Общие признаки воспаления. Воспаление Общие принципы патогенетической терапии воспаления

4 стадии:
1- Переходящий спазм приносящих артериол отчётливо выражен при быстро развивающемся повреждении(ожог)
2-Артериальная гиперемия- увеличение кровенаполнентя повреждённого участка органа(10-30минут)
3-Венозная гиперемия-максимальное расширение приносящих артериол и прекапиллярных сфинктеров,патенте скорости кровотоков микроциркуляторнвх сосудах
4-Стаз- предшествует предстатическое состояние,характеризующееся маятникообразным движением крови,вследствие нарастающего застоя крови,потери сосудистого тонуса и резкого расширения капилляров и вернул,во время систолыилнаидвижется от артерий к венам а во время диачтлы в обратом направлении

4.Механизм образования экссудатов.

Механизмы образования экссудата.
Экссудация-выход белоксодержащей жидкой части крови через сосудистую стенку в воспалённую ткань. Выход плазмы определяется увеличением кровяного давления в венозной части капилляров воспалённой ткани. Др фактором является повышение проницаемости капиллярной стенки,вызываемого медиаторами воспаления. Когда белки крови начинают поставившиеся из сосудов во внесосудистное пространство,онкотичкское давление падает,а онкотическое давление интенстициальной жидкости растёт. Начинается переход жидкости из сосудов в окружающее постранство в связи с увеличением онкотического и осмотического давления в очаге воспаления. Воспалительный отек имеет опреределенное защитное значение,белки отёчной жидкости связывают токсины,задерживают из всасывание в кровь и распространяете по всему организму.
Увеличение осмотич давления интрестициалтной жидкости обусловлено накоплением в иннрестиций осмотически активных продуктов распада тканей(натрий,калий,кальций,хлор)

5.Виды экссудатов.

Серозный экссудат характризуется умеренным содержанием белка (3-5%) и единичные полиморфноядерные лейкоциты.

Фибринозный экссудат по составу схож с серозным, но есть еще фибриноген. Особенностью химического состава фибринозного экссудата является выход фибриногена и выпадение его в виде фибрина в воспаленной ткани(крупозная пневмония, дифтерия)

Геморрагический экссудат образуется при бурно развивающемся воспалении с выраженным повреждением сосудистой стенки, когда в воспаленную ткань выходят эритроциты.(сибирская язва, натуральная оспа, чума) и другие форменные элементы крови, есть белок.

6.Эмиграция лейкоцитов в очаг воспаления. Механизмы.

Эмиграция лейкоцитов - активный процесс их выхода из просвета сосудов микроциркуляторного русла в межклеточное пространство. Спустя 1-2 ч после воздействия на ткань флогогенного фактора в очаге воспаления обнаруживается большое число эмигрировавших нейтрофилов и других гранулоцитов, позднее - через 15-20 и более часов - моноцитов, а затем и лимфоцитов.

Процесс эмиграции последовательно проходит этапы:

Роллинга (краевого стояния - «качения») лейкоцитов,

Их адгезии к эндотелию и проникновения через сосудистую стенку,

Направленного движения лейкоцитов в очаге воспаления

7. Медиаторы воспаления.

Все известные медиаторы воспаления по происхождению можно разделить на гуморальные (образующиеся в жидких средах - плазме крови и тканевой жидкости) и клеточные. К первым относятся производные комплемента, кинины и факторы свертывающей системы крови, ко вторым - вазоактивные амины, производные арахидоновой кислоты (эйкозаноиды), лизосомальные факторы, цитокины (монокины), лимфокины, активные метаболиты кислорода, нейропептиды. В то время как все гуморальные медиаторы являются предсуществующими, т. е. имеются в виде предшественников до активации последних, среди клеточных медиаторов можно вьщелить как предсуществующие (депонированные в клетках в неактивном состоянии) - вазоактивные амины, лизосомальные факторы, нейропептиды, так и вновь образующиеся (т. е. продуцируемые клетками при стимуляции) - эйкозаноиды, цитокины, лимфокины, активные метаболиты кислорода.

8.Фагоцитарная активность лейкоцитов в очаге воспаления. Фагоцитарное число, фагоцитарный показатель.

Для оценки фагоцитарной активности лейкоцитов периферической крови к цитратной крови, взятой из пальца, в объеме 0,2 мл, добавляют 0,25 мл взвеси микробной культуры с концентрацией 2 млрд. микробов в 1 мл. Смесь инкубируют 30 мин при 37°С, центрифугируют при 1500 об/мин в течение 5-6 мин, удаляют надосадочную жидкость. Осторожно отсасывают тонкий серебристый слой лейкоцитов, готовят мазки, сушат, фиксируют, красят краской Романовского-Гимза. Препараты сушат и микроскопируют.

Подсчет поглощенных микробов ведут в 200 нейтрофилах (50 моноцитов). Интенсивность реакции оценивают по следующим показателям:

1. Фагоцитарный показатель (фагоцитарная активность) - процент фагоцитов из числа сосчитанных клеток.

2. Фагоцитарное число (фагоцитарный индекс) - среднее число микробов, поглощенное одним активным фагоцитом.

9. Фагоцитоз, стадии. Нарушения фагоцитарной активности лейкоцитов.

Фагоцитоз- активный биологический процесс, заключающийся в поглощении чужеродного материала и его внутриклеточном переваривании фагоцитами.

Стадии:
1) сближение фагоцита с объектом фагоцитоза
2) распознавание фагоцитом объекта поглощения и адгезия к нему

3) поглощение объекта фагоцитом с образованием фаголизосомы

4) разрушение объекта фагоцитоза

10. Какие гормоны являются противовоспалительными и провоспалительными?

К провоспалительным гормонам относят СТГ, минералокортикоиды, тироксин, гормон паращитовидных желез, альдостерон, дезоксикортикостерон. К противовоспалительным гормонам относятся АКТГ, глюкокортикоиды, инсулин, половые гормоны.

11.Какие факторы обуславливают боль при воспалении?
Одним из важнейших эффектов кининов является присущая им способность раздражать окончания чувствительных нервов, обусловливая возникновение воспалительной боли. Боль - связывают с высвобождением других медиаторов, особенно простагландинов, серотонина . Кромее того, нейропептиды повышают чувствительность ноцицепторов к действию различных медиаторов. И за счет механического сдавления нервов.

12. Какие механизмы экссудации являются при воспалении?

Основные факторы механизма экссудации:

1) повышение проницаемости сосудов (венул и капилляров) в результате воздействия медиаторов воспаления и в ряде случаев самого воспалительного агента - ведущий фактор;

2) увеличение кровяного (фильтрационного) давления в сосудах очага воспаления вследствие гиперемии;

3) возрастание осмотического и онкотического давления в воспаленной ткани в результате альтерации и начавшейся экссудации и, возможно, снижение онкотического давления крови из-за потери белков при обильной экссудации.

13. Какие факторы способствуют развитию отека в очаге воспаления ?
Коллагеназа, гистамин, брадикинин.

14. Отличительные признаки транссудата от экссудата при воспалении?

Экссуда т-жидкость, выходящая из микрососсудов, содержащая большое количество белка, ФЭК.
Транссудат - отечная жидкость, скапливающаяся в полостях тела и тканевых щелях. Транссудат обычно бесцветен или бледно-желтого цвета, прозрачный, реже мутноват из-за примеси единичных клеток спущенного эпителия, лимфоцитов, жира. Содержание белков в транссудате обычно не превышает 3%; ими являются сывороточные альбумины и глобулины. В отличие от экссудата в транссудате отсутствуют ферменты, свойственные плазме .). Для отличия транссудата от экссудата применяют пробу Ривальты, основанную на разном содержании в них белка.

15. Какие физико-химические изменения характерны для участка острого воспаления?

16.Что является медиаторами воспаления, вызывающими увеличение проницаемости сосудов при воспалении?

Компоненты и производные комплемента, кинины(брадикинины, каллидин), простагландины, лейкотриены, серотонин, лизосомальные ферменты, катионные белки, супероксидный анион-радикал, гидроксил-радикал ОН-, перекись водорода Н2О2. Нейропептиды. Это вещество Р, кальциотонин (генсвязанный пептид), нейрокинин А. Ацетилхолин, катехоламины.

17. Какие медиаторы воспаления являются клеточными и плазменными?



18.Механизмы действия медиаторов воспаления.
Гистамин
Спазм гладкой мускулатуры (увеличи- вает образование простагландинов Е2 и F2a, тромбоксана). Вазодилатация (расширение прекапиллярных артериол). Повышение проницаемости стенки сосудов, подавление хемотаксиса и фаго- цитарной активности нейтрофилов, угнетение активности лимфоцитов и выработки лимфокинов. Лаброциты, базофильные лейкоциты.
Серотонин Сужение посткапиллярных венул, повышение проницаемости стенки сосудов. Боль. Зуд. Тромбоциты, лаброциты.
Кинины (брадикинин, метиониллизилбрадикинин). Вазодилятация. Повышение проницае- мости сосудов. Боль. Спазм глазной мускулатуры. a2-Глобулин плазмы крови.
Компоненты системы комплемена (С3а, С5а). Дегрануляция тучных клеток (выделе- ние гистамина). Повышение проницае- мости сосудистой стенки. Спазм глад- кой мускулатуры. Стимуляция хемотак- сиса лейкоцитов. Белки плазмы.
Интерлейкины и монокины : ИЛ-1ß, фактор некроза опухоли (ФНО-a) и др. Стимуляция синтеза простагландинов, фагоцитоза, пролиферации и активации фибробластов. Пирогенез. Макрофаги, моноци- ты, нейтрофильные гранулоциты.
Лимфокины : ИЛ-2, фактор активации макрофагов. Активация естественных киллеров. Стимуляция гранулоцитов. Лимфоциты.
Простагландины (ПГЕ, ПГF2α). Вазодилятация. Повышение проницае- мости сосудистой стенки. Пирогенез. Полиненасыщенные жирные кислоты фос- фолипидов мембран и плазмы крови. Лейкотриены (ЛТВ4 и др.). Спазм гладкой мускулатуры. Повыше- ние проницаемости сосудистой стенки. Активация лейкоцитов. Гранулоциты. Моноциты. Тромбоциты. Лаброциты. 17 1 2 3 Тромбоксаны Вазоконстрикция. Агрегация тромбоци- тов. Активация гранулоцитов. Макрофаги, моноци- ты. Гранулоциты.
Лизосомальные факторы , (кислые гидролазы, неферментативные катионные белки). Вторичная альтерация, “генерация” “медиаторов воспаления”. Способствуют вазодилятации, повышению прони- цаемости сосудов, развитию отека и эмиграции лейкоцитов, микротромбообразованию. Микробоцидность. Нейтрофильные гранулоциты. Моноциты, макрофаги.

19. Какие факторы обуславливают выход плазменных белков из микроциркуляторный сосудов в очаг воспаления.
-сокращение эндотелиальных клеток
-повышение онкотического давления интерстициальной жидкости

20. какие клетки являются главным источником гистамина в очаге острого воспаления.
в очаге острого воспаления: тучные клетки.
медиаторы острого воспаления (являются анафилатоксинами, т. е. либераторами гистамина из тучных клеток, повышают проницаемость посткапиллярных венул как прямо, так и опосредованно через гистамин; С5а, образующийся из С5а в плазме и тканевой жидкости под влиянием карбоксипептидазы N, не связан с гистамином, но является нейтрофилзависимым, т.е. повышает проницаемость микрососудов за счет лизосомальных ферментов и неферментных катионных белков, активных метаболитов кислорода, высвобождаемых из полиморфноядерных гранулоцитов; С5а и С5а des Arg привлекают нейтрофилы; С5а и СЗа также высвобождают интерлейкин-1, простагландины, лейкотриены, фактор, активирующий тромбоциты, и синергистически взаимодействуют с простагландинами и веществом Р); - СЗЬ опсонизирует патогенный агент и способствует иммунной адгезии и фагоцитозу; - комплекс С5Ь-С9 ответствен за лизис микроорганизмов и патологически измененных клеток; - кинины - вазоактивные пептиды, образующиеся из кининогенов (а2-глобулинов) под влиянием калликреинов в плазме (нонапептид брадикинин) и в тканевой жидкости (декапептид лизилбрадикинин, или каллидин).

21. чем обусловлено противовоспалительное действие глюкокортикоидов
.
Глюкокортикоиды оказывают противошоковое, противовоспалительное, противоаллергическое, иммунодепрессивное, антитоксическое действие. Противовоспалительное действие обусловлено угнетением активности фосфолипазы А 2 и стабилизацией мембран клеток, снижением образования простагландинов и лейкотриенов. Противоаллергический эффект связан со стабилизацией тучных клеток и препятствием их дегрануляции. Кроме того, противоаллергический и антидепрессивный эффекты являются следствием уменьшения миграции Т- и В-лимфоцитов и нарушения их взаимодействия.
Основными показаниями к применению глюкокортикоидов является ревматизм, коллагенозы, ревматоидный артрит, полиартрит, бронхиальная астма, кожные аллергические заболевания.

22. чем обусловлено повышение осмотического и онкотического давления в воспалительной ткани.

Умеренное увеличение проницаемости приводит к выходу мелкодисперсных фракций белков, прежде всего альбуминов. При значительном увеличении проницаемости происходит выход глобулинов, а при еще более выраженном - фибриногена, который во внесосудистом русле образует сгустки фибрина.
В ткани очага воспаления повышается осмотическое давление (гиперосмия), при этом осмотическое давление крови обычно не изменяется. Возникающий градиент осмотического давления крови и ткани является важным фактором усиления экссудации и развития отека. Гиперосмия тканей возникает в результате повышения в них концентрации осмоактивных частиц, ацидоза тканей.
В ткани очага воспаления повышается также и онкотическое давление (гиперонкия). Это происходит вследствие возрастания концентрации, дисперсности и гидрофильности белковых продуктов. В крови онкотическое давление, как правило, снижается (гипоонкия) в связи с нарушением функции печени и уменьшением образования альбуминов гепатоцитами, увеличением синтеза менее онкоактивных глобулинов.Градиент онкотического давления ткани и плазмы крови - важный фактор усиления экссудации и развития отека.
мехамизмы экссудации и формирования воспалительного отека:
1.Повышение проницаемости стенок микрососудов.
2.Усиление выхода жидкости с умеренным содержанием белка (онкотическое и осмотическое давление ткани в очаге воспаления временно сохраняется неизменным).
3.В период тяжелых расстройств микроциркуляции и возникновения гипоксии развивается гиперосмия и гиперонкия ткани.

23. Чем обусловлен ацидоз в очаге воспаления?
Освобождением и накоплением большого количества кислот.
В самый начальный период воспалительной реакции развивается кратковременный первичный ацидоз, повышается содержание кислых продуктов. При наступлении артериальной гипе-ремии кислотно-основное состояние в тканях воспалительного очага нормализуется, а затем развивается длительный выраженный метаболический ацидоз, который вначале является компенсированным (происходит снижение щелочных резервов тканей, но их рН не меняется). По мере прогрессирования воспалительного процесса развивается уже некомпенсированный ацидоз вследствие нарастания концентрации свободных водородных ионов и истощение тканевых щелочных резервов. При альтерации клеток высвобождается большое количество внутриклеточного калия. В сочетании с увеличением количества водородных ионов это приводит к гиперионии в очаге воспаления, а последняя вызывает повышение осмотического давления. Накопление олиго- и монопептидов в процессе протеолиза полипептидов активированными в условиях ацидоза высвободившимися лизосо- мальными гидролазами приводит к возрастанию онкотического давления.

24. Пролиферация. Механизмы пролиферации.
По мере очищения очага воспаления наступает пролиферация– характеризующаяся увеличением числа стромальных паренхиматозных клеток, а также образованием межклеточного вещества в очаге воспаления. Эти процессы направлены на регенерацию разрушенных тканевых элементов. Существенное значение на этой стадии воспаления имеют различные биологически активные вещества. Пролиферацию завершает инволюция рубца, то есть уничтожение и элиминация лишних коллагеновых структур. Основные клеточные эффекторы пролиферации – это активированные мононуклеарные фагоциты, фибробласты и иммунокомпетентные клетки. Фибробласты в очаге воспаления образуют и высвобождают коллаген и энзим коллагеназу, ответственный за формирование коллагеновых структур стромы соединительной ткани. Кроме то они выделяют фиб- ронектин, определяющий миграцию, пролиферацию и адгезию фибробластов. Мононуклеары и лимфоциты секретируют цитокины как стимулирующие, так и подавляющие эти функции фибробластов. Нейтрофилы, как клеточные эффекторы воспаления, влияют на пролиферацию, секретируя тканеспецифические ингибиторы, взаимодействующие по принципу обратной связи.

VI.Наследственность.

1.Этиология наследственных болезней.

Этиологическими факторами наследственных болезней являются мутации наследственного материала. Мутации, затрагивающие весь хромосомный набор или отдельные хромосомы в нем (полиплоидии и анэуплоидии), а также участки хромосом (структурные перестройки - делеции, инверсии, транслокации, дупликации и т.д.) приводят к развитию хромосомных болезней. При хромосомных болезнях нарушается сбалансированность набора генов, что может приводить к внутриутробной гибели эмбрионов и плодов, врожденным порокам развития и другим клиническим проявлениям. Чем больше хромосомного материала вовлечено в мутацию, тем раньше проявляется заболевание и тем значительнее нарушения в физическом и психическом развитии индивидуума. (Хромосомные заболевания редко передаются от родителей к детям, в основном это случайно возникшая новая мутация. Но около 5% людей являются носителями сбалансированных изменений в хромосомах, поэтому при бесплодии, мертворождениях, привычном невынашивании или наличии в семье ребенка с хромосомной патологией необходимо исследовать хромосомы каждого из супругов. Генными болезнями называются заболевания, обусловленные изменениями структуры молекулы ДНК (генные мутации).)-можно и не писать.

2. Виды мутаций.
По причине, вызвавшей мутации:
«спонтанные»
индуцированные.
1. Спонтанные» мутации возникают под влиянием естественных мутагенов экзо‑ или эндогенного происхождения, без специального (целенаправленного) вмешательства человека. Результате действия химических веществ,
2. Индуцированные мутации вызываются направленным воздействием факторов внешней или внутренней среды. Контролируемые - целенаправленно, с целью изучения механизмов мутагенеза и/или его последствий.
Неконтролируемые - при выбросе радиоактивных элементов в среду обитания при авариях на атомных электростанциях.
По виду клетки,в которой произошла мутация:
гаметические и
соматические.
Гаметические мутации выявляются в половых клетках. Они наследуются потомками и, как правило, обнаруживаются во всех клетках организма.
Соматические мутации происходят в неполовых – соматических клетках организма и проявляются только у того индивида, у которого они возникают. Эти мутации передаются только дочерним соматическим клеткам при их делении и не наследуются следующим поколением индивида.
По биологическому значению
патогенные,
нейтральные и
благоприятные
Патогенные мутации приводят либо к гибели эмбриона (или плода), либо к развитию наследственных и врождённых заболеваний.
Нейтральные вызывающие веснушки, изменение цвета волос, радужной оболочки глаза).
Благоприятные повышают жизнеспособность организма или вида (например, тёмная окраска кожных покровов у жителей африканского континента).

По масштабу изменений генетического материала
генные,
хромосомные или
геномные.

Генные(точковые) представляют собой изменения молекулярной структуры ДНК(делеция, дубликация, удвоение, инверсия, инсекция, транзиция, трансверсия). Значительная часть точковых мутаций нарушает «функционирование» гена и приводит к развитию генных (моногенных) болезней. Фенотипически генные болезни наиболее часто проявляются признаками нарушений метаболизма (например, фенилкетонурия, нейрофиброматоз, муковисцидоз, мышечная дистрофия Дюшенна–Беккера).
Хромосомные мутации (аберрации) характеризуются изменением структуры отдельных хромосом, а геномные –их числа.

3. Типы наследования
АУТОСОМНО-ДОМИНАНТНЫЙ
(синдром Марфана, гемоглобинопатия М, хорея Хантингтона, полипоз толстой
кишки, семейная гиперхолестеринемия, нейрофиброматоз, полидактилия)
признакаи: Одинаковая частота патологии у лиц мужского и женского пола.Наличие больных в каждом поколении родословной.Вероятность рождения больного ребёнка равна 50% . Непоражённые члены семьи, как правило, имеют здоровых потомков.
АУТОСОМНО-РЕЦЕССИВНЫЙ ( фенилкетонурия, кожно-глазной альбинизм, серповидно-клеточная анемия, адреногенитальный синдром, галактоземия, гликогенозы, гиперлипопротеинемии, муковисцидоз)
признаки: Равная частота патологии у лиц мужского и женского пола.Проявление патологии в родословной «по горизонтали», часто у сибсов.Отсутствие заболевания у единокровных (дети одного отца от разных матерей) и единоутробных (дети одной матери от разных отцов) братьев и сестёр.Родители больного, как правило, здоровы. Это же заболевание может обнаруживаться у других родственников, например у двоюродных или троюродных братьев (сестёр) больного.
СЦЕПЛЕННОЕ С ХРОМОСОМОЙ Х-ДОМИНАНТНОЕ ( гипофосфатемии - витамин D-резистентный рахит; болезнь Шарко-Мари-Тута Х-сцепленная доминантная; рото-лице-пальцевой синдром типа I) Поражены лица мужского и женского пола, но женщины в 2 раза чаще.Передача больным мужчиной патологического аллеля всем дочерям и только дочерям, но не сыновьям. Сыновья получают от отца хромосому Y.Передача больной женщиной заболевания и сыновьям, и дочерям с равной вероятностью.Более тяжёлое течение заболевания у мужчин, чем у женщин.
СЦЕПЛЕННОЕ С ХРОМОСОМОЙ Х-РЕЦЕССИВНОЕ (гемофилия А, гемофилия В; Х-сцепленная рецессивная болезнь Шарко-Мари-Тута; дальтонизм; мышечная дистрофия Дюшенна – Беккера; синдром Калльмана; болезнь Хантера (мукополисахаридоз типа II); гипогаммаглобулинемия брутоновского типа.Больные рождаются в браке фенотипически здоровых родителей.Заболевание наблюдается почти исключительно у лиц мужского пола. Матери больных - облигатные носительницы патологического гена.Сын никогда не наследует заболевание от отца. У носительницы мутантного гена вероятность рождения больного ребёнка равна 25% (независимо от пола новорождённого); вероятность рождения больного мальчика равна 50%.
ГОЛАНДРИЧЕСКИЙ (ихтиоз кожи, гипертрихоз ушных раковин, избыточный рост волос на средних фалангах пальцев кистей, азооспермия) Передача признака от отца всем сыновьям и только сыновьям.Дочери никогда не наследуют признак от отца.«Вертикальный» характер наследования признака.Вероятность наследования для лиц мужского пола равна 100%.
МИТОХОНДРИАЛЬНОЕ НАСЛЕДОВАНИЕ (митохондриальные болезни): атрофия зрительного нерва Лебера, синдромы Лея (митохондриальная миоэнцефалопатия), MERRF (миоклоническая эпилепсия), кардиомиопатия дилатационная семейная.Наличие патологии у всех детей больной матери.Рождение здоровых детей у больного отца и здоровой матери.Указанные особенности объясняются тем, что митохондрии наследуются от матери. Доля отцовского митохондриального генома в зиготе составляет ДНК от 0 до 4 митохондрий, а материнского генома - ДНК примерно 2500 митохондрий. К тому же похоже, что после оплодотворения репликация отцовской ДНК блокируется.

4. заболевания передающиеся по аутосомно доминантному типу.
При аутосомно-доминантном типе наследования большинство больных рожда­ются в браках между пораженным (гетерозиготным по аутосомно-доминантному гену Аа) и здоровым супругом (гомозиготному по нормальному аллелюаа)
Семейная гиперхолестеринемия, гемохроматоз, синдром Марфана, нейрофиброматоз 1-го типа (бо­лезнь Реклингхаузена), синдром Элерса-Данло, миотоническая дистрофия, ахондроплазия, несовершенный остеогенез. синдром Марфана– наследственное заболевание, представляющее собой генерализованное поражение соединительной ткани с высокой пенетрантность и различной экспрессивностью.
основными признаками аутосомно-доминантного типа наследования заболевания, являют­ся:1) заболевание проявляется в каждом поколении2) каждый ребенок родителя, больного аутосомно-доминантным заболеванием, имеет 50%-ный риск унаследовать это заболе­вание;3) лица мужского и женского пола поражаются одинаково час­то и в одинаковой мере;4) больной ребенок имеет больного родителя;5) непораженные члены семьи свободны от мутантного гена

5. заболевания передающиеся по аутосомно рецессивному типу.
По аутосомно-рецессивному типу передается большинство наследственных болезней, которые развиваются у гомозиготных детей, оба родителя которых являются гетерозиготными носителями патологического признака и фенотипически здоровы. Передается аномалия в виде альбинизма (отсутствие пигмента в коже, волосах, радужке глаза из-за отсутствия тирозиназы, в норме превращающей тирозин в меланин), врожденная глухонемота, идиотия со слепотой, шизофрения сахарный диабет, полная цветовая слепота, микроцефалии. Очень часто по аутосомно-рецессивному типу передаются различные нарушения обмена веществ: фенилкетонурия(основу которой составляет понижение активности глюкозоаланингидроксилазы, что приводит к накоплениюl-фенилаланина в тканях из-за блокады его перехода в тирозин),генерализованный гликогеноз(понижение активности глюкозо-6-фосфатазы органов, из-за чего гликоген накапливается в тканях),галактоземия (возникает из-за дефекта лактазы - фермента, расщепляющего лактозу; характеризуется также увеличением печени, развитием катаракты и психических отклонений),сфинголипидоз (возникает из-за отсутствия фермента сфинголипазы в клеточных мембранах, способствует отложению холестерина и нарушению обмена липидов как мембранных сосудов, так и других клеточных структур; сопровождается гибелью детей в возрасте до 5 лет,дефицит пиридоксина - витамина В6(приводит к нарушению обмена белков, аминокислот, липидов, ферментов, развитию гипохромной анемии, эпитептиформных судорог и др.)адреногенитальный синдром:генетически обусловленная блокада синтеза глюкокортикоидных гормонов в коре надпочечников (возникает в результате дефицита А-В-гидроксилазы), сопровождающаяся увеличением в последней продукции андрогенов. Это приводит к маскулинизации девочек и преждевременному половому созреванию мальчиков.

6. Методы изучения наследственной патологии.

Клинико-генеалогический метод Этот метод основан на прослеживании какого-либо нормального или патологического признака в ряде поколений с указанием родственных связей между членами родословной. Начинается от пробанда, которым называется лицо, первым попавшим в поле зрения врача.

Метод включает два этапа:

Сбор сведений о семье

Генеалогический анализ

Близнецовый метод Если изучаемый признак проявляется у обоих близнецов пары, их называют конкордантными. Конкордантность – это процент сходства по изучаемому признаку. Отсутствие признака у одного из близнецов – дискордантность.

Популяционно-статистический метод Исследование признаков в больших группах людей, различающихся по наследственным характеристикам (раса, нация, этническая группа, изоляты) или условиям жизни.

Цитогенетические методы (анализ кариотипа и полового хроматина)

Дерматоглифика – метод изучение рельефных узоров на коже, образуемых папиллярными линиями и гребешкам (находится под генетическим контролем).

7. Хромосомные болезни. Болезнь Дауна и др.

Синдром Дауна (трисомия по хромосоме 21) – чаще трисомия в 21-й паре аутосом (45 аутосом + XX у девочек или + XY у мальчиков). В остальных случаях транслокационный перенос. Характерно: олигофрения разной степени, низкий рост, разболтанность суставов, мышечная гипотония, короткие пальцы, поперечная «обезьянья» складка на ладони, монголоидный разрез глаз, эпикантус,недоразвитие половых признаков. Следствие избытка синтеза пуринов

8. Хромосомные болезни. Синдром Шерешевского-Тернера.

Синдром Шерешевского - Тернера - это хромосомное заболевание, для которого характерно либо полное отсутствие одной хромосомы, либо наличие дефекта в одной из Х - хромосом. Кариотип таких женщин - 45 Х0 . Отсутствует половой хроматин в (тельца Барра) в ядрах клеток. У таких женщиннизкий рост, короткая широкая шея, множественные пигментные пятна, недоразвитие желёз и яичников, первичная аменорея и бесплодие, умственное развитие нормальное.

9. Хромосомные болезни. Синдром трисомии.

Наследственное нарушение, обусловленное наличием дополнительной X хромосомы, является частным случаем анеуплоидии. В большинстве случаев носители дополнительной X-хромосомы - женщины без заметных признаков патологии (Два тельца Барра). Трисомия по X-хромосоме приводит к незначительному повышению внутриутробной смертности. Развитие может протекать с некоторыми нарушениями, могут возникнуть проблемы с координацией, моторикой и развитием речи. В некоторых случаях отмечен меньший размер головы (без заметного снижения умственных способностей)

10. Хросомные болезни. Синдром Клайнфельтера.

Обнаружено несколько типов полисомии по хромосомам X и Y у лиц мужского пола: 47, XXY; 47, XYY; 48, XXXY; 48, XYYY; 48 XXYY; 49 XXXXY; 49 XXXYY. Наиболее распространен синдром Клайнфельтера (47, XXY). Характерны высокий рост астеническое телосложение евнухоидного типа, гинекомастия, атрофия яичек и бесплодия, часто остеопороз. В ядрах обнаруживается половой хроматин (тельца Барра).

11. Патогенез наследственных болезней. Фенилкетонурия.

Фенилкетонурия - редкое наследственное заболевание группы ферментопатий, связанное с нарушением метаболизма аминокислот, главным образом фенилаланина. При несоблюдении низкобелковой диеты сопровождается накоплением фенилаланина и его токсических продуктов, что приводит к тяжёлому поражению ЦНС, проявляющемуся, в частности, в виде нарушения умственного развития (фенилпировиноградной олигофрении). Одно из немногих наследственных заболеваний, поддающихся успешному лечению. Вследствие метаболического блока активируются побочные пути обмена фенилаланина, и в организме происходит накопление его токсичных производных - фенилпировиноградной и фениломолочной кислот, которые в норме практически не образуются. Кроме того, образуются также почти полностью отсутствующие в норме фенилэтиламин и ортофенилацетат, избыток которых вызывает нарушение метаболизма липидов в головном мозге. Предположительно, это и ведёт к прогрессирующему снижению интеллекта у таких больных вплоть до идиотии.

12. Болезни, сцепленные с полом.

Наследование, сцепленное с полом - наследование какого-либо гена, находящегося в половых хромосомах. Наследование признаков, проявляющихся только у особей одного пола, но не определяемых генами, находящимися в половых хромосомах, называется наследованием, ограниченным полом. Передача дальтонизма по наследству связана с X-хромосомой и практически всегда передаётся от матери-носителя гена к сыну, в результате чего в двадцать раз чаще проявляется у мужчин, имеющих набор половых хромосом XY.

Гемофилия А (классическая гемофилия) - генетическое заболевание, вызванное врождённым дефицитом белка фактора свёртывания крови VIII. Гемофилия - заболевание, связанное с рецессивной мутацией в X-хромосоме. Встречается у мужчин и у гомозиготных женщин.

X-связанный ихтиоз (X-сцепленный ихтиоз) - X-сцепленное рецессивное кожное заболевание, вызываемое врождённой недостаточностью стероидной сульфатазы, фермента, преобразующего стероиды в активную форму.

13. Митохондриальное наследование.

У митохондрий имеется собственная ДНК - митохондриальная ДНК. В отличие от ядерных генов, митохондриальная ДНК передается исключительно по материнской линии. Примером митохондриальных болезней служат наследственная атрофия зрительных нервов Лебера, миоклоническая эпилепсия с рваными красными волокнами, митохондриальная миопатия, энцефалопатия, лактатацидоз.

VII. Лихорадка.

Что какое лихорадка?

Лихорадка – повышение температуры тела, обусловленная появлением в организме пирогенных веществ. При этом температура глубоких областей туловища и тела постоянна.

Различают инфекционную (бактерии, вирусы) и неинфекционную лихорадку (приступ подагры, аллергические реакции). Различают экзогенные и эндогенные пирогенные вещества. Всё связано с продукцией цитокинов – прежде всего интерлейкина-1.

Перегревание. Причины.

Патологические реакции организма на высокую температуру окружающей среды, связанные с дегидратацией, потерей электролитов и расстройством механизмов терморегуляции.

Причиной служит избыточное поступление тепла извне (экзогенное перегревание) или интенсивная патологическая теплопродукция в самом организме (эндогенное перегревание). Долго переносится не может.

Воспаление относится к числу наиболее распространённых типовых патологических процессов. Одновременно оно представляет собой защитно-приспособительную реакцию, эволюционно сформировавшуюся как способ сохранения целого организма ценою повреждения его части.

Несмотря на то, что термин воспаление является одним из наиболее старых и распространённых в медицине, имеется мнение об изъятии его из медицинской терминологии по причине трудности однозначной трактовки этого понятия.

Виды воспаления

По течению различают острые или хронические воспаления. Характер течения определяется реактивностью организма, а также природой повреждающего агента (флогогена), его силой и продолжительностью действия.

Острое воспаление отличается интенсивным течением и сравнительно небольшой (до 4-6 недель) продолжительностью. Оно сопровождается умеренно выраженной альтерацией и деструкцией тканей, экссудацией и пролиферацией в очаге повреждения при нормергическом (без предварительной сенсибилизации) характере воспаления. При гиперергическом (аллергическом) воспалении в очаге его доминируют альтерация и разрушение тканей.

Хроническое воспаление характеризуется более длительным течением - на протяжении многих лет и даже всей жизни пациента (лепра , туберулёз , ревматоидный артрит и др.). Хроническое воспаление может сопровождаться формированием гранулём (узелков), образованием фиброзной капсулы, развитием некроза в центре очага поражения.

В зависимости от характера преобладающих местных изменений различают экссудативное и пролиферативное (продуктивное) воспаление. Экссудативное воспаление характеризуется выраженным нарушением кровообращения и преобладанием процессов экссудации. По характеру экссудата выделяют серозное, гнойное, катаральное, фибринозное и геморрагическое воспаление. Пролиферативное воспаление протекает, как правило, хронически: преобладают явления размножения клеток гематогенного и гистиогенного происхождения.

Клиника воспалительного процесса

Всякое воспаление характеризуется местными и общими симптомами. Местные признаки воспаления включают:

  • Покраснение , которое связано с развитием артериальной гиперемии и артериализацией венозной крови в очаге воспаления.
  • Жар , обусловленный увеличенным притоком крови, активацией метаболизма, разобщением процессов биологического окисления.
  • Припухлость , возникающая вследствие развития экссудации и отёка, набухания тканевых элементов, увеличения суммарного диаметра сосудистого русла в очаге воспаления.
  • Боль , развивающаяся в результате раздражения нервных окончаний различными биологически активными веществами (БАВ) - гистамином, серотонином, брадикинином, сдвига реакции среды в кислую сторону, повышения осмотического давления и механического растяжения или сдавления тканей.
  • Нарушение функции воспалённого органа , связанное с расстройством его нейроэндокринной регуляции, развитием боли, структурными повреждениями.

Общие признаки воспаления :

  1. Изменение количества лейкоцитов в периферической крови - лейкоцитоз (развивается при подавляющем большинстве воспалительных процессов) или значительно реже лейкопения (например, при воспалении вирусного происхождения). Лейкоцитоз обусловлен активацией лейкопоэза и перераспределением лейкоцитов в кровеносном русле. К числу основных причин его развития относятся воздействие некоторых бактериальных токсинов, продуктов тканевого распада, а также ряда медиаторов воспаления, так называемых провоспалительных цитокинов, таких как интерлейкин-1, фактор индукции моноцитопоэза и др.
  2. Лихорадка развивается под влиянием поступающих из очага воспаления пирогенных факторов, таких как липополисахариды, катионные белки, интерлейкин-1. Лихорадка представляет собой адаптивную реакцию организма, способствующую повышению иммунного ответа .
  3. Изменение белкового профиля крови выражается в том, что при остром воспалительном процессе в крови накапливаются синтезируемые печенью белки острой фазы воспаления: С-реактивный белок, церулоплазмин, гаптоглобин, компоненты комплемента . Для хронического течения воспаления характерно увеличение в крови содержания α- и γ-глобулинов.
  4. Изменения ферментного состава крови выражаются в увеличении активности трансаминаз (аланинтрансаминазы при гепатите; аспартаттрансаминазы при миокардите и т.д.), гиалуронидазы, тромбокиназы.
  5. Увеличение скорости оседания эритроцитов (СОЭ) из-за снижения отрицательного заряда эритроцитов, повышения вязкости крови, агломерации эритроцитов, изменения белкового спектра крови, подъёма температуры.
  6. Изменения содержания гормонов в крови заключаются, как правило, в увеличении концентрации катехоламинов, кортикостероидов.
  7. Изменения в иммунной системе и аллергизация организма выражаются в нарастании титра антител, появлении сенсибилизированных лимфоцитов в крови, развитии местных и общих аллергических реакций.

Патогенез воспалительного процесса

Воспалительный процесс носит фазный характер. В его течении выделяют три последовательные стадии, выраженность которых может быть различна:

  • фаза альтерации (повреждения);
  • фаза экссудации (отёка);
  • фаза пролиферации.

Фаза альтерации может быть первичная и вторичная. Первичная альтерация вызывается непосредственным действием повреждающего агента. Для нее характерны ацидоз, снижение макроэргов, нарушение работы насосов, накопление недоокисленных продуктов, изменение pH, повышение проницаемости мембранных структур, набухание клетки.

Вторичная альтерация возникает в динамике воспалительного процесса и обусловлена как воздействием флогогенного агента, так и факторов первичной альтерации (в основном нарушениями кровообращения). Для неё характерно непосредственное воздействие лизосомальных ферментов (гидролазы, фосфолипазы, пептидазы, коллагеназы), их повреждающее влияние. Опосредованное действие оказывают медиаторы, система комплемента, кининовая система.

К основным проявлениям фазы альтерации можно отнести:

1. Нарушение биоэнергетических процессов в тканях . На повреждение отвечают все элементы поврежденной ткани: микроциркуляторные единицы (артериолы, капилляры, венулы), соединительная ткань (волокнистые структуры и клетки), тучные, нервные клетки. Нарушение биоэнергетики в этом комплексе проявляется в снижении потребления кислорода тканью, снижении тканевого дыхания. Повреждение митохондрий клеток является важнейшей предпосылкой для этих нарушений. В тканях преобладает гликолиз . В результате возникает дефицит АТФ, энергии (см. Цикл Кребса). Преобладание гликолиза ведёт к накоплению недоокисленных продуктов (молочной кислоты), возникает ацидоз . Развитие ацидоза, в свою очередь, приводит к нарушению активности ферментных систем, к дезорганизации метаболического процесса.

2. Нарушение транспортных систем в поврежденной ткани . Это связано с повреждением мембран, недостатком АТФ, необходимого для функционирования калий-натриевого насоса. Универсальным признаком повреждения любой ткани является выход калия из клеток, и задержка в клетках натрия. С задержкой натрия в клетках связано ещё одно тяжёлое или летальное повреждение - задержка в клетках воды, то есть внутриклеточный отёк. Выход калия способствует углублению процесса дезорганизации метаболизма , стимулирует процессы образования БАВ - медиаторов.

3. Повреждение мембран лизосом . При этом высвобождаются лизосомальные ферменты, спектр которых чрезвычайно широк. Фактически лизосомальные ферменты могут разрушать любые органические субстраты. Поэтому при их высвобождении наблюдаются летальные повреждения клеток. Кроме этого, лизосомальные ферменты, действуя на субстраты, образуют новые БАВ, токсически действующие на клетки, усиливая воспалительную реакцию - лизосомные флогогенные вещества.

Фаза экссудации включает сосудистые реакции, собственно экссудацию, миграцию и эмиграцию лейкоцитов, а также внесосудистые реакции (хемотаксис и фагоцитоз). Основными медиаторами данной фазы являются гистамин, кинины, серотонин и простагландины.

К сосудистым реакциям, характерным для данной стадии воспаления, можно отнести ишемию, артериальную, венозную и смешанную гиперемию, а также локальное прекращение движения крови по капиллярам (стаз).

Собственно экссудация заключается в выходе жидкости из сосудистого русла из-за увеличения проницаемости сосудистой стенки. Другими словами, происходит повреждение стенки сосудов (альтерация), округление эндотелиальных клеток и появление межклеточных щелей, раздвигание эндотелиальных клеток лейкоцитами, увеличение фильтрационного давления и площади фильтрации. Миграция лейкоцитов заключается в движении лимфоцитов и моноцитов через эндотелиальные клетки, не повреждая их; полиморфноядерные лейкоциты движутся через эндотелиальные щели.

Хемотаксис представляет собой движение клеток из сосуда в очаг воспаления по градиенту хемотаксинов. Фагоцитоз представляет собой активный захват и поглощение живых клеток и неживых частиц особыми клетками - фагоцитами.

Фагоцитоз, в свою очередь, включает следующие стадии:

  1. приближение (случайное и хемотаксис);
  2. контакт, распознавание и прилипание;
  3. поглощение;
  4. переваривание.

Фаза пролиферации - репаративная стадия воспаления или размножение клеток. Главные эффекторы репарации - фибробласты. Механизм данной фазы заключается в стимуляции пролиферации через синтез ДНК и митотическую активность.

В очаге воспаления фибробласты образуют и высвобождают коллаген и фермент коллагеназу, ответственный за формирование коллагеновых структур стромы соединительной ткани. Также они выделяют фибронектин - белок, участвующий в прикреплении клеток к коллагеновым субстратам, клеточной адгезии и др.

Для воспаления характерно такое свойство как аутохтонность - раз начавшись, воспаление протекает через все стадии до логического завершения, вне зависимости от того, продолжает ли действовать причинный фактор. То есть запускается каскадный механизм, когда предыдущая стадия порождает последующую.

Источники:
1. Воспаление (патофизиологические аспекты) / Ф.И. Висмонт. – Мн.: БГМУ, 2006.
2. Лекции по фармакологии для высшего медицинского и фармацевтического образования / В.М. Брюханов, Я.Ф. Зверев, В.В. Лампатов, А.Ю. Жариков, О.С. Талалаева - Барнаул: изд. Спектр, 2014.
3. Воспаление (Системные изменения в организме при воспалении. Хроническое воспаление) / Т.Е. Потемина, В.А. Ляляев, С.В. Кузнецова. Н. Новгород: Издательство НижГМА, 2010.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министерство здравоохранения Украины

Национальный фармацевтический университет

Кафедра фармакологии

Реферат на тему:

«Медиатор воспаления - брадикинин»

Выполнили:

Студентка 3курса

Бомбина Екатерина

Харьков-2010

Введение

Боль для пациентов - один из важнейших клинических признаков любого патологического процесса и одно из самых отрицательных проявлений болезни. В то же время своевременная и правильная оценка болевого синдрома помогает врачу составить представление о характере заболевания.

В понятие боли включаются, во-первых, своеобразное ощущение боли и, во-вторых, реакция на это ощущение, характеризующаяся определенной эмоциональной окраской, рефлекторными изменениями функций внутренних органов, двигательными безусловными рефлексами и волевыми усилиями, направленными на устранение болевого воздействия.

Реакция на боль чрезвычайно индивидуальна, так как зависит от влияния факторов, из которых основное значение имеют локализация, степень повреждения тканей, конституциональные особенности нервной системы, воспитание, эмоциональное состояние пациента в момент нанесения болевого раздражения.

Из всех видов чувствительности боль занимает особое место. В то время как другие виды чувствительности в качестве адекватного раздражителя имеют определенный физический фактор (тепловой, тактильный, электрический и пр.), боль сигнализирует о таких состояниях органов, которые требуют специальных сложных приспособительных реакций. Для боли нет единого универсального раздражителя. Как общее выражение в сознании человека боль вызывается разнообразными факторами в различных органах.

Кинины

В настоящее время кининам придают исключительно важное значение в происхождении болевого ощущения. Учение о медиаторах боли обогатилось не только новыми экспериментальными фактами, но и чрезвычайно важными теоретическими положениями.

Наши представления о болетворном действии гистамина потребовали пересмотра. Во всяком случае, он оказался не единственным (и даже не главным) медиатором боли.

Рис. 21. Интенсивность болевого ощущения при нанесении различных биологически активных веществ на дно кантаридинового пузыря . 1 -- ацетилхолина -- 10 -4 ; 2 -- ацетилхолина -- 5 10 -5 ; 3 -- свежей плазмы; 4 -- плазмы, постоявшей 4 мин. в стеклянной пробирке; 5 -- ацетилхолина -- 10 -3 ; 6-- серотонина -- 10 -6 ; 7 -- брадикинина -- 10 -6

Кинины -- сложные белковоподобные соединения -- полипептиды, называемые иногда кинин-гормонами, или местными гормонами. К кининам, непосредственно связанным с проблемой боли, относятся в первую очередь брадикинин, каллидин, а также и энтеротоксин, известный под названием субстанции Р . Кинины обладают чрезвычайно сильным действием на животный организм. Они расширяют сосуды, увеличивают скорость кровотока, снижают кровяное давление и, что особенно важно, вызывают боль при соприкосновении с химиорецепторами.

Вещества эти обнаруживаются в ядах некоторых змей, пчел, ос, скорпионов. Они образуются в плазме в процессе свертывания крови, содержатся в коже, железах, воспалительных эксудатах и т.д. Происхождение кининов довольно сложное. В крови содержатся предшественники кининов -- кининогены. Под влиянием специфических ферментов -- калликреинов -- кининогены превращаются в кинины. В нормальных физиологических условиях кинины быстро разрушаются особыми ферментами -- кининазами.

Наибольший интерес для проблемы боли представляет брадикинин. Это -- нонапептид, т.е. девятичленный пептид, в состав которого входит пять аминокислот: серин, глицин, фенилаланин, пролин и аргинин. Содержание брадикинина в плазме крови ничтожно. Не совсем ясно, какой цели служит брадикинин в организме, но тот факт, что он постоянно содержится в моче, говорит о его физиологической роли. Значение брадикинина в возникновении болевого ощущения не вызывает в настоящее время сомнений.

Каллидин

Другой болетворный кинин -- каллидин -- состоит из десяти аминокислот. Это -- декапептид. В моче каллидин отсутствует, так как быстро превращается в брадикинин. Брадикинин оказывает сильное влияние на сосудистую систему. В этом отношении он во много раз активнее гистамина. Как и гистамин, брадикинин резко повышает проницаемость сосудов. Если его ввести в толщу кожи, почти сразу возникает выраженный отек. Среди всех известных сосудорасширяющих веществ брадикинин является наиболее мощным. Но особенно сильно действует он на болевые рецепторы. Достаточно ввести в сонную артерию 0,5 мкг брадикинина, чтобы вызвать сильнейшую боль сначала в области щитовидной железы, затем в челюстях, висках и наружном ухе.

Как правило, особо острую боль испытывает человек, если ему вводят брадикинин в артерию. Введение в вену не столь эффективно, боль в этих случаях не так сильна и длится недолго. Мучительные боли возникают при образовании брадикинина и каллидина в воспалительных очагах. По-видимому, боль, которую мы испытываем при различных видах воспаления, связана с образованием кининов.

Раствор химически чистого брадикинина вызывает сильнейшее болевое ощущение при нанесении его на основание кантаридинового пузыря в разведении 10 -7 -- 10 -6 г/мл.

Если ввести брадикинин собаке в артерию, она начинает биться в лямках, стремится вырваться из рук экспериментатора, укусить его, она кричит, извивается, стонет. Кровяное давление повышается, дыхание учащается. Американский ученый Лим на Международном съезде физиологов в Токио в 1965 г. демонстрировал фильм, в котором показал действие брадикинина при введении его в артерию собаки. Все присутствовавшие в демонстрационном зале имели возможность наблюдать, какую мучительную боль испытывает при этом животное.

Внутрикожное введение брадикинина человеку также является причиной жгучей боли, которая наступает через 2--3 сек. после инъекции. Мы уже говорили о том, что плазма крови, постоявшая 5 мин. в стеклянной пробирке, при нанесении ее на дно кантаридинового пузыря, вызывает сильную боль. Боль эта вызвана брадикинином, образовавшимся при соприкосновении плазмы со стеклом. Но плазма, находившаяся в той же пробирке примерно 1,5 часа, уже боли не вызывает. Кинины разрушились под влиянием ферментов -- кининаз.

Образование кининов

Образование и распад кининов в человеческом организме тесным образом связаны с системой свертывания крови. Кининогены, предшественники кининов -- белки, образующиеся в печени,-- можно выделить из крови и тканей человека, а также всех видов животных, за исключением птиц. В плазме крови они содержатся в альфа-2-глобулиновой фракции. Под влиянием фермента калликреина кининогены превращаются в кинины. Однако активный калликреин в крови отсутствует. В плазме он находится в неактивной форме (калликреиноген), которая превращается в калликреин под влиянием одного из многочисленных факторов (фактора Хагемана), участвующих в сложном процессе свертывания крови. У животных, у которых фактор Хагемана отсутствует (например, у собаки), кинины при соприкосновении плазмы со стеклом не образуются.

Таким образом, кинины (брадикинин, каллидин и некоторые другие полипептиды) -- вещества, вызывающие боль (PPS -- pain promoting Substances),-- начинают свою жизнь в организме в ту минуту, когда звучит первый звонок, возвещающий о мобилизации свертывающей системы крови в сосудах или тканях, подвергшихся травме, удару, ранению, ожогу и т.д. Но оказывается, что образование их связано не только со свертыванием крови, но и с растворением образовавшихся сгустков фибрина. Фермент, растворяющий фибрин,-- плазмин -- также принимает участие в образовании кининов, активируя калликреиноген и превращая его в калликреин.

Почти тотчас же, когда целость тканей нарушается и кровь приходит в соприкосновение с участком, где только что произошла тканевая катастрофа -- в одних случаях ограниченная, в других обширная, начинается цепная реакция мобилизации кининообразующих факторов. Она протекает медленно, исподволь. Максимальное количество кининов обнаруживается лишь через 15-- 30 мин. И постепенно, по мере изменения химизма тканей, начинает усиливаться болевое ощущение. Требуется какое-то время для того, чтобы оно достигло вершины.

Люис показал, что воспаление, сопровождающееся болью, проходит в своем развитии две стадии. В первой накапливаются гистамин, серотонин, частично ацетилхолин, во второй -- кинины. При этом гистамин способствует активированию кининовой системы. Гистаминовая боль как бы переходит в кининовую. Эстафета переходит от одного алгогенного вещества к другому. Боль порождает боль.

Разумеется, организм не беззащитен перед грозным натиском кининов. Существует немало средств защиты, подавляющих, нейтрализующих, компенсирующих их действие. Так, из печени и околоушной железы быка удалось выделить препарат, инактивирующий калликреин и, следовательно, препятствующий превращению кининогенов в кинины. Препарат этот, названный тразилолом, нередко значительно смягчает тяжелые болевые ощущения, улучшает состояние больных и даже уменьшает число смертных случаев от шока, вызванного нестерпимыми болями. Некоторые авторы утверждают, что различные противоревматические препараты -- фенилбутазон, 2:6-дигидробензойная кислота, аспирин, салициловый натрий -- препятствуют превращению кининогенов в кинины.

Но каково же значение кининов в возникновении болевого синдрома при некоторых заболеваниях, причины которых подчас не могут разгадать самые опытные врачи?

Значение брадикинина в организме

Начнем с того, что брадикинин вызывает боль в разведении 10 -7 г/мл. Это соответствует 100 нанограммам, т.е. 1/10 000 000 г. При некоторых воспалительных процессах в суставах заполняющая их жидкость содержит в 1 мл в среднем 50 нанограммов брадикинина. По мере увеличения количества брадикинина или каллидина в суставной жидкости боль при ревматических поражениях становится все более и более интенсивной. Чем больше кининов, тем мучительнее боль. И это относится не только к суставам, а, по существу, ко всем органам и тканям нашего тела.

Казалось бы, достаточно нейтрализовать кинины -- в боль прекратится. Но, увы, болетворные вещества в организме не исчерпываются ни гистамином, ни серотонином, ни кининами. Природа изобретательна. Для нее боль -- средство самозащиты, линия обороны, сигнал опасности, во многих случаях предупреждение о роковом исходе. И природа не ограничивается двумя или тремя механизмами болевой сигнализации. Оборона должна быть надежной. Пусть лучше избыток, чем недостаток физиологических мер защиты.

Большое значение для возникновения боли имеет открытое в 1931 г. шведскими учеными Эйлером и Геддамом особое вещество, содержащееся в кишечнике и мозгу и названное субстанцией Р. По своему строению оно также принадлежит к полипептидам и состоит из нескольких аминокислот: лизина, аспарагиновой и глютаминовой кислот, аланина, лейцина и изолейцина. Оно близко к брадикинину, но по ряду химических свойств отличается от него.

Субстанция Р может быть выделена из желудочно-кишечного тракта. Но особенно богаты ею все отделы центральной нервной системы и задних (чувствительных) корешков спинного мозга. Меньше ее в передних корешках и периферических нервах.

При нанесении субстанции Р на основание кантаридинового пузыря в дозе 10 -4 г/мл возникает сильная боль. Особенно мучительный характер приобретает она при испытании очищенных препаратов.

Существует немало и других полипептидов, вызывающих боль. К ним относится ангиотензин -- вещество, образующееся при действии гормона почек (ренина) на глобулины плазмы. Болетворные свойства ангиотензина слабее, чем брадикинина. Но, как известно, ангиотензин обладает лишь побочными болевыми свойствами. Основное его действие -- повышение кровяного давления. Гормоны гипофиза -- окситоцин и вазопрессин -- также вызывают боль в очень высоких разведениях. Из воспалительных эксудатов было выделено болевое начало, получившее название лейкотоксина. К нему близко другое вещество -- некрозин, также обладающее алгогенными свойствами при введении в толщу кожи.

Этот беглый перечень болетворных соединений, образующихся в организме, далеко не полон. В процессе метаболизма, особенно нарушенного, патологического возникают различные химические соединения, способные вызвать боль.

Опыт показывает, что особенно острые боли испытывает больной в тех случаях, когда химические вещества попадают в брюшную полость. Гной, желчь, содержимое желудка и кишечника, моча, каловые массы, соприкасаясь с химиорецепторами брюшины, вызывают тяжкие боли в области живота и диафрагмы. Этим-то и объясняются внезапные, буквально невыносимые, как бы прокалывающие насквозь боли, когда содержимое желудка или кишечника (например при прободении язвы, при разрыве желчного пузыря, при перфоративном аппендиците) заливает брюшную полость. Боли эти нередко кончаются шоком, остановкой сердечной деятельности и внезапной смертью.

При прободении язвы желудка в брюшину изливается большое количество соляной кислоты. Это тоже может вызвать болевой шок. Такие же болевые ощущения возникают при разрыве мочевого пузыря, когда насыщенный солями раствор мочи проникает в полость живота. И желудочный сок, и моча, нанесенные на основание кантаридинового пузыря, вызывают мучительную боль. По шкале Кила она получает высший балл.

Но разнообразие болетворных веществ вовсе не ограничивается метаболитами, образующимися в самом организме. Каждый из нас испытывал боль при инъекции лекарственных веществ в кожу, в мышцу, даже в вену. Мы вскрикиваем от боли, когда нас кусают оса или пчела, Нам больно, если нас обжигает крапива.

Болетворные вещества содержатся в ядовитых и неядовитых выделениях различных насекомых, земноводных, рыб, а между тем это -- хорошо изученные химические соединения типа ацетилхолина, гистамина, серотонина. Во многих случаях мы испытываем боль потому, что различные ферменты, проникающие в наш организм при укусе, способствуют образованию кининов или других болетворных химических соединений. Иногда это оксидазы, липазы, дегидразы, нарушающие тканевое дыхание. Иногда токсины, напоминающие бактериальные. Иногда вещества, подавляющие действие ферментов. Иногда парализующие нервную систему яды.

Пчелиный яд содержит не только свободный гистамин в довольно высокой концентрации, но и вещества, освобождающие связанный гистамин в пораженной ткани жертвы нападения. Под влиянием яда сосуды расширяются, проницаемость их повышается, образуется отек. Немецкие ученые Нейман и Габерманн выделили из пчелиного яда две белковые фракции, способные вызвать боль. По-видимому, они действуют на свободные нервные окончания и вызывают характерную для укуса пчелы боль.

Осиный яд содержит не только гистамин, но и серотонин, а также сходное с брадикинином вещество, получившее название «осиного кинина». Оно способно вызвать острую жгучую боль, но не является ни брадикинином, ни каллидином.

Огромное количество ацетилхолина содержит яд шершня. В нем же обнаруживаются серотонин, гистамин, а также кинин, отличающийся по своим болетворным свойствам от осиного.

Интересно отметить, что змеиные яды, в особенности яд кобры, гадюки и некоторых других ядовитых змей, не содержат ацетилхолина, серотонина или гистамина. Змеиный укус вызывает мгновенную боль благодаря большому количеству калия и высокому содержанию в нем освободителей гистамина. Но основное болетворное действие змеиного яда связано с наличием в нем ферментов, реализующих образование кининов из кининогенов.

Раздражающее и жгучее действие крапивы также зависит от наличия в ней гистамина, серотонина и некоторых других, пока еще мало изученных веществ, способствующих освобождению гистамина из связанной формы.

Заключение

Брадикинин, являющийся одним из медиаторов боли, воспаления, играет важную роль в повышении проницаемости микрососудов. Именно он повышает проницаемость сосудов, вызывая «размыкание» краев их эндотелия и открывая тем самым путь плазме крови в очаг воспаления. Его образование - сложный биохимический процесс, в основе которого лежит взаимодействие ряда факторов. Изначально в процесс вступает фактор Хагемана - важный компонент системы свертывания крови. Проходя ряд последовательных изменений, он в конечном итоге превращается в протеазу каллекреин, который и отщепляет от высокомолекулярного белка биологически активный пептид брадикинин. Помимо участия в образовании брадикинина, фактор Хагемана индуцирует систему свертывания крови, что способствует изоляции очага воспаления, препятствуя распространению инфекции по организму.

Снижение артериального давления обусловлено в основном действием брадикинина и ацетилхолина. Биогенные амины и брадикинин повышают проницаемость сосудов так, что при аллергии во многих случаях развивается отек. Наряду с расширением сосудов в некоторых органах наблюдается их спазм. Так, у кроликов аллергическая реакция проявляется в виде спазма сосудов легких.

Биологически активные амины и кинины в нормальных условиях являются медиаторами болевой чувствительности. Все они вызывают боль, жжение, зуд при воздействии в очень малых количествах, могут влиять и на другие нервные рецепторы в кровеносном русле и тканях.

Кинины, серотонин и гистамин вызывают сокращение неисчерченной мышечной ткани бронхов.

Источники информации

1. http://oddandeven.narod.ru/Nauka_o_boli/ch06.htm

2. http://gastrosite.solvay-pharma.ru

3. http://asthmanews.ru/?p=1716

4. http://pathophysiology.dsmu.edu.ua

Подобные документы

    Схема выработки ренина и образования ангиотензина. Влияние этих ферментов на функцию почек и участие в распределении внутрипочечного кровотока. Характеристика кининов как эндогенных веществ, механизм их действия на почечную экскрецию натрия и воды.

    реферат , добавлен 09.06.2010

    Общая характеристика процесса воспаления. Изучение понятия, видов и типов эйкозаноидов. Рассмотрение особенностей участия данных гормоноподобных веществ местного действия в процессах воспаления и терморегуляции организма, организации защитной реакции.

    презентация , добавлен 19.11.2015

    Экзогенные и эндогенные факторы, патогенез воспаления. Нарушение обмена веществ в очаге воспаления. Физико-химические изменения в организме. Исследование механизма экссудации. Пролиферация клеток и эмиграция лейкоцитов. Плазменные медиаторы воспаления.

    презентация , добавлен 18.10.2013

    Не специфические показатели некроза и воспаления. Купирование болевого синдрома. Лечение отека легких. Предупреждение опасных аритмий сердца, лечение осложнений, виды реабилитации. Значение эхокардиографии для диагностики острого инфаркта миокарда.

    презентация , добавлен 21.03.2017

    Исследование клинических проявлений, причин, механизмов возникновения боли. Изучение принципов её профилактики и лечения. Принципы оценки боли. Основные причины острого болевого синдрома. Классификация хирургических вмешательств по степени травматичности.

    презентация , добавлен 09.08.2013

    Причины возникновения воспаления. Общее понятие об альтерации. Местные признаки воспаления. Изменение количества и качественного состава белков плазмы крови. Переход острого воспалительного процесса в хронический. Значение воспаления для организма.

    реферат , добавлен 11.03.2013

    Обобщение основных видов профессиональных заболеваний, обусловленных воздействием на органы дыхания промышленных пылевых аэрозолей. Изучение этиологии и методов профилактики таких заболеваний как пневмокониоз, силикоз, антракоз, асбестоз, бериллиоз.

    реферат , добавлен 29.11.2010

    Изучение основных видов патологии новорожденных. Обобщение факторов, предрасполагающих к родовой травме. Причины возникновения и методы лечения таких родовых травм как: опухоль, подкожные гематомы, кефалогематомы, кровоизлияния в мышцы, перелом ключицы.

    реферат , добавлен 15.12.2010

    Патогенетическая роль хронического системного воспаления в развитии атеросклероза. Содержание в крови маркеров воспаления. Уровень в крови СРП имеет высокую прогностическую значимость как маркер риска развития коронарного атеросклероза и у женщин.

    реферат , добавлен 20.03.2009

    Медиатор аллергических реакций немедленного типа и реакций воспаления. H1 и H2 гистаминовые рецепторы. Основные лекарственные средства, предназначенные для лечения кислотозависимых заболеваний желудочно-кишечного тракта. Резистентность к H2-блокаторам.

При обструктивных воспалительных процессах бронхов , формировании респираторного дистресс-синдрома взрослых отмечается увеличение в несколько раз содержания МБР в очаге воспаления. Наибольшую концентрацию этого соединения можно обнаружить В тканях при анафилаксии и атопических процессах. Имеются сведения о том, что при бронхиальной астме главный основной белок способен повреждать эпи-телиоциты бронхов и тем самым увеличивать выраженность воспалительного процесса. Его содержание в мокроте больных коррелирует со степенью тяжести бронхиальной астмы.

Выделяют плазменные, с молекулярной массой до 97 кДа, и тканевые калликреины , имеющие молекулярную массу 33-36 кДа. Калликреины, воздействуя на а, глобулины плазмы, способствуют образованию брадикинина и каллидина, состоящих соответственно из 9 и 10 аминокислотных остатков. Основная физиологическая роль компонентов калликреин-кининовой системы в норме связана с регуляцией тонуса и проницаемости сосудов микроциркуляторного русла. В условиях острого и хронического воспаления выраженное активирование компонентов этой системы сопровождается увеличением экссудативных процессов в очаге воспаления за счет повышения проницаемости сосудистой стенки и увеличения локального кровотока из-за сосудорасширяющего действия кининов.
Калликреин принимает активное участие в регуляции процессов фагоцитоза, оказывая влияние на хемотаксис нейтрофильных лейкоцитов.

Чрезмерное активирование компонентов калликреин-кининовой системы сопровождается усилением сосудистых воспалительных реакций, увеличением гидростатического давления,во внеклеточной среде, нарастанием отека ткани, ухудшением ее обеспечения кислородом и субстратами биологического окисления. Вследствие этого происходит перерастание компенсаторно-приспособительных реакций в патологические, результатом чего является увеличение зоны вторичной альтерации.

Из других факторов, избыточное активирование которых придает преимущественно патологическую направленность воспалительному процессу , следует отметить систему комплемента, лизосомальные ферменты, катионные белки, лимфокины и монокины.

Система комплемента оказывает влияние не течение всех стадий воспаления за счет как воздействия на альтерацию и экссудацию, так и фагоцитарную активность нейтрофилов и макрофагов, индукцию иммунного ответа. Например, С1 - приводит к усилению экссудативных процессов, СЗа и С5а - способствует увеличению проницаемости сосудистой стенки, активированию процессов высвобождения гистамина из тучных клеток, СЗ и С5 - активируют хемотаксис, С5 и С9 - обладают цитоклитической активностью.

Лизосомальные ферменты в очаге воспаления накапливаются в результате их высвобождения из лизосом нейтрофильных лейкоцитов, макрофагов и клеток поврежденной в ходе альтерации ткани. Выделяясь в значительном количестве в очаге воспаления, ферменты лизосом усиливают вторичную альтерацию, повреждают как внутриклеточные мембраны, так и плазмолемму. Гидролитическое расщепление компонентов базальной мембраны микрососудов и повреждение плазмолеммы эндотелиозцитов сопровождаются выраженным увеличением проницаемости сосудистой стенки и усилением экссудативных процессов.

Катионные белки выделяются в значительном количестве нейтрофильными лейкоцитами. Обладая широким спектром биологической активности, они воздействуют на все стадии воспалительного процесса. К основным их эффектам следует отнести повышение проницаемости сосудистой стенки, усиление экссудации, индукцию высвобождения гистамина тучными клетками.

В очаге воспаления отмечается увеличение концентрации лимфокинов и монокинов, оказывающих влияние на фагоцитоз, хемотаксис и пролиферативные процессы. Избыточное накопление этих веществ сопровождается усилением цитолитических процессов.

В последнее десятилетие появились сообщения о патогенетической роли окиси азота в развитии воспаления. В организме человека и животных окись азота синтезируется из аргинина в результате реакции, катализируемой NO-синтетазой окиси азота (синтетазы окиси азота - СОА).

L-аргинин + НАДФН2 + О2-» NO + L-цитруллин

Высокая активность синтетазы окиси азота определяется в эндотелиоцитах. Ее уровень коррелирует с содержанием в клетке комплекса Са-кальмодулин. Рост содержания в эндотелиоцитах окиси азота происходит при поступлении в цитозоль Са.

Предполагается, что к числу многочисленных свойств этого соединения следует отнести его участие в процессах межклеточного взаимодействия, регуляции сосудистого тонуса и проходимости бронхов.

Положительное действие окиси азота при воспалении, связанное с активированием его высвобождения из L-аргинина, заключается в антимикробных свойствах этого соединения и влиянии на процессы миграции полиморфноядерных лейкоцитов через стенку капилляра. При воспалении создаются условия для чрезмерного образования окиси азота. Ключевым механизмом этого процесса следует считать возрастание в очаге воспаления уровня активности синтетазы окиси азота, которая активируется в присутствии комплекса Са-кальмодулин. Возрастание в цитозоле свободного кальция при воспалении непременно должно сопровождаться ростом активности фермента, катализирующего синтез окиси азота. Чрезмерное накопление окиси азота клетками воспалительного очага приводит к иммунодепрессии, снижению устойчивости цитоплазматических мембран к гипоксическому воздействию. Токсические концентрации этого соединения приводят к необратимым нарушениям микроциркуляции, что негативно влияет на течение воспалительного процесса в целом.

По мере развития воспалительного процесса в его очаге происходит накопление биологически активных веществ, обладающих преимущественно противовоспалительными эффектами. Помимо окиси азота к ним следует отнести простациклин и аденозин.

Простациклин синтезируется эндотелиоцитами и имеет биологические эффекты, сходные с окисью азота. Рост концентрации этого соединения сопровождается снижением аггрегации тромбоцитов и улучшением за счет этого процессов микроциркуляции. В условиях наблюдаемого при воспалении активирования свободно-радикального окисления простациклин обладает протекторными свойствами, защищает цитоплазматические мембраны эндотелиоцитов от деструкции.

Воспаление (inflamatio) - выработанный в ходе эволюции типовой патологический процесс, в основе которого лежит местная реакция целостного организма на действие повреждающего (флогогенного) раздражителя, проявляющаяся на месте повреждения ткани или органа деструкцией клеток, изменениями кровообращения, повышением сосудистой проницаемости в сочетании с пролиферацией тканей.

Возникновение и развитие воспаления определяется двумя факторами - местным повреждением ткани или органа (альтерация) и реактивностью организма. Все факторы, способные вызвать местное повреждение и развитие воспаления, получили название флогогенных (греч. phlogosis - воспаление).

Этиология воспаления

Флогогенные факторы подразделяются на две основные группы: экзо- и эндогенные. К экзогенным факторам относятся механические, физические, химические, биологические, иммунологический конфликт, возникающий при действии аллергена на сенсибилизированный организм. К эндогенным флогогенам относят отложение солей, тромбоз, эмболию и др. Деление флогогенов на экзо- и эндогенные условное, ибо все так называемые эндогенные флогогены возникают в результате экзогенных влияний.

В зависимости от причины, вызывающей воспаление, последнее подразделяется на инфекционное, неинфекционное (асептическое) и аллергическое.

Признаки воспаления

При анализе развития воспаления можно выделить морфологические, физико-химические и клинические признаки (табл. 1).

Первые четыре клинических признака воспаления были описаны Цельсом (25 г. до н.э.- 45 г. н.э.). Пятый клинический признак добавлен Галеном (130-210 г. н. э.). Важный вклад в изучение физико-химических признаков воспаления внес Шаде; расстройства кровообращения, в том числе микроциркуляции и реологических свойств исследованы в работах Ю. Конгейма и советских ученых В. А. Воронина, А. М. Чернуха, Д. Е. Альперна и их учеников.

  • Альтерация и ее патофизиологические механизмы [показать] . Явления альтерации прогрессируют по мере формирования физико-химических арушений в очаге воспаления.

    Для понимания патогенеза воспаления важно знать, какие структуры органа или ткани повреждаются при действии флогогенных факторов. Четкому представлению об этом способствует концепция А. М. Чернуха о функциональном элементе органа. Согласно этой концепции, функциональный элемент представляет "пространственно ориентированный структурнофункциональный комплекс", в состав которого входят специализированные (например, печеночные, нервные, мышечные) соединительно-тканные клеточные элементы, кровеносное и лимфатическое микроциркуляторное русло, рецепторы, афферентные и эфферентные нервные проводники. Функциональный элемент регулируется нервной, эндокринной системами и гуморальными медиаторами. По современным представлениям регуляция его осущевтвляется преимущественно гуморальным путем.

    По мнению А. М. Чернуха, деятельность функционального элемента обусловлена наличием локальных и циркулирующих медиаторов. Локальные медиаторы образуются тучными клетками и тромбоцитами (гистамин, серотонин). Особое место занимают тромбоксаны и простагландины. Последние содержатся в неактивном состоянии в любой клетке (за исключением эритроцитов) и активируются при ее повреждении. Норадреналин и ацетилхолин, образующиеся в адрен- и холинэргических нервных окончаниях, также относятся к локальным медиаторам. В процессе жизнедеятельности выделяются также биологически активные вещества полиморфноядерными лейкоцитами, лимфоцитами, макрофагами.

    Циркулирующие медиаторы представлены кининами, фибринолитической системой и системой комплемента.

    При действии различных флогогенов на функциональный элемент органа возникают метаболические и структурные нарушения различной степени выраженности - от небольших и обратимых до обширных, приводящих к гибели клеток. Выделяют два патогенетических механизма острого летального повреждения клетки (А. М. Чернух, 1979) - нарушение транспортных систем и биоэнергетики клетки. Полагают, что даже длительное и значительное нарушение синтеза белка, нуклеиновых кислот без повреждения мембран не ведет к гибели клеток.

    Таким образом, при действии флогогенного фактора в первую очередь повышается проницаемость клеточных мембран и ее органелл (митохондрий, лизосом, эндоплазматического ретикулума). Калий выходит из клетки, а натрий и вода поступают в клетку и ее органеллы, следствием чего является их набухание. Набухание митохондрий сопровождается разобщением дыхания и окислительного фосфорилирования и снижением образования макроэргов, которые особенно необходимы для поддержания натрий-калиевого баланса в клетке. Последние изменения усугубляют нарушения электролитного обмена, и отечность клеток и ее органелл нарастает. Это ведет к разрыву мембран клеток, митохондрий, лизосом и поступлению из последних около 40 гидролитических ферментов, способных вызывать расщепление белков, жиров и углеводов. Лизируются мембраны органелл, ядра, что и ведет к фрагментации клетки.

    Большинство исследователей (А. Д. Адо, 1973; А. И. Струков, 1972; и др.) подчеркивают, что под влиянием воспалительного фактора (особенно в период формирования артериальной гиперемии) в пораженном участке повышается потребление кислорода, наблюдается увеличение обмена веществ и последующее его снижение по мере усугубления расстройств кровообращения. С указанных первичных альтеративных изменений и начинается острое воспаление.

  • Физико-химические нарушения в очаге воспаления [показать]

    В настоящее время показано важное значение в развитии воспаления нейтрофилов и макрофагов. Из них лизосомальные ферменты освобождаются не только при разрушении клеток, но и при действии на них С 3а и С 5а компонентов комплемента. При этом клетка не погибает. Медиаторы воспаления, иммунные комплексы в присутствии комплемента так же, как и комплемент, стимулируют процесс дегрануляции лизосом. В то же время ЦАМФ, колхицин, простагландин Н угнетают освобождение лизосомальных ферментов, тормозя, таким образом, дальнейшее развитие воспаления (А. Хорст, 1982).

    Хорошо известно, что в клетке содержится в 30 раз больше калия, чем в межклеточном пространстве, и поэтому при разрушении клеток в очаге воспаления нарастает количество калия и формируется такой физико-химический признак воспаления, как гиперкалиемия. Степень выраженности гиперкалиемии зависит от интенсивности повреждения клеток. Описаны увеличения калия в очаге воспаления в 10-20 раз (Шаде).

    В результате повышения активности гидролитических ферментов, а также возникающей позже вследствие нарушения микроциркуляции гипоксии и преобладания липолиза накапливаются кислоты-молочная, пировиноградная, аминокислоты, жирные кислоты и др. pH в очаге воспаления постепенно уменьшается, и развивается Н-гипериония. Гидролиз белков, жиров и углеводов и рост количества молекул в очаге воспаления обеспечивают увеличение осмотического давления.

    Распад клеточных элементов и возникающее позже повышение проницаемости и выход в очаг воспаления из кровеносного русла белков крови, несмотря на преобладание протеолиза за счет ферментов лизосом клеток, вызывают повышение онкотического давления в очаге воспаления.

    Сразу же после действия флогогенных факторов наряду с вышеописанными физико-химическими изменениями происходит накопление количества биологически активных веществ, оказывающих влияние на сосуды микроциркуляторного русла, клеточные реакции очага воспаления. Все медиаторы воспаления оказывают влияние на диаметр и проницаемость сосудов микроциркуляторного русла, на хемотаксис и фагоцитоз.

    Первыми медиаторами, образующимися при дегрануляции тучных клеток, базофилов и разрушении пластинок, являются гистамин и серотонин. Важным биологическим эффектом их является расширение сосудов, повышение проницаемости капилляров и венул. Гистамин выделяется только в начале воспаления (в течение часа), а затем исчезает.

    При повреждении флогогенными факторами эндотелия сосудов происходит активация XII плазменного фактора свертывания крови (фактора Хагемана) и ряда протеолитических ферментов (особенно плазмина), следствием чего является образование из α 2 -глобулина крови низкомолекулярных соединений, называемых кининами. Их представителями являются каллидин и брадикинин. Это типичные медиаторы воспаления, ибо, действуя на микрососудистое русло функционального элемента, расширяют сосуды, повышают их проницаемость и принимают участие в формировании болевого ощущения. Показано, что в сравнении с гистамином брадикинин в три раза сильнее повышает проницаемость и является самым мощным болевым агентом (А. Хорст, 1982).

    Активация ферментов крови при воспалении носит цепной и даже каскадный характер, при этом каждый последующий этап идет быстрее предыдущего, и реакция протекает по аутокаталитическому варианту. В этой связи приобретают важное значение ингибиторы. Дефицит ингибиторов воспаления может облегчать возникновение и утяжелять течение воспаления. Например, дефицит ингибитора С 1 комплемента или С 1 эстеразы ведет к чрезмерной активации системы комплемента с высвобождением анафилотоксина, гистамина и других медиаторов, повышающих проницаемость кровеносных сосудов (А. Хорст, 1982).

    Хорошо известно, что в любой клетке (кроме эритроцитов) содержатся в неактивном состоянии простагландины. При повреждении клеток происходит их активация. Медиаторную функцию при воспалении выполняют простагландины E 1 и Е 2 . Они образуются из арахидоновой и линолевой кислот под действием фермента простагландинсинтетазы. Простагландины очень нестойкие вещества и при прохождении через легкие теряют 98% своей активности.

    Некоторые простагландины тормозят агрегацию тромбоцитов, выделение из них серотонина, а также стимулируют образование ЦАМФ, что предотвращает дегрануляцию тучных клеток и выделение гистамина. Все эти реакции тормозят развитие воспаления. В плазме крови человека обнаружен естественный ингибитор простагландинов. Под влиянием глюкокортикоидов он активируется и, ингибируя синтез простагландинов, тормозит воспаление (А. Хорст).

    Анализируя образование медиаторов воспаления, исследователи считают, что на самых ранних этапах воспалительной реакции выделяются гистамин и серотонин, несколько позже за счет активации калликреин-кининовой системы образуются каллидин и брадикинин. Выделение простагландинов происходит на более поздних этапах воспаления.

    Наряду с вышеописанными при аллергическом воспалении образуются медленно реагирующее вещество анафилаксии (МРС-А) и вещество Р, вызывающие повышение проницаемости сосудов.

    Лейкоциты очага воспаления выделяют пептиды, получившие название лейкокининов, основным эффектом которых является повышение проницаемости сосудов и снижение системного артериального давления.

    Установлена важная роль комплемента в механизме воспаления. Активация комплемента происходит в очаге воспаления антителами крови и С-реактивным белком, образующимся при воспалении, а также веществами бактериального происхождения (липополисахариды, эндотоксины) и др. Активация системы комплемента представляет ферментативный процесс, вследствие чего на мембранах клеток образуются такие медиаторы воспаления, как С 2a , С 3a , С 5a , обладающие свойствами кининов, хемотаксиса, анафилатоксина; они освобождают лизосомальные ферменты и активируют фагоцитоз, и, в конечном итоге, активированный комплемент приводит к лизису клеток (А. Хорст, 1982).

    Кроме медиаторов, влияющих на процессы микроциркуляции, проницаемость сосудов и формирование боли, в очаге воспаления образуются медиаторы, стимулирующие хемотаксис и фагоцитоз. В последнее время показана исключительно важная роль ПМЯ-лейкоцитов в патогенезе воспаления, особенно в повышении проницаемости, некроза и кровоизлияний, что подтверждается торможением указанных эффектов в условиях лейкопении. Механизм патогенных эффектов связан с образованием в результате их дегрануляции катионных белков или полипептидов, протеаз, кининов, МРС-А.

    Катионные белки вызывают дегрануляцию тучных клеток. При фагоцитозе ПМЯ-лейкоциты выделяют фактор проницаемости. Кислые протеазы или катепсины лизосом ПМЯ-лейкоцитов и коллагеназа гидролизуют белки и преципитаты антиген - антитело с образованием активных полипептидов.

    В результате физико-химических изменений и особенно образования медиаторов воспаления происходят расстройства микроциркуляции и реологических свойств крови в очаге воспаления.

  • Нарушения микроциркуляции и гемореологии в очаге воспаления [показать]

    А. М. Чернух (1979), А. И. Струков (1982) выделяют три стадии расстройств кровообращения:

    • 1 стадия - кратковременный спазм и последующее формирование артериальной гиперемии;
    • 2 стадия - венозная гиперемия;
    • 3 стадия - стаз крови.

    Флогогенные факторы вызывают раздражение рецепторов функционального элемента и рефлекторное сокращение артериол и прекапиллярных сфинктеров, обеспечивая кратковременную ишемию (в течение 5-10 с до 5 мин.). Развитие ее обусловлено также действием катехоламинов и, вероятно, серотонина, выделяющегося из агрегированных в микрососудах тромбоцитов. Однако образующиеся очень быстро гистамин, кинины, простагландины и другие медиаторы воспаления расширяют артерии и артериолы и обеспечивают формирование артериальной гиперемии. Важная роль в развитии артериальной гиперемии и ее поддержании принадлежит изменению чувствительности α-адренорецепторов сосудов. По данным А. Н. Гордиенко (1955), Zweifach (1955), прекапиллярные сфинктеры сокращаются на аппликацию адреналина 1:25000. При воспалении же в связи с ацидозом, дизионией сосудосуживающий эффект сфинктеров снижается. Такое снижение реакции на адреналин и симпатические влияния способствует расширению артериол и прекапиллярных сфинктеров и формированию артериальной гиперемии воспалительного происхождения. Воспалительная гиперемия может развиваться также при раздражении рецепторов по типу аксон-рефлекса.

    Артериальная гиперемия характеризуется увеличением линейной и объемной скорости кровотока, количества функционирующих капилляров. Возрастает гидростатическое давление. Так, по данным Цвайфаха, кровяное давление увеличивается в мелких артериях на 35, артериолах - на 25, капиллярах - на 7, венулах - на 9 см водного столба. Увеличение притока крови, богатой кислородом, способствует усилению окислительно-восстановительных процессов и теплообразования. Поэтому в стадии артериальной гиперемии субъективно и объективно регистрируется повышение температуры в очаге воспаления.

    Медиаторы воспаления повышают проницаемость сосудов и выход в очаг воспаления воды и белков различного молекулярного веса в следующей последовательности: альбумины, глобулины, фибриноген. Этот процесс ведет к сгущению (гемоконцентрации), увеличению динамической вязкости и, следовательно, ухудшению текучести крови.

    В результате скопления жидкости, а позже и форменных элементов в ткани сдавливаются лимфатические и кровеносные сосуды, что затрудняет отток крови. Кроме того, в сосудах развивается агрегация форменных элементов, склеивание их и формирование сладжей. Параллельно с этим активируется свертывающая система крови с образованием тромбов и эмболов. Все эти изменения способствуют дальнейшему нарастанию динамической вязкости крови и ухудшению реологических свойств ее.

    Причиной образования микротромбов и кровоизлияний часто является прямое повреждение стенки сосудов, а также действие медиаторов (лизосомальных ферментов, трипсина, брадикинина, каллидина). Кровоизлияния в значительной степени являются следствием повреждения сосудов протеолитическими ферментами, особенно ПМЯ-лейкоцитов. Эритроциты покидают сосуды через межэндотелиальные пространства.

    В стадии венозной гиперемии нарушается отток крови из очага воспаления, следствием чего является уменьшение линейной и объемной скорости кровотока, дальнейшее нарастание гидростатического давления, развитие толчкообразного и маятникообразного движения крови, что связано с повышением сопротивления току крови. В конечном итоге происходит остановка (стаз) движения крови. Стаз первоначально регистрируется в отдельных капиллярах и венулах, в последующем он охватывает все больше сосудов.

    Позже всего стаз развивается в артериолах. В зависимости от тяжести воспаления стаз может быть кратковременным или сохраняться в течение часов и дней.

  • Экссудация [показать]

    Типы и характеристика эксудатов

    В зависимости от состава (качества и количества белков, форменных элементов) выделяют серозный, фибринозный, геморрагический, гнойный эксудат. Если каждый из перечисленных эксудатов инфицируется гнилостными микроорганизмами, то он превращается в гнилостный эксудат.

    • Серозный эксудат [показать]

      Серозный эксудат нередко образуется при воспалении серозных полостей организма (плевральной, брюшинной, оболочек мозга, яичек и т. д.), при котором нарушения проницаемости и эмиграция лейкоцитов проявляются нерезко. Это также наблюдается при аллергическом воспалении, укусах насекомых, при ожогах волдырной стадии и др. Удельный вес такого эксудата больше, чем 1,018, обнаруживаются белки типа альбуминов и глобулинов, pH снижается только до 7,2, количество лейкоцитов около 3000 в 1 мкл. Осмотическое давление, определяемое по точке замерзания, повышается (АС 0,6-1°). Если при воспалении накапливается много слизи, говорят о катаральном воспалении.

    • Фибринозный эксудат [показать]

      Образуется при дифтерии, скарлатине, дизентерии, когда проницаемость сосудов повышается более резко и в эксудате накапливается крупномолекулярный белок крови - фибриноген. В очаге воспаления от может свертываться с образованием фибриновой пленки.

    • Геморрагический эксудат [показать]

      Возникает при резком повреждении сосудистой стенки, что ведет к выходу из сосудов эритроцитов и образованию кровоизлияний. Геморрагический эксудат наблюдается при чуме, сибирской язве, феномене Шварцмана, Артюса.

    • Гнойное воспаление [показать]

      Возникает при обширных воспалительных процессах, особенно вызванных стрепто-, стафилококками и другими биологическими флогогенами. Образующиеся при этом хемотаксические вещества способствуют выходу большого количества лейкоцитов и лейкоцитарной инфильтрации. В результате резкого снижения pH многие полиморфноядерные лейкоциты гибнут, а при pH 6,7 гибнут все виды лейкоцитов. Из лизосом выделяется большое количество гидролитических ферментов, которые и вызывают лизис лейкоцитов, расщепление белков, жиров и углеводов. Возникает гнойное расплавление и образование гноя. В гное содержатся преимущественно нейтрофильные лейкоциты на различных стадиях разрушения. Они и представляют собой так называемые гнойные тельца. Гнойное воспаление характерно для фурункула, карбункула, флегмоны, абсцесса, эмпиемы. Гнойному воспалению могут подвергаться и слизистые оболочки. В гное нередко содержатся колонии микроорганизмов, грибки.

    Механизмы эксудации

    Эксудация - это выход жидкой части крови в очаг воспаления. Установлены две фазы повышения проницаемости (Г. 3. Мовэт, 1975).

    1. Мгновенно нарастающая проницаемость сосудов, обусловленная действием вазоактивных медиаторов.
    2. Поздняя (замедленная и продолжительная) сосудистая проницаемость (в течение часов), связанная с преимущественным действием ПМЯ-лейкоцитов.

    Гранулы их содержат ряд биологически активных веществ, которые освобождаются при дегрануляции и фагоцитозе. Процесс накопления ПМЯ-лейкоцитов и дегрануляции их длителен. Вот почему они и обеспечивают замедленную фазу повышенной сосудистой проницаемости. Поздняя фаза подавляется на фоне экспериментально воспроизведенной лейкопении.

    Эксудация в очаге воспаления обусловлена как прямым повреждением сосудов микроциркуляторного русла, так и эффектами медиаторов воспаления.

    Эксудация осуществляется тремя путями; через межэндотелиальные щели, размер которых увеличивается за счет сокращения микрофиорилл эндотелиальных клеток, через тело эндотелиальных клеток по специализированным каналам, а также микропинопитозом в виде активного проведения мельчайших капель через тело клетки. Чтобы подчеркнуть именно процесс проведения жидкости, предложен термин цитопемсис (клеточное всасывание или проведение, передача с помощью клеток). До настоящего времени остается не совсем ясным выход воды и растворов через базальную мембрану капилляров.

    По механизму развития эксудация обусловлена прежде всего эффектами медиаторов воспаления (гистамин, серотонин, кинины, простагландины и др.), а также ПМЯ-лейкоцитами. Важное значение имеет и увеличение гидростатического давления. Например, при застойных явлениях проницаемость повышается всего лишь на 2-4%, но в условиях воспаления сочетание с повышением проницаемости, вызванной медиаторами, является существенным фактором эксудации.

    На более поздних этапах воспаления эксудация обусловлена увеличением осмотического и онкотического давления в тканях.

    При эксудации вода, соли, мелкие молекулы (мол. масса 1000) свободно проходят через поры эндотелиальных клеток. Макромолекулы транспортируются в виде пиноцитозных пузырьков эндотелия или через межэндотелиальные щели.

    Важное значение в развитии воспалительного отека принадлежит лимфатическому микроциркуляторному руслу. Имеются непостоянные связи внесосудистых тканевых каналов интерстиция с терминальными лимфатическими капиллярами. При наполнении каналов межтканевой жидкостью они как бы опорожняются в межэдотелиальные отверстия, спадаются и отделяются от капилляров, а межэндотелиальные щели закрываются. Считают (А. И. Струков, 1983), что благодаря этому регулируется фильтрация, реабсорбция тканевой жидкости, белков, солей и поддерживается гомеостаз. При воспалении повреждается эндотелий первичных лимфатических капилляров. Это ведет к отхождению внесосудистых тканевых каналов от межэндотелиальных щелей, лимфа выходит в ткань. Таким образом, в раннем периоде формируется и остается выраженным до конца воспаления лимфатический отек.

    Начиная со стадии артериальной гиперемии и особенно в стадии венозной гиперемии и стаза лейкоциты покидают сосудистое русло. Выход лейкоцитов из сосудов в очаг воспаления называется эмиграцией лейкоцитов.

  • Эмиграция лейкоцитов [показать]

    Пути и механизмы эмиграции лейкоцитов . Еще И. И. Мечников, изучая последовательность выхода лейкоцитов, отметил, что первыми в очаге воспаления появляются полиморфноядерные лейкоциты, затем моно- и лимфоциты. Выходу лейкоцитов предшествуют пристеночное движение и пристеночное стояние лейкоцитов, наблюдаемые особенно отчетливо в стадии венозной гиперемии. Это явление объясняют снижением отрицательного заряда лейкоцитов, а также пристеночным микросвертыванием, в результате чего микрофибриллы тормозят движение лейкоцитов и способствуют их пристеночному стоянию.

    По современным данным, лейкоциты эмигрируют двумя путями: полиморфноядерные лейкоциты выходят через межэндотелиальные щели, а мононуклеары (моно- и лимфоциты) через тело эндотелиальных клеток. Последний процесс более длителен и в какой-то мере объясняет, почему мононуклеары позже появляются в воспаленном участке. Выход ПМЯ-лейкоцита продолжается 2-8 минут. Процесс эмиграции ПМЯ-лейкоцитов достигает наибольшей интенсивности через 6 часов (Г. 3. Мовэт, 1975; Е. Р. Кларк, Е. Л. Кларк, 1935). Мононуклеары начинают эмигрировать через 6 часов с максимумом их выхода через 24 часа после повреждения. Соотношение между полиморфноядерными лейкоцитами и мононуклеарами в динамике воспаления представлено на рисунке 1;

    Определенное влияние на последовательность эмиграции оказывает и pH очага воспаления. По данным Менкина, при pH, равной 7,4-7,2, накапливаются полиморфноядерные лейкоциты, при pH 7,0-6,8 - преимущественно моно- и лимфоциты. При pH 6,7 в очаге воспаления гибнут все лейкоциты с образованием гноя.

    Важное значение в эмиграции лейкоцитов принадлежит хемотаксису, т. е. наличию химической чувствительности, обеспечивающей направленное движение лейкоцита к чужеродному предмету или химическому веществу (положительный хемотаксис) или, наоборот, удаление от них (отрицательный хемотаксис) (И. И. Мечников). Формирование хемотаксических факторов происходит при взаимодействии антиген - антитело с образованием термолябильных компонентов комплемента С 3a и C 5a . Применение ингибиторов комплемента предотвращает повреждение сосудов и выход лейкоцитов. Хемотаксис стимулируется стрептокиназой. При этом в результате расщепления С 3a и C 5a образуются хемотаксические факторы молекулярной массой 6000 и 8500, а при активации С 5 , С 6 , С 7 - хемотаксические вещества с еще большим молекулярным весом.

    Хемотаксины появляются также при инфекционном воспалении за счет действия эндотоксинов, при механическом повреждении ткани. В этих случаях отмечено накопление хемотаксического фактора с молекулярным весом около 14000. Хемотаксины образуются также лимфоцитами и в результате распада белков, особенно γ-глобулинов. По мнению А. М. Чернуха (1979), хемотаксис может стимулироваться продуктами метаболизма тканей, бактерий, вирусов, а также рядом факторов плазмы крови (особенно ферментов калликреина и активатора плазминогена).

    Определенное значение в эмиграции лейкоцитов принадлежит изменению их заряда. По данным А. Д. Адо (1961), в крови лейкоциты имеют заряд 14,6 милливольт, а в очаге воспаления всего лишь 7,2 милливольт. Проникшие через эндотелий лейкоциты некоторое время задерживаются перед базальной мембраной и под действием, вероятно, ферментов, особенно коллагеназы, расщепляют участки базальной мембраны и попадают в очаг воспаления, накапливаясь там (А. И. Струков, 1982).

    Таким образом, в результате выхода воды, белков и форменных элементов образуется воспалительный эксудат. Эксудат является следствием только лишь воспалительного процесса.

  • Фагоцитоз в очаге воспаления [показать]

    Важным проявлением воспаления является фагоцитоз, описанный И. И. Мечниковым в 1882 году. Фагоцитоз (от греч. phagein - поглощать) заключается в поглощении и переваривании бактерий, продуктов повреждения и распада клеток. Фагоцитарную активность проявляют микрофаги (нейтрофильные лейкоциты) и макрофаги.

    Выделяют четыре стадии фагоцитоза:

    • 1-я стадия - приближение фагоцита к инородному предмету. Основу этого движения составляют явления хемотаксиса лейкоцитов. Направленному движению лейкоцитов способствует иммуно-1 адгеренция, т. е. образование комплекса антиген - антитело. В качестве антигенов в очаге воспаления выступают бактерии и вирусы с одновременной активацией компломепта С 3а и С5а и образованием хемотаксинов. Как уже говорилось, хемотаксические факторы возникают при повреждении другими флогогенными факторами.
    • 2-я стадия - прилипание фагоцита к объекту. Ему предшествует опсонизация. т. е. покрытие иммуноглобулинами М и G, и фрагментами комплемента С3, С5, С6, С7 бактерий и поврежденных частиц клеток, благодаря чему они приобретают способность прилипать к фагоциту. Процесс прилипания сопровождается усилением метаболической активности лейкоцитов, его аэробного и анаэробного гликолиза и повышением в 2-3 раза поглощения кислорода.
    • 3-я стадия - поглощение фагоцитируемого объекта путем инвагинации фагоцита и образования вакуоли - фагосомы. Образованию фагосомы предшествует повышение метаболизма с активацией НАДН-зависимой оксидазы, что обеспечивает синтез перекиси водорода. В результате дегрануляции лейкоцитов выделяются лизосомальные ферменты и бактерицидные белки. Перекись водорода распадается под влиянием пероксидаз с образованием активной молекулы кислорода, которая взаимодействует с компонентами мембраны клетки, разрушая ее путем перекисного окисления.
    • 4-я стадия - внутриклеточное расщепление и переваривание фагоцитрированных микробов и остатков поврежденных клеток (табл. 2).
    Таблица 2. Ферменты, содержащиеся в гранулах "профессиональных фагоцитов"
    (по А. М. Чернуху, 1979)
    Название фермента ПМЯ-лейкоцит Мононуклеарный фагоцит
    Протеазы:
    катепсины + +
    гистоназа +
    лейкопротеаза +
    коллагеназа + +
    эластаза + +
    Карбогидразы:
    лизоцим + +
    β-глюкуронидаза + +
    гиалуронидаза +
    Липазы:
    кислая липаза + +
    фосфолипаза + +
    РНК-аза + +
    ДНК-аза + +
    кислая фосфотаза + +
    щелочная фосфотаза + +
    Неферменты:
    катионные белки + -
    лейкоцитарный пироген + -
    мукополисахариды + -

    Перевариванию подвергаются только погибшие микробы и клетки. Фагоцитоз осуществляется с помощью гидролитических ферментов (протеазы, карбогидразы, липазы и др.). Наряду с перевариванием инородных объектов и поврежденных клеток под влиянием гидролитических ферментов, выделившихся в фагосому, гибнут и сами фагоциты, являясь источником образования гноя, а продукты разрушения стимулируют процессы пролиферации в очаге воспаления.

    В зависимости от локализации очага воспаления возможно участие различных макрофагов. В соединительной ткани это гистиоциты, в печени - клетки Купфера, в легких - альвеолярные фагоциты, в лимфатических узлах и селезенке - свободные и частично фиксированные макрофаги, в серозных полостях - перитонеальные и плевральные макрофаги, в костной ткани - остеокласты, нервной системе - микроглиальные клетки. Все перечисленные макрофаги являются производными стволовой кроветворной клетки монобластного ряда и обладают высокой фагоцитарной активностью. Считают, что макрофаги воспалительного эксудата накапливаются за счет эмиграции моноцитов (А. И. Струков, 1982). Макрофаги осуществляют фагоцитоз аналогично нейтрофилам и обладают способностью секретировать в очаг воспаления лизосомальные ферменты, плазмин, коллагеназу, эластазу, лизоцим, белки комплемента, интерферон и др. Показано, что моноциты имеют на своей мембране рецепторы для IgG и комплемента, которые после фагоцитоза исчезают и снова появляются через несколько часов. Мембрана моноцитов способна связываться также и с цитофильными антителами (IgE). Макрофагам принадлежит важнейшая роль в очищении очага воспаления от погибших клеток и разрушении веществ антигенной природы, а также в формировании иммунного ответа.

    Исключительное значение фагоцитоза в патогенезе воспаления выявляется особенно отчетливо при его нарушении, ибо даже cлабовирулентные микроорганизмы могут вызывать сепсис. Фагоцитоз в этом случае носит характер незавершенного, и микробы, поступая с лейкоцитами из очага воспаления в различные органы, обеспечивают явление сепсиса. При наследственной энзимопатии, обусловленной рецессивным геном, сцепленным с Х-хромосомой, отмечено снижение активности НАДН-зависимой оксидазы и, как, следствие, дефицит образования перекиси водорода (Н 2 О 2) и, в конечном итоге, не может образовываться активная молекула кислорода. Мембрана бактериальной клетки не повреждается. Фагоцитоз остается незавершенным. Это и ведет к хроническому воспалению, особенно в легких, к деструкции ткани и гибели организма. Нарушения фагоцитоза обнаружены при циррозе печени, гломерулонефрите, что обусловлено активацией ингибиторов хемотаксиса недостаточной эмиграцией лейкоцитов, они могут явиться причиной хронического воспаления или даже сепсиса. Торможение фагоцитоза обнаруживается при сахарном диабете, гиперкортицизме, патологии щитовидной железы.

  • Пролиферация в очаге воспаления [показать]

    В результате эмиграции лейкоциты накапливаются в очаге воспаления, и это явление получило название воспалительного инфильтрата. Лейкоциты выполняют фагоцитарную функцию в течение нескольких часов, а затем погибают. Вначале гибнут нейтрофилы, а позже и макрофаги, но последние до гибели обеспечивают очищение за счет фагоцитоза очага воспаления от микроорганизмов. При гибели клетки выделяют вещества, способные стимулировать пролиферацию клеток. Они получили название трефонов. Под влиянием трефонов начинают размножаться фибробласты, эндотелиальные клетки, которые и образуют так называемую грануляционную ткань, исходом которой и является формирование соединительно-тканного рубца. Тем более что многие специализированные клетки (печеночные, мышечные, нервные) обычно не регенерируют, и поэтому одним из наиболее частых исходов воспаления может быть замещение поврежденных при воспалении клеток зрелой волокнистой соединительной тканью, а в нервной системе глиальными клетками. Таким образом, одним из исходов воспаления является образование рубца.

    Если альтернативные изменения при действии флогогенного фактора незначительные, то воспалительный процесс может завершиться полным восстановлением морфологии и функции органа. Если воспаление (например, легких, печени, мозга, почек) сопровождается нарушениями в организме, несовместимыми с жизнью, то это завершается его гибелью.

Общий патогенез воспаления представлен на схеме 18.

Происхождение клинических признаков воспаления

  • Покраснение (rubor)- обусловлено развитием артериальной гиперемии, увеличением притока крови с повышенным содержанием кислорода, увеличением количества функционирующих капилляров.
  • Припухлость (tumor) - объясняется артериальной и венозной) гиперемией, эксудацией, эмиграцией лейкоцитов.
  • Жар (calor) - обусловлен усилением обмена веществ на ранних стадиях воспаления, притоком крови с более высокой температурой (особенно при воспалении кожи и слизистых, усилением теплоотдачи за счет гиперемии).
  • Боль (dolor) - вызывается раздражением рецепторов в очаге воспаления медиаторами воспаления (особенно кининами и простагландинами, изменением pH, осмотического давления, дизионией, механическим раздражением рецепторов в результате припухлости в очаге воспаления).
  • Нарушение функции (functio laesa). При воспалении отмечены повреждение клеток, нарушение обмена веществ, кровообращения, накопление медиаторов воспаления, изменения электролитного баланса, pH, осмотического и онкотического давления, процессы пролиферации. В этих условиях осуществление функции компонентами функционального элемента, а следовательно, и органа невозможно.

Экспериментальные модели воспаления

В условиях эксперимента можно воспроизвести воспаление при действии любого флогогенного фактора.

  • Инфекционное воспаление моделируется подкожным, внутримышечным, внутриполостным введением живых или автоклавированных кишечной, брюшнотифозной палочек, стрепто-, стафилококка и других микроорганизмов.
  • Асептическое воспаление вызывается введением подкожно или внутримышечно скипидара, бензина, керосина и других веществ.
  • Аллергическое (иммунное) воспаление моделируется более сложно. Животное (кролик, собака, морская свинка) предварительно сенсибилизируется трехкратным введением (подкожно, внутривенно, подкожно) с интервалом в 24 часа сыворотки (бычьей, лошадиной) или двукратно подкожным введением БЦЖ. Через 2-3 недели за счет иммунологических сдвигов наступает максимальная выраженность сенсибилизации. Введение в это время аллергена подкожно, внутримышечно или в любой орган способствует иммунологическому конфликту, что и является причиной аллергического воспаления.

    Для моделирования аутоаллергических воспалительных процессов экспериментальным животным вводят экстракты органов (сердце, почки, мозг) в чистом виде или с наполнителем Фреунда. Именно таким образом происходит моделирование поражений сердца, мозга, почек и других органов.

Реактивность и воспаление

Возникновение и развитие воспаления, а также его исход определяются реактивностью организма. В частности, важное значение в формировании воспаления имеет функциональное состояние нервной системы. В состоянии сна, зимней спячки животных воспаление, хотя и развивается, но менее выражено, ибо ослабляются сосудистые реакции, эксудация и эмиграция лейкоцитов. Описана возможность воспроизведения воспаления у людей с явлениями покраснения и припухлости путем гипнотического внушения. Роль симпатического и парасимпатического отделов вегетативной нервной системы в патогенезе воспаления показана в работах Д. Е. Альперна. Десимпатизация вызывалась у собак справа в поясничной области. Спустя десять дней моделировали воспаление на внутренней стороне обоих бедер путем прикладывания к коже на три минуты плоскодонных пробирок одинакового диаметра с кипятком. На стороне десимпатизации воспаление было выражено сильнее, но меньше было некротических изменений, а процесс заживления наступал раньше (на 4-5 дней) по сравнению с контрольным участком. Аналогичный эффект наблюдался при введении ацетилхолина. При раздражении симпатических нервов воспаление протекает вяло и более длительно. Установлено также торможение воспаления при введении адреналина и симпатомиметика - тетра-гидро-β-нафтил амина.

Эндокринная система, являясь важным механизмом реактивности, также существенно влияет на воспаление. В клубочковой зоне коры надпочечников образуется минералокортикоид альдостерон, который при избыточной секреции изменяет водно-электролитный баланс организма, усиливает и ускоряет течение воспаления, что проявляется в повышении проницаемости сосудов, эксудации, эмиграции и фагоцитозе, пролиферации клеток. Избыточное образование тироксина и трийодтиронина в щитовидной железе и связанное с этим усиление окислительно-восстановительных реакций ускоряет воспаление. Таким образом, альдостерон и гормоны щитовидной железы при их избыточном образовании обладают провоспалительным действием. Наоборот, избыточное введение извне или гиперсекреция в организме глюкокортикоидов оказывает противовоспалительный эффект, ибо эти вещества уменьшают проницаемость мембран, тормозят эксудацию и эмиграцию лейкоцитов, фагоцитоз, образование медиаторов воспаления, угнетают иммунитет в результате торможения митозов, в том числе лимфоидных клеток, и приводят к инволюции тимико-лимфатической системы. Инсулин сам по себе не оказывает существенного влияния на воспаление, но в условиях его дефицита (например, при сахарном диабете) активируются контринсулярные гормоны, особенно глюкокортикоиды. При этом ослабляется иммунитет и часто возникают грибковые и инфекционные заболевания, особенно фурункулез, который нередко заканчивается летальным исходом. Глюкокортикоиды при этом также тормозят пролиферативные процессы в очаге воспаления.

Недостаточная эффективность иммунологических механизмов у детей и в старческом возрасте, угнетение иммунитета иммунодепрессантами, голодание являются причиной недостаточности воспаления, в результате чего инфекционные процессы протекают атипично или, как в детском возрасте, заканчиваются формированием древней формы инфекционного процесса - сепсисом. Поэтому образование любого гнойного очага на коже ребенка требует немедленного лечения (Н. Т. Шутова, Е. Д. Черникова, 1975).

Общие реакции при воспалении

В зависимости от интенсивности и локализации воспаление может сопровождаться общими реакциями в виде нарушений нервной и эндокринной систем, в том числе симпато-адреналовой и гипоталамо-гипофизарно-надпочечниковой системы, развитием лихорадки, лейкоцитоза, изменением обмена веществ в организме. Обычно при воспалении в результате участия макрофагов в резорбции чужеродных антигенов стимулируется иммунитет. В конечном итоге возможно нарушение функций различных органов и систем организма.

Биологическое значение воспаления

С общебиологической точки зрения воспалительная реакция выработана в ходе эволюции и поэтому является защитно-приспособительной. Уже то, что на смену древней форме инфекционного процесса - сепсису сформировался местный инфекционный процесс в виде воспаления, свидетельствует о защитной роли очага воспаления. Фиксация в очаге воспаления биологических возбудителей происходит вследствие расстройств крово- и лимфообращения в результате фагоцитоза, иммунологических реакций, а также бактерицидного действия эксудата и ферментов на микроорганизмы, которые погибают и резорбируются. Кроме этого, необходимо учесть резко повышенную проницаемость сосудов, в результате чего микроорганизмы и чужеродные вещества могут интенсивно выделяться в очаг воспаления и подвергаться там уничтожению и резорбции. Наконец, защитное значение очага воспаления проявляется и в том, что за счет происходящих в очаге воспаления прилиферации и регенерации осуществляется восстановление функционального элемента, хотя бы даже за счет рубца. В то же время альтерация в очаге воспаления ведет к нарушению специализированных клеточных элементов, которые обычно не регенерируют и замещаются фиброзной тканью с нарушениями функций ткани или органа. Поэтому при воспалении часто используются для лечения противовоспалительные средства.

Общие принципы патогенетической терапии воспаления

Воспаление представляет собой цепь причинно-следственных отношений, где предыдущее звено влияет на последующее и в конечном итоге на пролиферацию, следствием которой является формирование рубцовых (фиброзных) изменений. Поэтому используемые для лечения противовоспалительные средства могут оказывать влияние на одно или несколько звеньев патогенеза воспаления (стабилизацию мембран лизосом, торможение образования медиаторов воспаления, проницаемости сосудов, эмиграции, фагоцитоза и даже пролиферации), ингибируя, таким образом, воспаление в целом.

В зависимости от характера воспаления используется специфическая и неспецифическая терапия. Первая направлена на уничтожение биологического возбудителя (антибиотики, лечебные сыворотки, противотуберкулезные средства и др.), которые обладают как бактерицидным действием, так и, являясь составной частью обмена веществ микроорганизма, нарушают его жизнедеятельность, облегчая разрушение и фагоцитоз. Поэтому уничтожение микроорганизмов или предотвращение действия аллергена являются одной из важных задач в профилактике и лечении инфекционного и аллергического воспаления.

К неспецифическим воздействиям относится влияние измененной температуры, раздражающих веществ на воспаление. Тепло (сухое и влажное, горячий парафин, ультразвук), а также раздражающие средства (горчичники, банки, смазывание скипидаром, йодом) улучшают крово- и лимфообращение, увеличивают гиперемию, эксудацию, эмиграцию лейкоцитов, фагоцитоз, что обеспечивает усиление и ускорение воспаления. Холод, наоборот, тормозит вышеназванные звенья патогенеза воспаления и таким образом угнетает его интенсивность.

Противовоспалительное действие антигистаминных препаратов обусловлено торможением мобилизации или блокадой рецепторов гистамина обменных сосудов, вследствие чего тормозится расширение сосудов и проницаемость, особенно венул.

По мнению А. Поликара (1969), А. М. Чернуха (1979), аспирин, амидопирин, фенилбутазон стабилизируют мембраны лизосом и тормозят образование медиаторов - кининов, простагландинов серотонина, гистамина, фактора проницаемости. Более сильным антивоспалительным действием обладают индометацин и бруфен, которые действуют в 10-30 раз эффективнее фенилбутазона и аспирина. Кроме того, аспирин, фенилбутазон, индометацин предотвращают денатурацию белка и обладают антикомплементарной активностью. Ряд противовоспалительных веществ типа флавоноидов (рутин, венорутон и др.) снижают проницаемость сосудов, улучшают реологию крови и венозное кровообращение.

Для лечения воспаления, особенно аллергического, широко используются глюкокортикоиды, ибо они обеспечивают стабилизацию мембран лизосом, снижение проницаемости, эксудации и эмиграции лейкоцитов, фагоцитоза, угнетают иммунитет и пролиферацию клеток в очаге воспаления, это в целом тормозит воспаление и в то же время является причиной вялого заживления ран. Учитывая указанные выше эффекты, глюкокортикоиды наиболее широко используются при аллергическом воспалении. Иммунодепрессанты (алкилирующие соединения, циклофосфамид, 6-меркаптопурин и др.), тормозя митоз и угнетая иммунитет, подавляют воспаление, особенно аллергическое.

Широкое применение в лечении воспаления нашли протеолитические ферменты - пепсин, трипсин, хемотрипсин. Они наиболее эффективно очищают раневую поверхность и таким образом ускоряют заживление ран и их грануляцию. Наоборот, антипротеазные препараты - ε-аминокапроновая кислота, тразилол, иникрол и другие обладают противовоспалительным действием.

Таким образом, основу патогенетической терапии воспаления составляет подавление или стимуляция одного или нескольких звеньев патогенеза воспаления.

Источник : Овсянников В.Г. Патологическая физиология, типовые патологические процессы. Учебное пособие. Изд. Ростовского университета, 1987. - 192 с.