Регистрация заряженных частиц. Методы регистрации заряженных частиц Для изучения ядерных явлений были разработаны многочисленные методы регистрации элементарных частиц и излучений

Методы регистрации заряженных частиц

І. Ознакомьтесь с теоретическим материалом.

Для изучения ядерных явлений были разработаны многочисленные методы регистрации элементарных частиц и излучений. Рассмотрим некоторые из них, которые наиболее широко используются.

1) Газоразрядный счётчик Гейгера

Счётчик Гейгера - один из важнейших приборов для автоматического счёта частиц. Счётчик состоит из стеклянной трубки, покрытой изнутри металлическим слоем (катод), и тонкой металлической нити, идущей вдоль оси трубки (анод).

Трубка заполняется газом, обычно аргоном. Действие счётчика основано на ударной ионизации. Заряженная частица (электрон, Υ-частица и т.д.), пролетая в газе, отрывает от атомов электроны и создаёт положительные ионы и свободные электроны. Электрическое поле между анодом и катодом (к ним подводится высокое напряжение) ускоряет электроны до энергии, при которых начинается ударная ионизация. Возникает лавина ионов, и ток через счётчик резко возрастает. При этом на нагрузочном резисторе R образуется импульс напряжения, который подаётся в регистрирующее устройство. Для того чтобы счётчик мог регистрировать следующую попавшую в него частицу, лавинный разряд необходимо погасить. Это происходит автоматически.

Рис. 1

Счётчик Гейгера применяется в основном для регистрации электронов и Y-квантов (фотонов большой энергии).Однако непосредственно Y-кванты вследствие их малой ионизирующей способности не регистрируются. Для их обнаружения внутреннюю стенку трубки покрывают материалом, из которого Y-кванты выбивают электроны.

Счётчик регистрирует почти все попадающие в него электроны; что же касаетсяY- квантов, то он регистрирует приблизительно только один Y-квант из ста. Регистрация тяжёлых частиц (например, Ј-частиц) затруднена, так как сложно сделать в счётчике достаточно тонкое «окошко», прозрачное для этих частиц.

2) Камера Вильсона

Действие камеры Вильсона основано на конденсации перенасыщенного пара на ионах с образованием капелек воды. Эти ионы создаёт вдоль своей траектории движущаяся заряженная частица.

Прибор представляет собой цилиндр с поршнем 1 (рис. 2), накрытый плоской стеклянной крышкой 2. Рабочий объем камеры заполнен газом, который содержит насыщенный пар. При быстром перемещении поршня вниз газ в объеме адиабатически расширяется и охлаждается, при этом становясь перенасыщенным. Когда в этом пространстве пролетает частица, создающая на своем пути ионы, то на этих ионах образуются капельки сконденсировавшегося пара. В камере возникает след траектории частицы (трек) в виде полоски тумана (рис.3), который можно наблюдать и фотографировать. Трек существует десятые доли секунды. Вернув поршень в исходное положение и удалив ионы электрическим полем, можно вновь выполнить адиабатное расширение. Таким образом, опыты с камерой можно проводить многократно.

Рис. 3

Если камеру поместить между полюсами электромагнита, то возможности камеры по изучению свойств частиц значительно расширяются. В этом случае на движущуюся частицу действует сила Лоренца, что позволяет по искривлению траектории определить значение заряда частицы и ее импульс. На рисунке 4 приведен возможный вариант расшифровки фотографии треков электрона и позитрона. Вектор индукции В магнитного поля направлен перпендикулярно плоскости чертежа за чертеж. Влево отклоняется позитрон, вправо - электрон.

3) Пузырьковая камера

Отличается от камеры Вильсона тем, что перенасыщенные пары в рабочем объеме камеры заменяются перегретой жидкостью, т.е. такой жидкостью, которая находится под давлением, меньшим давления ее насыщенных паров.

Пролетая в такой жидкости, частица вызывает возникновение пузырьков пара, образуя тем самым трек (рис.5).

В исходном состоянии поршень сжимает жидкость. При резком понижении давления температура кипения жидкости оказывается меньше температуры окружающей среды.

Жидкость переходит в неустойчивое (перегретое) состояние. Это и обеспечивает появление пузырьков на пути движения частицы. В качестве рабочей смеси применяются водород, ксенон, пропан и некоторые другие вещества.

Преимущество пузырьковой камеры перед камерой Вильсона обусловлено большей плотностью рабочего вещества. Пробеги частиц вследствие этого оказываются достаточно короткими, и частицы даже больших энергий застревают в камере. Это позволяет наблюдать серию последовательных превращений частицы и вызываемые ею реакции.

ІІ. Используя теоретический материал и ресурсы Internet, заполните таблицу.

Ответы запишите на двойном листе,расположив его горизонтально.

Устройство

Информация о частице

Тип частиц

Преимущества

Недостатки

Открытия, сделанные с использованием прибора

Газоразрядный счётчик Гейгера

Камера Вильсона

Пузырьковая камера

ІІІ. Запишите полные ответы на вопросы.

  1. На рисунке показана траектория движения частицы в камере Вильсона, помещенной в магнитное поле, направленное так, как показано на рисунке.
  • Определите знак заряда частицы, запишите какое правило использовали.
  • Почему отклоняется частица?

2. В камере Вильсона и пузырьковой камере создаётся магнитное поле. Для чего это делается?

Методы регистрации и Детекторы частиц

§ Калориметрический (по выделяемой энергии)

§ Фотоэмульсионные

§ Пузырьковые и искровые камеры

§ Сцинтилляционные детекторы

§ Полупроводниковые детекторы

Сегодня кажется почти неправдоподобным, сколько открытий в физике атомного ядра было сделано с использованием природных источников радиоактивного излучения с энергией всœего лишь несколько МэВ и простейших детектирующих устройств. Открыто атомное ядро, получены его размеры, впервые наблюдалась ядерная реакция, обнаружено явление радиоактивности, открыты нейтрон и протон, предсказано существование нейтрино и т.д. Основным детектором частиц долгое время была пластинка, с нанесенным на нее слоем сернистого цинка. Частицы регистрировались глазом по производимым ими в сернистом цинке вспышкам света. Черенковское излучение впервые наблюдалось визуально. Первая пузырьковая камера, в которой Глезер наблюдал треки -частиц была величиной с наперсток. Источником частиц высоких энергий в то время были космические лучи - частицы, образующиеся в мировом пространстве. В космических лучах впервые наблюдались новые элементарные частицы. 1932 год - открыт позитрон (К. Андерсон), 1937 год - открыт мюон (К. Андерсон, С. Недермейер), 1947 год - открыт -мезон (Пауэл), 1947 год - обнаружены странные частицы (Дж. Рочестер, К. Батлер).

Со временем экспериментальные установки становились всœе сложней. Развивалась техника ускорения и детектирования частиц, ядерная электроника. Успехи в физике ядра и элементарных частиц всœе в большей степени определяются прогрессом в этих областях. Нобелœевские премии по физике часто присуждаются за работы в области техники физического эксперимента.

Детекторы служат как для регистрации самого факта наличия частицы так и для определœения её энергии и импульса, траектории движения частицы и др.
Размещено на реф.рф
характеристик. Для регистрации частиц часто используют детекторы которые максимально чувствительны к регистрации определœенной частицы и не чувствуют большой фон создаваемый другими частицами.

Обычно в экспериментах по физике ядра и частиц крайне важно выделять "нужные" события на гигантском фоне "ненужных" событий, должна быть одно из миллиарда. Для этого используют различные комбинации счётчиков и методов регистрации, используют схемы совпадений или антисовпадений между событиями, зарегистрированными различными детекторами, отбор событий по амплитуде и форме сигналов и т.п. Часто используется селœекция частиц по их времени пролёта определённого расстояния между детекторами, магнитный анализ и другие методы, которые позволяют надёжно выделить различные частицы.

Регистрация заряженных частиц основана на явлении ионизации или возбуждении атомов, ĸᴏᴛᴏᴩᴏᴇ они вызывают в веществе детектора. На этом основана работа таких детекторов как камера Вильсона, пузырьковая камера, искровая камера, фотоэмульсии, газовые сцинтилляционные и полупроводниковые детекторы. Незаряженные частицы (-кванты, нейтроны, нейтрино) детектируются по вторичным заряженным частицам, возникающим в результате их взаимодействия с веществом детектора.

Нейтрино непосредственно не регистрируются детектором. Οʜᴎ уносят с собой определённую энергию и импульс. Недостачу энергии и импульса можно обнаружить, применяя закон сохранения энергии и импульса к другим зарегистрированным в результате реакции частицам.

Быстрораспадающиеся частицы регистрируются по их продуктам распада. Большое применение нашли детекторы, позволяющие непосредственно наблюдать траектории частиц. Так с помощью камеры Вильсона, помещенной в магнитное поле были открыты позитрон, мюон и -мезоны, с помощью пузырьковой камеры - многие странные частицы, с помощью искровой камеры регистрировались нейтринные события и т.д.

1. Счётчик Гейгера . Счётчик Гейгера представляет собой, как правило, цилиндрический катод, вдоль оси, которого натянута проволока - анод. Система заполнена газовой смесью.

При прохождении через счётчик заряженная частица ионизирует газ. Образующиеся электроны, двигаясь к положительному электроду - нити, попадая в область сильного электрического поля, ускоряются и в свою очередь ионизуют молекулы газа, что приводит к коронному разряду. Амплитуда сигнала достигает нескольких вольт и легко регистрируется. Счётчик Гейгера регистрирует факт прохождения частицы через счётчик, но не позволяет измерить энергию частицы.

2. Пропорциональный счетчик. Пропорциональный счетчик имеет такую же конструкцию, как и счётчик Гейгера. При этом за счёт подбора напряжения питания и состава газовой смеси в пропорциональном счетчике при ионизации газа пролетевшей заряженной частицей не происходит коронного разряда. Под действием электрического поля создаваемого вблизи положительного электрода первичные частицы производят вторичную ионизацию и создают электрические лавины, что приводит к усилению первичной ионизации созданной пролетевшей через счётчик частицы в 10 3 - 10 6 раз. Пропорциональный счетчик позволяет регистрировать энергию частиц.

3. Ионизационная камера. Так же как в счетчике Гейгера и пропорциональном счетчике в ионизационной камере используется газовая смесь. При этом, по сравнению с пропорциональным счетчиком напряжение питания в ионизационной камере меньше и усиления ионизации в ней не происходит. Учитывая зависимость оттребований эксперимента для измерения энергии частиц используется либо только электронная компонента токового импульса, либо электронная и ионная.

4. Полупроводниковый детектор . Устройство полупроводникового детектора, которые обычно изготовляются из кремния или германия, аналогично устройству ионизационной камеры. Роль газа в полупроводниковом детекторе играет определœенным образом созданная чувствительная область, в которой в обычном состоянии нет свободных носителœей заряда. Попав в эту область заряженная частица вызывает ионизацию, соответственно в зоне проводимости появляются электроны, а в валентной зоне - дырки. Под действием приложенного к напыленным на поверхность чувствительной зоны электродам напряжения, возникает движение электронов и дырок, формируется импульс тока. Заряд импульса тока несет информацию об количестве электронов и дырок и соответственно об энергии, которую заряженная частица потеряла в чувствительной области. И, в случае если частица полностью потеряла энергию в чувствительной области, проинтегрировав токовый импульс получают информацию об энергии частицы. Полупроводниковые детекторы обладают высоким энергетическим разрешением.

Число пар ионов nион в полупроводниковом счётчике определяется формулой N ион = E/W,

где E - кинœетическая энергия частицы, W - энергия, необходимая для образования одной пары ионов. Для германия и кремния W ~ 3-4 эВ и равна энергии крайне важно й для перехода электрона из валентной зоны в зону проводимости. Малая величина W определяет высокое разрешение полупроводниковых детекторов, по сравнению с другими детекторами, в которых энергия первичной частицы тратится на ионизацию (Еион >> W).

5. Камера Вильсона. Принцип работы камеры Вильсона основан на конденсации пересыщенного пара и образовании видимых капель жидкости на ионах вдоль следа пролетевшей через камеру заряженной частицы. Важно заметить, что для создания пересыщенного пара происходит быстрое адиабатическое расширение газа с помощью механического поршня. После фотографирования трека, газ в камере снова сжимается, капельки на ионах испаряются. Электрическое поле в камере служит для “очистки” камеры от ионов образовавшихся при предыдущей ионизации газа

6. Пузырьковая камера. Принцип действия основан на вскипании перегретой жидкости вдоль трека заряженной частицы. Пузырьковая камера представляет собой сосуд, заполненный прозрачной перегретой жидкостью. При быстром понижении давления, вдоль трека ионизирующей частицы образуется цепочка пузырьков пара, которые освещаются внешним источником и фотографируются. После фотографирования следа давление в камере повышается, пузырьки газа схлопываются и камера снова готова к работе. В качестве рабочей жидкости в камере используется жидкий водород одновременно служащий водородной мишенью для исследования взаимодействия частиц с протонами.

Камера Вильсона и пузырьковая камера имеют огромное преимущество, ĸᴏᴛᴏᴩᴏᴇ состоит по сути в том, что можно непосредственно наблюдать всœе заряженные частицы, образующиеся в каждом акте реакции. Для того, чтобы определить тип частицы и ее импульс камеры Вильсона и пузырьковые камеры помещают в магнитное поле. Пузырьковая камера имеет большую плотность вещества детектора по сравнению с камерой Вильсона и в связи с этим пробеги заряженных частиц полностью заключены в объёме детектора. Расшифровка фотографий с пузырьковых камер представляет отдельную трудоемкую проблему.

7. Ядерные эмульсии. Аналогично, как это происходит в обычной фотографии, заряженная частица нарушает вдоль своего пути структуру кристаллической решётки зерен галоидного серебра делая их способными к проявлению. Ядерная эмульсия является уникальным средством для регистрации редких событий. Стопки ядерных эмульсий позволяют регистрировать частицы очень больших энергий. С их помощью можно определить координаты трека заряженной частицы с точностью ~1 микрона. Ядерные эмульсии широко используются для регистрации космических частиц на шарах-зондах и космических аппаратах.

8. Искровая камера. Искровая камера состоит нескольких плоских искровых промежутков, объединённых в одном объёме. После прохождения заряженной частицы через искровую камеру на её электроды подаётся короткий высоковольтный импульс напряжения. В результате вдоль трека образуется видимый искровой канал. Искровая камера, помещённая в магнитное поле, позволяет не только детектировать направление движения частицы, но и по искривлению траектории определять тип частицы и её импульс. Размеры электродов искровых камер могут доходить до нескольких метров.

9. Стриммерная камера. Это аналог искровой камеры, с большим межэлектродным расстоянием ~0.5 м. Длительность высоковольтного разряда подаваемого на искровые промежутки составляет ~10 -8 с. По этой причине образуется не искровой пробой, а отдельные короткие светящиеся световые каналы - стриммеры. В стриммерной камере можно регистрировать одновременно несколько заряженных частиц.

10. Пропорциональная камера. Пропорциональная камера обычно имеет плоскую или цилиндрическую форму и в каком-то смысле является аналогом многоэлектродного пропорционального счетчика. Высоковольтные проволочные электроды отстоят друг от друга на расстоянии нескольких мм. Заряженные частицы, проходя через систему электродов, создают на проволочках импульс тока длительностью ~10 -7 с. Регистрируя эти импульсы с отдельных проволочек можно с точностью до нескольких микрон восстановить траекторию частиц. Разрешающее время пропорциональной камеры составляет несколько микросœекунд. Энергетическое разрешение пропорциональной камеры ~5-10%.

11. Дрейфовая камера. Это аналог пропорциональной камеры, позволяющий с ещё большей точностью восстановить траекторию частиц.

Искровая, стриммерная, пропорциональная и дрейфовая камеры обладая многими преимуществами пузырьковых камер, позволяют запускать их от интересующего события, используя их на совпадения со сцинтилляционными детекторами.

12. Сцинтилляционный детектор.
Размещено на реф.рф
Сцинтилляционный детектор использует свойство некоторых веществ светиться при прохождении заряженной частицы. Кванты света͵ образующиеся в сцинтилляторе, затем регистрируются с помощью фотоумножителœей. Используются как кристаллические сцинтилляторы, к примеру, NaI, BGO, так и пластиковые и жидкие. Кристаллические сцинтилляторы в основном используются для регистрации гамма-квантов и рентгеновского излучения, пластиковые и жидкие - для регистрации нейтронов и временных измерений. Большие объёмы сцинтилляторов позволяют создавать детекторы очень высокой эффективности, для регистрации частиц с малым сечением взаимодействия с веществом.

13. Калориметры. Калориметры представляют из себячередующиеся слои вещества, в котором тормозятся частицы высоких энергий (обычно это слои желœеза и свинца) и детекторы, в качестве которых используют искровые и пропорциональные камеры или слои сцинтиляторов. Ионизирующая частица высокой энергии (E > 1010 эВ), проходя через калориметр, создаёт большое число вторичных частиц, которые, взаимодействуя с веществом калориметра, в свою очередь создают вторичные частицы - образуют ливень частиц в направлении движения первичной частицы. Измеряя ионизацию в искровых или пропорциональных камерах или световой выход сцинтиляторов, можно определить энергию и тип частицы.

14. Черенковский счётчик. Работа черенковского счётчика основана на регистрации излучения Черенкова - Вавилова, возникающего при движении частицы в среде со скоростью v превышающей скорость распространения света в среде (v > c/n). Свет черенковского излучения направлен вперёд под углом по направлению движения частицы.

Световое излучение регистрируется с помощью фотоумножителя. При помощи черенковского счётчика можно определить скорость частицы и отобрать частицы по скоростям.

Самым большим водяным детектором, в котором частицы детектируются с помощью черенковского излучения, является детектор Суперкамиоканде (Япония). Детектор имеет цилиндрическую форму. Диаметр рабочего объёма детектора 39.3 м., высота 41.4 м. Масса детектора составляет 50 ктонн, рабочий объём для регистрации солнечных нейтрино 22 ктонн. Детектор Суперкамиоканде имеет 11000 фотоумножителœей, которые просматривают ~40% поверхности детектора.

ГБОУ НПО ПЛ “Краснодеревец”С-Пб

ТЕМА: «Ядерная физика»

Тема урока: «Экспериментальные методы регистрации заряженных частиц».

преподаватель физики: Сорокина Ирина Станиславовна

2012

Требования стандарта

Задачи урока

1.Понимать сущность метода научного познания окружающего мира

Иллюстрировать роль физики в создании и совершенствовании технических устройств по регистрации заряженных частиц.

2.Владеть основными понятиями и законами физики

Познакомить об-ся с основными техническими устройствами по регистрации заряженных частиц: счетчиком Гейгера, камерой Вильсона, пузырьковой камерой, методом толстослойных фотоэмульсий.

Продолжить формирование умений описывать прибор (техническую установку) по плану.

3.Воспринимать, перерабатывать и предъявлять учебную информацию в различных видах.

Продолжить развитие навыков работы обучающихся с учебником и дополнительной литературой (выделение главного, составление плана, изложение материала).

Продолжить формирование умений структурировать материал в таблицу.

4.Владеть понятиями и представлениями физики, связанными с жизнедеятельностью человека.

Познакомить об-ся с применением приборов для регистрации ионизирующих излучений в жизнедеятельности человека.

Тип урока: Урок изучения нового материала

Оборудование: компьютер, проектор, интерактивная доска

План урока.

Этап урока

Время

Деятельность учителя

Деятельность обучающихся

Организационный

1 мин.

Учитель приветствует уч-ся,отмечает отсутствующих.

Уч-ся приветствуют преподавателя, готовят свое рабочее место, староста докладывает об отсутствующих.

Подготовка к основному этапу урока.

3 мин.

Учитель объявляет тему урока и записывает ее на доске.

Учитель используя, активные методы обучения делит класс на 4 группы (прил.1)

Каждой группе учитель выдает задание подробного ознакомления с одним методом регистрации заряженных частиц.(прил.2), план изучения прибора (прил.3), дополнительный материал (прил.4),таблицу (прил.5)

Обучающиеся внимательно слушают учителя и записывают тему урока в тетрадь.

Обучающиеся делятся на группы (прил.1),

Каждая группа получат задание(прил.2) ,план изучения прибора (прил.3), дополнительный материал(прил.4),таблицу (прил.5)

Самостоятельная работа обучающихся по получению новых знаний

10 мин

Учитель контролирует работу в группах, проводит консультационную индивидуальную работу

Обучающиеся работают в группах, изучают параграф учебника и дополнительную литературу(прил.4), заполняют таблицу (прил.5) в тетради

Проверка полученных знаний

8 мин

Учитель заносит информацию в таблицу (прил5), выведенную на интерактивную доску

Учитель подводит итоги и делает вывод (прил.6)

Представитель от каждой группы рассказывает с места о своем методе регистрации заряженных частиц.

Обучающиеся записывают вывод (прил.6) в тетрадь

Закрепление нового материала

15 мин

Учитель демонстрирует фильм «Экспериментальные методы регистрации заряженных частиц» (прил.7)

Учитель обращает внимание об-ся на применением приборов для регистрации ионизирующих излучений в медицине, с/х,металлургии, геологии

Уч-ся смотрят фильм «Экспериментальные методы регистрации заряженных частиц» (прил.7), записывают в тетрадь области применения

приборов для регистрации ионизирующих излучений.

Домашнее задание

1 мин

Учитель формулирует домашнее задание (прил.8)

Обучающиеся записывают домашнее задание(прил.8) в тетрадь

Контроль полученных знаний

5 мин

Учитель раздает карточки

С тестовыми заданиями

(прил.9),

оговаривает время

выполнения, и критерии

Оценки.

Учитель ходит по классу,

контролирует выполнение

работы.

По истечении времени

учитель просит об-ся

Обменяться работами,

Зачитывает верные ответы

(прил.10)

Учитель выставляет положительные оценки в журнал.

Об-ся слушают учителя,

Задают вопросы,

если что-то непонятно.

Все об-ся самостоятельно

Выполняют

Тестовые задания

Об-ся обмениваются работами,

осуществляют взаимоконтроль,

Выставляют оценки друг другу,

Объявляют оценки.

Подведение итогов. Рефлексия

2 мин

Учитель подводит итоги урока и объявляет оценки.

Просит обучающихся высказаться об уроке.

Ребята по кругу высказываются одним предложением, выбирая начало фразы из рефлексивного экрана на доске.(прил.11)

Приложение1

Предмет, на котором использован метод

физика

Класс, в котором использован метод

11кл

Этап образовательного мероприятия (урока)

Деление на группы по 6 человек

Название метода

строение атома

Цели использования метода

Разделить всех учащихся на группы

Количество участников

Все участники

Технология проведения

Всем участникам выдаются карточки с названием частицы: электрон, протон или нейтрон. Затем учащимся предлагается самостоятельно объединиться в атом (атомсостоит из ядра (2протона+2 нейтрона) и 2 электронов) Происходит деление на 4 группы по 6 человек.

Продолжительность проведения

5мин

Предварительная подготовка (если требуется)

Карточки с надписями электрон, протон или нейтрон. Количество карточек =24(8 карточек с надписью электрон, 8 карточек с надписью протон, 8 карточек с надписью нейтрон)

Необходимые материалы (канцелярские товары и др.), которые понадобятся для успешного проведения метода

Картон

маркер

Примечание (что важно знать или учитывать педагогу при использовании данного метода)

Данный метод целесообразно использовать при изучении темы «Ядерная физика»

Самостоятельная разработка

Сорокина Ирина Станиславовна

Приложение2

1 группа- счетчик Гейгера

2 группа- камера Вильсона

3 группа- пузырьковая камера

4 группа- метод фотоэмульсий

ЗАДАНИЕ ДЛЯ ГРУППЫ.

1. Рассмотреть внимательно рисунки, чертёжи, схемы.

3. Заполнить в таблице свою графу.

5. Время для подготовки – 10 минут, для защиты 2 минуты.

Приложение3

План изучения физического прибора

(технической установки)

1. Назначение прибора.

2. Основные части прибора и их назначение.

3. Принцип действия прибора (какие явления, законы их протекания положены в основу работы прибора; взаимодействие основных элементов в его устройстве, последовательность физических процессов, определяющих данное взаимодействие).

4. Правила пользования прибором (и правила измерения для измерительных приборов). Техника безопасности в работе с прибором.

5. Область применения прибора.

6. Разновидности прибора и области их применения.

Приложение4

Cчётчик Гейгера-Мюллера.

Cчётчик Гейгера (или счётчик Гейгера-Мюллера) - газонаполненный счётчик заряженных элементарных частиц, электрический сигнал с которого усилен за счёт вторичной ионизации газового объёма счётчика и не зависит от энергии, оставленной частицей в этом объёме. Изобретён в 1908 г. Х. Гейгером и Э. Резерфордом, позднее усовершенствован Гейгером и В. Мюллером.

Конструктивно счётчик Гейгера устроен также как пропорциональный счётчик, т.е. представляет собой цилиндрический конденсатор, заполненный инертным газом. К внутреннему электроду (тонкой металлической нити) приложен положительный потенциал, к внешнему – отрицательный. Функционально счётчик Гейгера также в основном повторяет пропорциональный счётчик, но отличается от последнего тем, что за счёт более высокой разности потенциалов на электродах работает в таком режиме, когда достаточно появления в объёме детектора одного электрона, чтобы развился мощный лавинообразный процесс, обусловленный вторичной ионизацией (газовое усиление), который способен ионизовать всю область вблизи нити-анода. При этом импульс тока достигает предельного значения (насыщается) и не зависит от первичной ионизации. По существу, при попадании в счетчик Гейгера частицы в нём вспыхивает (зажигается) самостоятельный газовый разряд. При этом коэффициент газового усиления может достигать 1010, а величина импульса десятков вольт.

Этот счётчик обладает практически стопроцентной вероятностью регистрации заряженной частицы, так как для возникновения разряда достаточно одной электрон-ионной пары. Однако длительность сигнала со счётчика Гейгера сравнительно велика (10-4 с). Именно такое время требуется, чтобы медленные положительные ионы, заполнившие пространство вблизи нити-анода после пролёта частицы и прохождения электронной лавины, ушли к катоду и восстановилась чувствительность детектора.

Ионизационная камера.

Ионизационная камера - простейший газонаполненный детектор. Она представляет собой систему из двух или трёх электродов в объеме, заполненном газом (He+Ar, Ar+C2H2, Ne). Ионизационная камера может быть выполнена в виде плоского или цилиндрического конденсатора. Величина прикладываемого напряжения (обычно сотни вольт) подбирается так, чтобы образованные в камере при пролёте заряженной частицы свободные заряды максимально быстро, не успев рекомбинировать достигали электродов.

Ионизационные камеры бывают интегрирующие и импульсные. В интегрирующих камерах при больших потоках частиц импульсы сливаются и регистрируется ток пропорциональный среднему энерговыделению.

В импульсных камерах регистрируются отдельные импульсы от каждой ионизирующей частицы. Импульсные камеры обычно трехэлектродные. Рабочим объемом служит пространство между катодом и сеткой. Образовавшиеся в результате ионизации электроны под действием поля Eкс двигаются по направлению к сетке, проходят ее под действием поля Eса > Eкс и собираются на аноде. Более подвижные электроны собираются за время 10-6 с. Положительные ионы, время сбора которых на три порядка больше за это время остаются практически на месте. Сетка экранирует анод от индукционного воздействия положительных ионов.

Временнoе разрешение ионизационной камеры определяется временем сбора зарядов. Таким образом, при регистрации импульса тока от электронов временнoе разрешение ионизационной камеры будет достигать 10-6 с.

Если частица полностью останавливается в объёме камеры, то по величине собранного заряда (количеству электронов, пришедших на анод) легко определить энергию частицы.

Эта энергия равна произведению числа электронов n на среднюю энергию, необходимую на образование частицей одной пары электрон-ион (для газа 30-40 эВ).

Недостатком ионизационной камеры являются очень низкие токи. Этот недостаток ионизационной камеры преодолевается в ионизационных детекторах с газовым усилением.

Для регистрации нейтронов используют специальную модификацию ионизационной камеры - камеру деления.

Камера Вильсона.

Камера Вильсона – трековый детектор элементарных заряженных частиц, в котором трек (след) частицы образует цепочка мелких капелек жидкости вдоль траектории её движения. Изобретена Ч. Вильсоном в 1912 г. (Нобелевская премия 1927 г.).

Важным этапом в методике наблюдения следов частиц явилось создание камеры Вильсона (1912 г.). За это изобретение Ч. Вильсону в 1927 г. присуждена Нобелевская премия. В камере Вильсона (см. рис. 1) треки заряженных частиц становятся видимыми благодаря конденсации перенасыщенного пара на ионах газа, образованных заряженной частицей. На ионах образуются капли жидкости, которые вырастают до размеров достаточных для наблюдения (10-3-10-4 см) и фотографирования при хорошем освещении. Пространственное разрешение камеры Вильсона обычно 0.3 мм. Рабочей средой чаще всего является смесь паров воды и спирта под давлением 0.1-2 атмосферы (водяной пар конденсируется главным образом на отрицательных ионах, пары спирта – на положительных). Перенасыщение достигается быстрым уменьшением давления за счёт расширения рабочего объёма. Время чувствительности камеры, в течение которого перенасыщение остаётся достаточным для конденсации на ионах, а сам объём приемлемо прозрачным (не перегруженным капельками, в том числе и фоновыми), меняется от сотых долей секунды до нескольких секунд. После этого необходимо очистить рабочий объём камеры и восстановить её чувствительность. Таким образом, камера Вильсона работает в циклическом режиме. Полное время цикла обычно > 1 мин.

Рис. 1. Камера Вильсона (1912 г.) и фотография треков

Возможности камеры Вильсона значительно возрастают при помещении её в магнитное поле. По искривлённой магнитным полем траектории заряженной частицы определяют знак её заряда и импульс. С помощью камеры Вильсона в 1932 г. К. Андерсон обнаружил в космических лучах позитрон.

Рис. 2. К принципу работы камеры Вильсона

Важным усовершенствованием, удостоенным в 1948 г. Нобелевской премии (П. Блэкетт), явилось создание управляемой камеры Вильсона. Специальные счётчики отбирают события, которые должны быть зарегистрированы камерой Вильсона, и “запускают” камеру лишь для наблюдения таких событий. Эффективность камеры Вильсона, работающей в таком режиме, многократно возрастает. “Управляемость” камеры Вильсона объясняется тем, что можно обеспечить очень высокую скорость расширения газовой среды и камера успевает отреагировать на запускающий сигнал внешних счётчиков.

Пузырьковая камера.

Пузырьковая камера – трековый детектор элементарных заряженных частиц, в котором трек (след) частицы образует цепочка пузырьков пара вдоль траектории её движения. Изобретена А. Глэзером в 1952 г. (Нобелевская премия 1960 г.).

Принцип действия пузырьковой камеры напоминает принцип действия камеры Вильсона. В последней используется свойство перенасыщенного пара конденсироваться в мельчайшие капельки вдоль траектории заряженных частиц. В пузырьковой камере используется свойство чистой перегретой жидкости вскипать (образовывать пузырьки пара) вдоль пути пролёта заряженной частицы. Перегретая жидкость – это жидкость, нагретая до температуры большей температуры кипения для данных условий. Вскипание такой жидкости происходит при появлении центров парообразования, например, ионов. Таким образом, если в камере Вильсона заряженная частица инициирует на своём пути превращение пара в жидкость, то в пузырьковой камере, наоборот, заряженная частица вызывает превращение жидкости в пар.

Рис. 1. Пузырьковая камера: а - внешний вид, б - фотография события в камере, в - расшифровка события

Перегретое состояние достигается быстрым (5-20 мс) уменьшением внешнего давления. На несколько миллисекунд камера становится чувствительной и способна зарегистрировать заряженную частицу. После фотографирования треков давление поднимается до прежней величины, пузырьки “схлопываются” и камера вновь готова к работе. Цикл работы большой пузырьковой камеры 1 с (т. е. значительно меньше, чем у камеры Вильсона), что позволяет использовать её в экспериментах на импульсных ускорителях. Небольшие пузырьковые камеры могут работать в значительно более быстром режиме – 10-100 расширений в секунду. Моменты возникновения фазы чувствительности пузырьковой камеры синхронизуют с моментами попадания в камеру частиц от ускорителя.

Важным преимуществом пузырьковой камеры по сравнению с камерой Вильсона и диффузионной камерой является то, что в качестве рабочей среды в ней используется жидкость (жидкие водород, гелий, неон, ксенон, фреон, пропан и их смеси). Эти жидкости, являясь одновременно мишенью и детектирующей средой, обладают на 2-3 порядка большей плотностью, чем газы, что многократно увеличивает вероятность появления в них событий, достойных изучения, и позволяют целиком “уместить” в своём объёме треки высокоэнергичных частиц.

Пузырьковые камеры могут достигать очень больших размеров (до 40 м3). Их, как и камеры Вильсона, помещают в магнитное поле. Пространственное разрешение пузырьковых камер 0.1 мм.

Недостатком пузырьковой камеры является то, что её невозможно (в отличие от камеры Вильсона) быстро “включить” по сигналам внешних детекторов, осуществляющих предварительный отбор событий, так как жидкость слишком инерционна и не поддается очень быстрому (за время 1 мкс) расширению. Поэтому пузырьковые камеры, будучи синхронизованы с работой ускорителя, регистрируют все события, инициируемые в камере пучком частиц. Значительная часть этих событий не представляет интереса.

Метод толстослойных фотоэмульсий

Для регистрации частиц наряду с камерами Вильсона и пузырьковыми камерами применяются толстослойные фотоэмульсии. Метод толстослойных фотоэмульсий разработан Л. В. Мысовским и А. П. Ждановым.

Он основан на использовании почернения фотографического слоя под действием проходящих через фотоэмульсию быстрых заряженных частиц. Такая частица вызывает распад молекул бромистого серебра на ионы Ag+ и Вг- и почернение фотоэмульсии вдоль траектории движения, образуя скрытое изображение. При проявлении в этих кристалликах восстанавливается металлическое серебро и образуется трек частицы. По длине и толщине трека судят об энергии и массе частицы. Из-за большой плотности фотоэмульсии треки получаются очень короткими, но при фотографировании их можно увеличить.

Для изучения следов частиц, обладающих очень высокой энергией и дающих длинные следы, большое количество пластинок складывается в стопу.

Существенным преимуществом метода фотоэмульсий, помимо простоты применения, является то, что он дает неисчезающий след частицы, который затем может быть тщательно изучен. Это позволяет регистрировать редкие явления. Важно и то, что благодаря большой тормозящей способности фотоэмульсии увеличивается число наблюдаемых интересных реакций между частицами и ядрами. Это привело к широкому применению данного метода при исследовании новых элементарных частиц. Этим методом с добавлением к эмульсии соединений бора или лития могут быть изучены следы нейтронов, которые в результате реакций с ядрами бора и лития создают -частицы, вызывающие почернение в слое ядерной эмульсии. По следам -частиц делаются выводы о скорости и энергиях нейтронов, вызвавших появление -частиц.

Приложение5

Метод

Принцип действия

Какие частицы регистрируются

Достоинства

Недостатки

Приложение 6

Выводы:

Прибор регистрирующий элементарные частицы - это, более или менее сложная макроскопическая система, которая может находиться в неустойчивом состоянии. При небольшом возмущении вызванной пролетевшей частицей, начинается процесс перехода системы в новое более устойчивое состояние.

В настоящее время используются много различных методов регистрации частиц. В зависимости от цели эксперимента и условий, при которых он проводится, применяются те или иные регистрирующие устройства.

Приложение 8

Домашнее задание

1.Найти информацию о других экспериментальных методах регистрации заряженных частиц.

2.Таблица «Экспериментальные методы регистрации заряженных частиц»

Приложение 9

Тест

  1. Ударной ионизации.
  2. Выделении энергии частицей.
  1. Толстослойная фотоэмульсия.
  2. Счетчик Гейгера.
  3. Фотокамера.
  4. Камера Вильсона.
  5. Пузырьковая камера.
  1. Нельзя
  1. Ударной ионизации.
  2. Расщеплении молекул движущейся заряженной частицей.
  3. Образовании пара в перегретой жидкости.
  4. Конденсации перенасыщенных паров.
  5. Выделении энергии частицей.
  1. Фотокамера
  2. Камера Вильсона
  3. Толстослойная фотоэмульсия
  4. Счетчик Гейгера
  5. Пузырьковая камера

Приложение 10

Тест (ответы)

1.Действие счетчика Гейгера основано на

  1. Ударной ионизации .
  2. Расщеплении молекул движущейся заряженной частицей.
  3. Выделении энергии частицей.
  4. Образовании пара в перегретой жидкости.
  5. Конденсации перенасыщенных паров.

2.Прибор для регистрации элементарных частиц, действие которого основано на образовании пузырьков пара в перегретой жидкости, называется

  1. Толстослойная фотоэмульсия.
  2. Счетчик Гейгера.
  3. Фотокамера.
  4. Камера Вильсона.
  5. Пузырьковая камера.

3.Можно ли с помощью камеры Вильсона регистрировать незаряженные частицы?

  1. Можно, если они имеют маленькую массу (электрона)
  2. Можно, если они имеют большую массу (нейтроны)
  3. Можно, если они имеют маленький импульс
  4. Можно, если они имеют большой импульс
  5. Нельзя

4. Фотоэмульсионный метод регистрации заряженных частиц основан на

  1. Ударной ионизации .
  2. Расщеплении молекул движущейся заряженной частицей.
  3. Образовании пара в перегретой жидкости.
  4. Конденсации перенасыщенных паров.
  5. Выделении энергии частицей.

5.Прибор для регистрации элементарных частиц, действие которого основано на конденсации перенасыщенного пара, называется

  1. Фотокамера
  2. Камера Вильсона
  3. Толстослойная фотоэмульсия
  4. Счетчик Гейгера
  5. Пузырьковая камера

вопрос

ответ

Приложение 11

Рефлексия:

сегодня я узнал…

было интересно…

было трудно…

я выполнял задания…

я понял, что…

теперь я могу…

я почувствовал, что…

я приобрел…

я научился…

у меня получилось …

В развитии знаний о «микромире», в частности в изучении явлений радиоактивности, исключительную роль сыграли приборы, позволяющие регистрировать ничтожное действие одной-единственной частицы атомных размеров. Одним из таких замечательных приборов является камера Вильсона, делающая видимыми траектории отдельных быстродвижущихся заряженных частиц (§ 212). Другой прибор этого рода, с примитивной формой которого мы познакомились в § 203, это - так называемый счетчик сцинтилляций.

При бомбардировке некоторых люминесцирующих веществ (сернистый цинк, нафталин и др.) быстрыми заряженными частицами наблюдается, что заметная доля энергии тормозящихся в них заряженных частиц превращается в видимый свет: попадание быстрой заряженной частицы на слой такого вещества вызывает кратковременную вспышку света, называемую сцинтилляцией. Яркость вспышки особенно велика в случае частиц, так как частица тормозится на пути длины менее , и выделяющаяся световая энергия оказывается сосредоточенной в ничтожном объеме. Сцинтилляции, вызываемые частицами в экране из сернистого цинка, могут быть обнаружены глазом. Простейший прибор, служащий для этой цели,- спинтарископ - изображен на рис. 382. Однако визуальный (при помощи глаза) способ наблюдения сцинтилляций крайне утомителен. В настоящее время для счета сцинтилляций пользуются особо чувствительными фотоэлементами (см. § 185) - так называемыми фотоэлектронными умножителями, изобретенными советским физиком Л. А. Кубецким. Сцинтилляции, производимые и частицами, гораздо слабее свечения, вызываемого частицами; они недоступны глазу, и регистрация их производится только с помощью фотоэлектронных умножителей.

Рис. 382. Спинтарископ в раз резе (а) и внешний вид (б). 1 – иголка, на конце которой находится крупинка радия, 2 – экран из сернистого цинка, 3 - лупа

Очень распространенным прибором для регистрации отдельных заряженных частиц
является газоразрядный счетчик Гейгера-Мюллера. Газоразрядный счетчик (рис. 383) представляет собой металлический цилиндр 2, но оси которого натянута тонкая проволока 1, изолированная от цилиндра. Цилиндр заполняется специальной смесью газов (например, аргон + пары спирта) до давления На нить подается положительный потенциал порядка относительно цилиндра.

Рис. 383. Газоразрядный счетчик: 1 – анод счетчика (тонкая нить), 2 – катод (металлический цилиндр), 3 – изоляторы, 4 – электрометр для регистрации разрядов в счетчике. При разряде на нити счетчика скапливаются электроны и потенциал ее снижается. По окончании разряда потенциал нити восстанавливается благодаря притоку зарядов от батареи через сопротивление

Прохождение каждой ионизующей частицы через счетчик вызывает в нем кратковременную вспышку газового разряда. При этом по цепи счетчика проходит кратковременный импульс тока. Если сопротивление достаточно велико , то потенциал нити сохраняется сниженным в течение нескольких миллисекунд, и этот импульс можно обнаружить по отбросу чувствительного электрометра 4. На практике импульс тока, вызванный прохождением заряженной частицы через счетчик, усиливают транзисторным или электронно-ламповым усилителем и регистрируют по передвижению стрелки присоединенного к усилителю электромагнитного нумератора (рис. 384) или с помощью электронного цифрового индикатора.

Рис. 384. Схема установки для регистрации радиоактивных излучений с помощью газоразрядного счетчика: 1 – газоразрядный счетчик, 2 – усилитель, 3 – электромагнитный нумератор,

Рассмотрим подробнее механизм действия газоразрядного счетчика. Счетчик представляет собой два коаксиальных цилиндра, и потому электрическое поле в нем неоднородно (см. том , § 30). Напряженность электрического поля достигает наибольшей величины у нити и быстро спадает при удалении от нее (рис. 385, а). При разности потенциалов около напряженность электрического поля вблизи нити оказывается достаточно большой, чтобы сообщать медленные электронам скорость, необходимую для ионизации газа.

Рис. 385. К механизму работы газоразрядного счетчика частиц (1 – цилиндр счетчика, 2 – нить, диаметр которой преувеличен): а) Счетчик заряжен для рабочей разности потенциалов, при которой прохождение заряженной частицы через счетчик вызывает в нем вспышку газового разряда. Изображены линии электрического поля, наибольшая у нити; б) поле в счетчике в момент самогашения разряда. Электроны, образованные при ионизации газа, собрались на нити и компенсируют часть ее положительного заряда. Положительные ионы продолжают двигаться к цилиндру. Поле у нити ослаблено; в) поле в счетчике, не присоединенном к батареи, после того как разряд погас и положительные ионы дошли до цилиндра

Пусть где-либо в объеме счетчика образовался свободный медленный электрон (например, в результате ионизации газа под действием быстрой частицы, пролетающей через счетчик). Этот электрон будет двигаться к положительно заряженной нити и в области сильного поля вблизи нити начнет ионизовать атомы газа. Электроны - продукты ионизации - ускоряются полем и в свою очередь производят ионизацию, давая начало новым и новым электронам и новой ионизации.

Число ионизованных атомов лавинообразно нарастает - в газе вспыхивает электрический разряд. Образующиеся при разряде электроны очень скоро собираются на нити, тогда как тяжелые и потому малоподвижные ионы медленно движутся к цилиндру. Накопление электронов на нити снижает ее положительный заряд и все более и более уменьшает напряженность электрического поля у нити (рис. 385, б). Через короткое время (порядка микросекунды, т.е. миллионной доли секунды) поле ослабляется настолько, что уже не сообщает электронам нужной для ионизации скорости. Ионизация прекращается, и начавшийся разряд обрывается.

Если счетчик не подключен к батарее, то после разряда электрическое поле в нем остается ослабленным, и новый разряд невозможен (рис. 385, в). В обычно же употребляемых схемах включения (рис. 383 и 384) поле в счетчике быстро восстанавливается за счет притока зарядов от батареи, к которой счетчик подключен через сопротивление . Счетчик оказывается снова готовым к действию уже через после вспышки разряда.

Отметим, что быстрое гашение разряда происходит только при специальном подборе газового заполнения счетчика и при не слишком большом напряжении на нем. При чрезмерном повышении напряжения в счетчике возникает негаснущий разряд, состоящий из непрерывно следующих друг за другом вспышек описанного выше типа. Повторение вспышек разряда вызывается электронами, которые выбиваются из цилиндра счетчика при попадании на него положительных ионов.

В счетчике Гейгера-Мюллера амплитуда и длительность импульса тока, развивающегося в результате лавинного процесса в газе, не зависит от природы и энергии регистрируемой заряженной частицы «поджигающей» счетчик (т.е. вызывающей этот лавинный процесс). Можно выбрать и другой режим работы газоразрядного прибора – так называемый пропорциональный режим. Если уменьшить напряжение, приложенное к счетчику, так чтобы лавинный процесс не развивался очень сильно и не переходил в разряд, то число пар ионов в этой «ограниченной лавине» будет пропорционально начальной ионизации. Такие пропорциональные счетчики могут не только регистрировать отдельные частицы, но и измерять вызываемую ими ионизацию (т.е. энергетические потери частицы в газе), что очень важно для идентификации частиц.

В последнее время широкое распространение получили так называемые полупроводниковые детекторы. Такой детектор по существу представляет собой ионизационную камеру (рис. 376), в которой воздух заменен полупроводником. Использование кремния или германия, соответствующим образом обработанных, позволяет снизить темновой ток (ток в отсутствии ионизующего излучения) до приемлемых для регистрации ионизующего излучения значений величин. Преимуществом полупроводниковых детекторов является то, что, благодаря большой плотности вещества этих счетчиков, в них может быть поглощена большая часть энергии ионизующих излучений.

В начале XX в. были разработаны методы исследования явлений атомной физики и созданы приборы, позволившие не только выяснить основные вопросы строения атомов, но и наблюдать превращения химических элементов.

Трудность создания таких приборов заключалась в том, что используемые в экспериментах заряженные частицы представляют собой ионизированные атомы каких-либо элементов или, например, электроны, и прибор должен регистрировать попадание в него лишь одной частицы или делать видимой траекторию ее движения.

В качестве одного из первых и простейших приборов для регистрации частиц был использован экран, покрытый люминесцирующим составом. В той точке экрана, куда попадает частица с достаточно большой энергией, возникает вспышка - сцинтилляция (от латинского «сцинтилляцио» - сверкание, вспышка ).

Первый основной прибор для регистрации частиц был изобретен в 1908 г. Г. Гейгером. После того, как этот прибор был усовершенствован В. Мюллером, он мог подсчитывать число попадающих в него частиц. Действие счетчика Гейгера - Мюллера основано на том, что пролетающие через газ заряженные частицы ионизируют встречающиеся на их пути атомы газа: отрицательно заряженная частица , отталкивая электроны, выбивает их из атомов, а положительно заряженная частица притягивает электроны и вырывает их из атомов.

Счетчик состоит из полого металлического цилиндра, диаметром около 3 см (рис. 37.1), с окном из тонкого стекла или алюминия. По оси цилиндра проходит изолированная от стенок металлическая нить. Цилиндр (камера) заполняется разреженным газом, например, аргоном. Между стенками цилиндра и нитью создается напряжение порядка 1500 В, недостаточное для образования самостоятельного разряда. Нить заземляется через большое сопротивление R. При попадании в камеру частицы с большой энергией происходит ионизация атомов газа на пути этой частицы, и между стенками и нитью возникает разряд. Разрядный ток создает большое падение напряжения на сопротивлении R, и напряжение между нитью и стенками сильно уменьшается. Поэтому разряд быстро прекращается. После прекращения тока все напряжение вновь сосредоточивается между стенками камеры и нитью, и счетчик подготовлен к регистрации новой частицы. Напряжение с сопротивления R подается на вход усилительной лампы, в анодную цепь которой включается счетный механизм.

Способность частиц большой энергии ионизировать атомы газа используются и в одном из самых замечательных приборов современной физики - в камере Вильсона. В 1911 г. английский ученый Ч. Вильсон построил прибор, с помощью которого можно было видеть и фотографировать траектории заряженных частиц.

Камера Вильсона (рис. 37.2) состоит из цилиндра с поршнем; верхняя часть цилиндра сделана из прозрачного материала. В камеру вводится небольшое количество воды или спирта, и внутри нее образуется смесь паров и воздуха. При быстром опускании поршня смесь адиабатически расширяется и охлаждается, поэтому воздух в камере оказывается пересыщенным парами.

Если воздух очищен от пылинок, то превращение избытка пара в жидкость затруднено из-за отсутствия центров конденсации. Однако центрами конденсации могут служить и ионы. Поэтому, если через камеру пролетает в это время заряженная частица, ионизирующая на своем пути молекулы воздуха, то на цепочке ионов происходит конденсация паров и траектория движения частицы внутри камеры получается отмеченной нитью тумана, т. е. становится видимой. Тепловое движение воздуха быстро размывает нити тумана, и траектории частиц видны отчетливо лишь около 0,1 с, что. однако, достаточно для фотографирования.

Вид траектории на фотоснимке часто позволяет судить о природе частицы и величине ее энергии. Так, альфа-частицы оставляют сравнительно толстый сплошной след, протоны - более тонкий, а электроны - пунктирный след. Одна из фотографий альфа-частиц в камере Вильсона показана на рис. 37.3.

Чтобы подготовить камеру к действию и очистить ее от оставшихся ионов, внутри нее создают электрическое поле, притягивающее ионы к электродам, где они нейтрализуются.

Как говорилось выше, в камере Вильсона для получения следов частиц используется конденсация пересыщенного пара, т. е. превращение его в жидкость. Для этой же цели можно использовать обратное явление, т. е. превращение жидкости в пар. Если жидкость заключить в замкнутый сосуд с поршнем и при помощи поршня создать повышенное давление, а затем резким перемещением поршня уменьшить давление в жидкости, то при соответствующей температуре жидкость может оказаться в перегретом состоянии. Если через такую жидкость пролетит заряженная частица, то вдоль ее траектории жидкость закипит, поскольку образовавшиеся в жидкости ноны служат центрами парообразования. При этом траектория частицы отмечается цепочкой пузырьков пара, т. е. делается видимой. На этом принципе основано действие пузырьковой камеры.

При изучении следов частиц с большой энергией пузырьковая камера удобнее камеры Вильсона, так как при движении в жидкости частица теряет значительно больше энергии, чем в газе. Во многих случаях это позволяет значительно точнее определить направление движения частицы и ее энергию. В настоящее время имеются пузырьковые камеры диаметром около 2 м. Они заполняются жидким водородом. Следы частиц в жидком водороде получаются очень отчетливыми.

Для регистрации частиц и получения их следов служит также метод толстослойных фотопластинок. Он основан на том, что пролетающие сквозь фотоэмульсию частицы действуют на зерна бромистого серебра, поэтому оставленный частицами след после проявления фотопластинки становится видимым (рис. 37.4) и его можно исследовать с помощью микроскопа. Чтобы след был достаточно длинным, используются толстые слои фотоэмульсии.