстрого роста температуры канал пробоя расширяется со сверхзвуковой скоростью. При этом образуется ударная волна, воспринимаемая на слух как характерный треск.

С практической точки зрения наиболее важным является значение напряжения пробоя, которое можно измерить и оценить после получения осциллограммы.

Проанализируем факторы, от которых оно зависит:

1. Совершенно очевидно, что на значение напряжения пробоя будет оказывать влияние расстояние между электродами. Чем больше расстояние, тем ниже напряжённость электрического поля в пространстве между электродами, тем меньшую кинетическую энергию будут приобретать заряженные частицы при движении. И соответственно, при прочих равных условиях потребуется большее значение прикладываемого напряжения для пробоя искрового промежутка.

2. Чем ниже концентрация молекул газа в искровом промежутке, тем меньшее число молекул находится в единице объема, и тем больший путь свободно пролетают заряженные частицы между двумя последовательными соударениями. Соответственно, тем большее количество кинетической энергии они запасают в процессе движения, и тем выше вероятность последующей ударной ионизации. Поэтому напряжение пробоя увеличивается с ростом концентрации молекул газа. На практике это означает, что напряжение пробоя увеличивается с ростом давления в камере сгорания.

3. Для решения задач диагностики важно знать зависимость напряжения пробоя от наличия в воздухе молекул углеводородов, то есть топлива. В общем случае молекулы топлива являются диэлектриком. Но они представляют собой длинные углеводородные цепочки, разрушение которых в электрическом поле наступает раньше, чем относительно устойчивых двухатомных молекул атмосферных газов. Вследствие этого увеличение количества молекул топлива (обогащение смеси) приводит к понижению напряжения пробоя.

4. На величину напряжения пробоя будет оказывать значительное влияние форма электродов свечи. В рассмотренном выше идеальном случае предполагалось, что электроды плоские, и возникающее между ними электрическое поле однородное. В реальности форма электродов свечи зажигания отлична от плоскости, что вызывает неоднородную структуру электрического поля. Можно утверждать, что значение напряжения пробоя будет в значительной мере зависеть от формы электродов и создаваемого ими электрического поля.

5. Значение напряжения пробоя реальной свечи зажигания будет зависеть от полярности приложенного напряжения. Причина этого явления заключается в следующем. При нагревании металла до достаточно высокой температуры свободные электроны начинают покидать пределы кристаллической решетки металла. Это явление называется термоэлектронной эмиссией. Образуется электронное облако, обозначенное на рисунке желтым цветом. Вследствие того, что центральный электрод свечи зажигания имеет более высокую температуру, чем боковой, термоэлектронная эмиссия с его поверхности имеет более ярко выраженный характер. Поэтому подача на боковой электрод положительного потенциала приведет к пробою искрового промежутка при меньшем напряжении, чем в противоположном случае.

6. Так как рассматриваемый процесс пробоя происходит в камере сгорания реального двигателя, то влияние на напряжение пробоя будут оказывать характер движения газов в камере сгорания, их температура и давление в момент искрообразования, материал и температура электродов свечи, а также особенности конструкции применяемой системы зажигания.

7. Также интересен в прикладном смысле следующий факт. Положительно заряженные ионы представляют собой ядра молекул и обладают значительной массой. Из курса физики известно, что практически вся масса молекулы заключена в ядре, а масса электрона по сравнению с ядром ничтожна. Ионы, достигая отрицательного электрода, получают электрон и превращаются в нейтральную молекулу, но при этом они бомбардируют электрод, разрушая его кристаллическую решётку. На практике это выражается в эрозии электрода. Положительный электрод подвержен меньшему разрушению, ведь его бомбардируют электроны, обладающие малой массой.

Ну и наконец, рассмотрим еще один важный момент, о котором всегда нужно помнить, анализируя осциллограмму высокого напряжения.

Обратимся к рисунку:

На нем изображен график изменения давления в цилиндре от угла поворота коленчатого вала при отсутствии воспламенения.

Предположим, что момент искрообразования соответствует углу опережения зажигания УОЗ 1. Давление в цилиндре при этом составит Р1. Соответственно, в момент УОЗ 2 давление будет равно Р2. Совершенно очевидно, что давление в момент искрообразования, а соответственно и напряжение пробоя, зависит от угла опережения зажигания.

Следствием этой зависимости является тот факт, что при увеличении частоты вращения путем плавного открытия дроссельной заслонки будет наблюдаться снижение значения напряжения пробоя. И вообще, напряжение пробоя зависит от УОЗ на всех режимах работы двигателя.

Теперь нужно вспомнить о том, что электронный блок управления осуществляет контроль частоты вращения на холостом ходу путем изменения УОЗ. Процесс регулировки можно наблюдать сканером в режиме «поток данных» при работе двигателя с полностью закрытой дроссельной заслонкой. УОЗ при этом изменяется в достаточно широких пределах, особенно на изношенных или неисправных двигателях. Если же приоткрыть дроссельную заслонку и тем самым вывести блок из режима управления частотой вращения, можно увидеть, что значение УОЗ становится достаточно стабильным.

Именно вследствие работы программного регулятора оборотов на осциллограмме высокого напряжения наблюдаются разные значения напряжения пробоя даже в пределах одного кадра:

На основании изложенных соображений представляется несложным прийти к заключению:

1. Делать какие-либо однозначные выводы из абсолютного значения напряжения пробоя нельзя . Даже на одном и том же двигателе оно будет зависеть от того, какой марки установлены свечи, от формы электродов, от межэлектродного зазора. Зависит оно и от типа установленной системы зажигания и даже от конструкции камеры сгорания. Например, на холостом ходу разных двигателей можно увидеть напряжение пробоя от 5 до 15 кВ, и любое из этих значений будет являться нормальным.

2. Разброс значений напряжения пробоя на холостом ходу двигателя, оснащенного электронной системой управления, не является дефектом . Это следствие работы алгоритма управления частотой вращения на холостом ходу.

3. Если имеет место система DIS, то напряжение пробоя в парных цилиндрах всегда будет различным. Это следствие того, что в системе DIS полярность приложенного к свечам напряжения противоположна, соответственно различаться будут и значения напряжения пробоя.

4. Имеет смысл сравнительная оценка напряжения пробоя в разных цилиндрах. Мотортестеры чаще всего отображают статистические данные: среднее, максимальное и минимальное значение напряжения пробоя. При значительном отклонении в одном или нескольких цилиндрах необходим дальнейший поиск.