Коэффициент полезного действия любого механизма всегда. Цель работы

Всякий механизм, совершающий работу, должен откуда-то получать энергию, за счет которой эта работа производится. В простейших случаях механизм лишь передает механическую работу от источника энергии к потребителю. Так действуют простые машины и все передаточные или приводные механизмы, представляющие собой различные комбинации простых машин; например, ременный привод передает работу от двигателя, вращающего ведущий, шкив, через ведомый шкив потребителю (станку).

Такой приводной механизм лишь передает определенную мощность от источника к потребителю. Однако при этом не вся работа, а значит и не вся мощность, получаемая механизмом от источника, передается потребителю.

Дело в том, что во всяком механизме действуют силы трения, на преодоление которых затрачивается часть работы, потребляемой механизмом. Эта работа превращается в тепло и обычно является бесполезной. Отношение мощности, которую механизм передает потребителю, ко всей мощности, подводимой к механизму, называется коэффициентом полезного действия данного механизма (сокращенно; к. п. д.).

Если подводимую к механизму мощность обозначить через , а отдаваемую механизмом потребителю - через , то к. п. д. механизма будет равен

При этом часть мощности, равная , теряется в самом механизме. Отношение этих потерь мощности в механизме ко всей мощности, подводимой к механизму, связано с к. п. д. простым выражением:

.

Так как потери мощности неизбежны во всяком механизме, то всегда и к. п. д. всякого механизма всегда меньше единицы; его обычно выражают в процентах. Всякий механизм стремятся сделать таким, чтобы бесполезные потери энергии в нем были по возможности малы, т. е. чтобы к. п. д. был возможно ближе к единице. Для этого уменьшают насколько возможно силы трения и всякие вредные сопротивления в механизме. В наиболее совершенных механизмах эти потери удается снизить настолько, что к. п. д. оказывается лишь на несколько процентов меньше единицы.

Многие машины получают или отдают энергию не в виде механической энергии, а в каком-либо другом виде. Например, паровая машина использует энергию, которой обладает нагретый и сжатый пар; двигатель внутреннего сгорания - энергию, которой обладают горячие и сжатые газы, образовавшиеся при сгорании горючей смеси. Электрический двигатель использует работу, совершаемую электромагнитными силами. Наоборот, генератор электрического тока получает энергию в виде механической, а отдает в виде электромагнитной энергии. Во всех этих случаях, помимо потерь на трение, могут возникать и другие потери, например нагревание проводников протекающим по ним электрическим током. Понятие к. п. д. и в этих случаях сохраняет прежний смысл: к. п. д. машины называют отношение мощности, отдаваемой машиной, к мощности, потребляемой машиной, независимо от того, в виде какой энергии эта мощность потребляется и отдается.

109.1 . В двойном блоке, имеющем радиусы 40 и 5 см, к веревке, навитой на меньший блок, приложена сила 1000 Н. Для того, чтобы преодолеть силы трения в блоке и поддерживать постоянной скорость его движения, ко второму концу блока приложена сила 130 Н. Каков к. п. д. блока?

109.2. Какую работу нужно произвести, чтобы, пользуясь полиспастом, к. п. д. которого равен 65%, поднять груз массы 250 кг на высоту 120 см?

109.3. Найдите к. п. д. установки, состоящей из электрического мотора, приводящего в движение водяной насос, который подает на высоту 4,7 м 75 л воды в секунду, если электромотор потребляет мощность 5 кВт.

109.4. Электромотор, имеющий к. п. д. 90%, приводит в действие насос, к. п. д. которого равен 60%. Каков к. п. д. всей установки?

109.5. Электропоезд движется равномерно со скоростью 60 км/ч. Двигатели электропоезда потребляют при этом мощность 900 кВт. Определите силу сопротивления, испытываемого всем поездом при движении, если известно, что общий к. п. д двигателей и передающих механизмов составляет 80% .

109.6. Можно ли поднимать груз массы 50 кг со скоростью 3 м/с при помощи электромотора, потребляющего электрическую мощность 1,4 кВт?

Механический коэффициент полезного действия, равный отношению среднего эффективного давления к среднему индикаторному, оценивает механические потери в двигателе:

Механический к. п. д. можно выразить и через мощности двигателя:

Таким образом, механический к. п. д. показывает в долях единицы или в процентах ту часть индикатор­ной мощности, которая передается на фланец коленчатого вала.

Анализ механических потерь в двигателе, выполненный нами ранее, позволяет сделать заключение, что значение механического к. п. д. двига­теля зависит: от степени быстроходности двигателя, от величины давления газов цикла и динамики его изменения, от качества изготовления и сборки деталей двигателя, от качества смазочного масла, от теплового состояния двигателя и режима загрузки его, от мощности навешенных вспомогатель­ных механизмов и от сопротивлений во впускной и выпускной системах двигателя.

При прочих равных условиях механический к. п. д. двигателя является функцией отношения среднего эффективного давления к максимальному давлению цикла; чем больше это отношение, тем выше механический к. п. д.

При уменьшении нагрузки на двигатель (сохраняя при этом число оборотов вала неизменным) мощность механических потерь N mex примерно остается постоянной, а потому относительное ее значение возрастает и ме­ханический к. п. д. падает.

На рис. 105 приведены кривые изменения механического к. п. д. ? т при полной нагрузке (сплошные кривые) и при 30 % нагрузки (пунктирные кри­вые) двигателя с воспламенением от сжатия (кривая В; ? = 16) и двигателя с воспламенением от искры (кривая А; ? = 6). Данные кривые показывают, что при уменьшении нагрузки на двигатель при неизменном числе оборотов? т значительно падает. Следует заметить, что при холостом ходе двигателя N e == 0) из формулы (139а)

Таким образом, режим работы холостого хода можно охарактеризовать как режим, при котором механический к. п. д. равен нулю.

При одном и том же р е (как это видно из рис. 105) с увеличением числа оборотов двигателя (скоростная характеристика) ? т падает, что объясняется более интенсивным относительным ростом мощности механических потерь N мех , чем эффективной мощности двигателя.

При работе двигателя с наддувом значение? т изменяется в зависимо­сти от системы и степени наддува. Если двигатель переводится на работу с газотурбинным наддувом, то, как показывают опытные данные, мощность механических потерь N мех при этом остается неизменной. Обозначим отно­шение? н = p ? н / p ? , (степень наддува), где р а - давление в цилиндре в начале сжатия без наддува, а р -с наддувом. Можно принять, что отношение N in / N i также равно? н , где N in - индикаторная мощность двигателя с наддувом, а N i - без наддува.

Если двигатель имел до наддува механический к. п. д. т. ? m , то при газо­турбинном наддуве он будет иметь:

Полученная формула показывает, что с повышением степени наддува при газотурбинном наддуве механический к. п. д. двигателя возрастает.

В том случае, когда газотурбонагнетатель кинематически связан с валом самого двигателя, отношение? К = N к / N i может быть больше, меньше или равно отношению? T = N T / N i в зависимости от степени использования энергии отработавших газов двигателя. Здесь N к - мощность, потребляе­мая наддувочным компрессором, а N T -мощность, развиваемая турбиной.

В этом случае, т. е. когда газотурбонагнетатель связан кинематически: валом двигателя, условный механический к. п. д. будет равен

где? т д -механический к. п. д. собственно двигателя.

При? T > ? К разность (? Т - ? К ) называется положительным небалансом, а при? т к (? к - ? Т ) называется отрицательным небалансом.

Судовые дизели имеют следующие значения механического к. п. д.

Пример. Средняя сила тяги двигателя составляет 882 Н. На 100 км пути он потребляет 7 кг бензина. Определите КПД его двигателя. Сначала найдите полезную работу. Она равна произведению силы F на расстояние S, преодолеваемое телом под ее воздействием Ап=F∙S. Определите количество теплоты, которое выделится при сжигании 7 кг бензина, это и будет затраченная работа Аз=Q=q∙m, где q – удельная топлива, для бензина она равна 42∙10^6 Дж/кг, а m – масса этого топлива. КПД двигателя будет равен КПД=(F∙S)/(q∙m)∙100%= (882∙100000)/(42∙10^6∙7)∙100%=30%.

В общем случае чтобы найти КПД, любой тепловой машины (двигателя внутреннего сгорания, парового двигателя, и т.д.), где работа выполняется газом, имеет коэффициент полезного действия равный разности теплоты отданной нагревателем Q1 и полученной холодильником Q2, найдите разность теплоты нагревателя и холодильника, и поделите на теплоту нагревателя КПД= (Q1-Q2)/Q1. Здесь КПД в дольных единицах от 0 до 1, чтобы перевести результат , умножьте его на 100.

Чтобы получить КПД идеальной тепловой машины (машины Карно), найдите отношение разности температур нагревателя Т1 и холодильника Т2 к температуре нагревателя КПД=(Т1-Т2)/Т1. Это предельно возможный КПД для конкретного типа тепловой машины с заданными температурами нагревателя и холодильника.

Определите общую . Подобного рода сведения можно получить, обратившись к данным переписи населения. Для определения общих коэффициентов рождаемости, смертности, брачности и разводимости вам понадобится найти произведение общей населения и расчетного периода. Получившееся число запишите в знаменатель.

Поставьте на числителя показатель, соответствующий искомому относительному. Например, если перед вами стоит определить общий коэффициент рождаемости, то на месте числителя должно находиться число, отражающее общее количество рожденных за интересующий вас период. Если вашей целью является уровня смертности или брачности, то на место числителя поставьте число умерших в расчетный период или число вступивших в брак, соответственно.

Умножьте получившееся число на 1000. Это и будет искомый вами общий коэффициент. Если же перед вами стоит задача найти общий коэффициент прироста, то вычтите из коэффициента рождаемости коэффициент смертности.

Видео по теме

Источники:

  • Общие коэффициенты естественного движения населения

Под словом «работа» понимается прежде всего деятельность, которая дает человеку средства к существованию. Иными словами, за нее он получает материальное вознаграждение. Тем не менее, люди готовы в свое свободное время или безвозмездно, или за чисто символическую плату участвовать также в общественно-полезной работе, направленной на помощь нуждающимся, благоустройство дворов и улиц, озеленение и т.д. Число таких добровольцев наверняка было бы еще большим, но они зачастую не знают, где могут понадобиться их услуги.

пенсионерки , инвалиды или матери-одиночки, у которых каждый рубль на счету. Окажите им посильную помощь. Она вовсе не обязательно должна заключаться в денежном пожертвовании – можно, например, время от времени ходить в магазин за продуктами или за лекарствами.

Немало людей желает принять участие в благоустройстве родного города. Им стоит связаться с соответствующими структурами местного муниципалитета, например, теми, которые отвечают за уборку территорий, озеленение. Работа наверняка найдется. Кроме того, можно, например, по собственной инициативе разбить клумбу под окнами дома, посадить цветы.

Есть люди, очень любящие животных, желающие помочь безнадзорным собакам и кошкам. Если вы относитесь к этой категории, свяжитесь с местными организациями зоозащитников или с владельцами приютов для животных. Ну а если вы живете в крупном городе, где есть зоопарки, узнайте у администрации, не нужны ли помощники по уходу за животными

Коэффициент увлажнения

Коэффициент увлажнения представляет собой специальный показатель, разработанный специалистами в области метеорологии для оценки степени влажности климата в том или ином регионе. При этом было принято во внимание, что климат представляет собой многолетнюю характеристику погодных условий в данной местности. Поэтому рассматривать коэффициент увлажнения также было решено в длительных временных рамках: как правило, этот коэффициент рассчитывается на основе данных, собранных в течение года.

Таким образом, коэффициент увлажнения показывает, насколько велико количество осадков, выпадающих в течение этого периода в рассматриваемом регионе. Это, в свою очередь, является одним из основных факторов, определяющих преобладающий тип растительности в этой местности.

Расчет коэффициента увлажнения

Формула расчета коэффициента увлажнения выглядит следующим образом: K = R / E. В указанной формуле символом K обозначен собственно коэффициент увлажнения, а символом R - количество осадков, выпавших в данной местности в течение года, выраженное в миллиметрах. Наконец, символом E обозначается количество осадков, которое испарилось с поверхности земли, за тот же период времени.

Указанное количество осадков, которое также выражается в миллиметрах, зависит от , температуры в данном регионе в конкретный период времени и других факторов. Поэтому несмотря на кажущуюся простоту приведенной формулы, расчет коэффициента увлажнения требует проведения большого количества предварительных измерений при помощи точных приборов и может быть осуществлен только силами достаточно крупного коллектива метеорологов.

В свою очередь, значение коэффициента увлажнения на конкретной территории, учитывающее все эти показатели, как правило, позволяет с высокой степенью достоверности определить, какой тип растительности является преобладающим в этом регионе. Так, если коэффициент увлажнения превышает 1, это говорит о высоком уровне влажности на данной территории, что влечет за собой преобладание таких типов растительности как тайга, тундра или лесотундра.

Достаточный уровень влажности соответствует коэффициенту увлажнения, равному 1, и, как правило, характеризуется преобладанием смешанных или . Коэффициент увлажнения в пределах от 0,6 до 1 характерен для лесостепных массивов, от 0,3 до 0,6 - для степей, от 0,1 до 0,3 - для полупустынных территорий, а от 0 до 0,1 - для пустынь.

Источники:

  • Увлажнение, коэффициенты увлажнения

В жизни человек сталкивается с проблемой и необходимостью превращения разных видов энергии. Устройства, которые предназначены для преобразований энергии, называют энергетическими машинами (механизмами). К энергетическим машинам, например, можно отнести: электрогенератор, двигатель внутреннего сгорания, электрический двигатель, паровую машину и др.

В теории любой вид энергии может полностью превратиться в другой вид энергии. Но на практике помимо преобразований энергии в машинах происходят превращения энергии, которые названы потерями. Совершенство энергетических машин определяет коэффициент полезного действия (КПД).

ОПРЕДЕЛЕНИЕ

Коэффициентом полезного действия механизма (машины) называют отношение полезной энергии () к суммарной энергии (W), которая подводится к механизму. Обычно коэффициент полезного действия обозначают буквой (эта). В математическом виде определение КПД запишется так:

Коэффициент полезного действия можно определить через работу, как отношение (полезная работа) к A (полная работа):

Кроме того, можно найти как отношение мощностей:

где — мощность, которую подводят механизму; — мощность, которую получает потребитель от механизма. Выражение (3) можно записать иначе:

где — часть мощности, которая теряется в механизме.

Из определений КПД очевидно, что он не может быть более 100% (или не моет быть больше единицы). Интервал в котором находится КПД: .

Коэффициент полезного действия используют не только в оценке уровня совершенства машины, но и определения эффективности любого сложного механизма и всякого рода приспособлений, которые являются потребителями энергии.

Любой механизм стараются сделать так, чтобы бесполезные потери энергии были минимальны (). С этой целью пытаются уменьшить силы трения (разного рода сопротивления).

КПД соединений механизмов

При рассмотрении конструктивно сложного механизма (устройства), вычисляют КПД всей конструкции и коэффициенты полезного действия всех его узлов и механизмов, которые потребляют и преобразуют энергию.

Если мы имеем n механизмов, которые соединены последовательно, то результирующий КПД системы находят как произведение КПД каждой части:

При параллельном соединении механизмов (рис.1) (один двигатель приводит в действие несколько механизмов), полезная работа является суммой полезных работ на выходе из каждой отдельной части системы. Если работу затрачиваемую двигателем обозначить как , то КПД в данном случае найдем как:

Единицы измерения КПД

В большинстве случаев КПД выражают в процентах

Примеры решения задач

ПРИМЕР 1

Задание Какова мощность механизма, который поднимает n раз в секунду молот, имеющий массу m на высоту h, если КПД машины равен ?
Решение Мощность (N) можно найти исходя из ее определения как:

Так как в условии задана частота () (молот поднимается n раз в секунду), то время найдем как:

Работа будет найдена как:

В таком случае (принимая во внимание (1.2) и (1.3)) выражение (1.1) преобразуется к виду:

Так как КПД системы равен , то запишем:

где — искомая мощность, тогда:

Ответ

ПРИМЕР 2

Задание Каким будет КПД наклонной плоскости, если ее длина , высота h? Коэффициент трения при движении тела о данную плоскость равен .
Решение Сделаем рисунок.

В качестве основы для решения задачи примем формулу для вычисления КПД в виде:

Полезной работой будет работа по подъему груза на высоту h:

Произведенную работу, при доставке груза путем перемещения его по данной плоскости можно найти как:

где — сила тяги, которую найдем из второго закона Ньютона, рассмотрев силы, которые приложены к телу (рис.1):

Мы совершаем работу , всегда превышающую ту, которая необходима для достижения поставленной цели. В соответствии с этим различают полную илизатраченную работу А з и полезную работу А п. Если, например, наша цель-поднять груз массой ш на высоту Н, то полезная работа - это та, которая обусловлена лишь преодолением силы тяжести , действующей на груз. При равномерном подъеме груза, когда прикладываемая нами сила равна силе тяжести груза, эта работа может быть найдена следующим образом:

Если же мы применяем для подъема груза блок или какой- либо другой механизм , то, кроме силы тяжести груза, нам приходится преодолевать еще и силу тяжести частей механизма, а также действующую в механизме силу трения . Например, используя подвижный блок, мы вынуждены будем совершать дополнительную работу по подъему самого блока с тросом и по преодолению силы трения в оси блока. Кроме того, выигрывая в силе, мы всегда проигрываем в пути (об этом подробнее будет рассказано ниже), что также влияет на работу. Все это приводит к тому, что затраченная нами работа оказывается больше полезной:
А з > А п.

Полезная работа всегда составляет лишь некоторую часть полной работы, которую совершает человек, используя механизм .

Физическая величина, показывающая, какую долю составляет полезная работа от всей затраченной работы, называется коэффициентом полезного действия механизма.

Чтобы найти КПД механизма, надо полезную работу разделить на ту, которая была затрачена при использовании данного механизма.

Коэффициент полезного действия часто выражают в процентах и обозначают греческой буквой и (читается "эта"):

Поскольку числитель Ап в этой формуле всегда меньше знаменателя Аз, то КПД всегда оказывается меньше 1 (или 100%).

Конструируя механизмы, стремятся увеличить их КПД. Для этого уменьшают трение в осях механизмов и их массу. В тех случаях, когда трение ничтожно мало и используемые механизмы имеют массу, пренебрежимо малую по сравнению с массой поднимаемого груза, коэффициент полезного действия оказывается лишь немного меньше 1. В этом случае затраченную работу можно считать примерно равной полезной работе:

Следует помнить, что выигрыша в работе с помощью простого механизма получить нельзя .

Поскольку каждую из работ в равенстве (24.3) можно выразить в виде произведения соответствующей силы на пройденный путь, то это равенство можно переписать так:

Отсюда следует, что,

выигрывая с помощью механизма в силе, мы во столько же раз проигрываем в пути, и наоборот.

Этот закон называют "золотым правилом" механики. Его автором является древнегреческий ученый Герон Александрийский, живший в I в. н. э.
"Золотое правило" механики является приближенным законом, так как в нем не учитывается работа по преодолению трения и силы тяжести частей используемых приспособлений. Тем не менее оно бывает очень полезным при анализе работы любого простого механизма.

Так, например, благодаря этому правилу мы сразу можем сказать, что рабочему, изображенному на рисунке 47, при двукратном выигрыше в силе для подъема груза на 10 см придется опустить противоположный конец рычага на 20 см. То же самое будет и в случае, изображенном на рисунке 58. Когда рука человека, держащего веревку, опустится на 20 см, груз, прикрепленный к подвижному блоку, поднимется лишь на 10 см.

Рисунок 47, 58. Демонстрация "золотого правила" механики.

Вопросы.

1. Почему затраченная при использовании механизмов работа оказывается все время больше полезной работы?

2. Что называют коэффициентом полезного действия механизма?

3. Может ли КПД механизма быть равным 1 (или 100%)? Почему?

4. Каким образом увеличивают КПД?

5. В чем заключается "золотое правило" механики? Кто его автор?

6. Приведите примеры проявления "золотого правила" механики при использовании различных простых механизмов.

Отослано читателями из интернет-сайтов

Сборник конспектов уроков по всем классам, рефераты с физики 7 класса, книги и учебники согласно каленадарного планирования физики 7 класса

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки