Чурсин В.В. Искусственная вентиляция легких (учебно-методическое пособие)

Глава 6. Мониторирование вентиляции

веолярного газа и газа функционального мертвого пространства. Эк­ вивалентом функционального мертвого пространства является раз­ ница между раСО2 и уровнем углекислого газа в фазе III выдоха.

При злокачественной гипертермии увеличивается концентрация углекислого газа в конце выдоха, что наряду с тахикардией является ранним ее признаком. Суживание легочной артерии уменьшает ле­ гочный кровоток и поэтому в фазе III концентрация углекислого газа снижается. То же наблюдается при газовой эмболии сосудов малого круга, сердечной слабости, прекращении кровообращения. Если в фазу вдоха концентрация углекислоты не снижается до 0, это может свидетельствовать об истощении поглотителя углекислоты или на­ рушении работы направляющих клапанов дыхательного контура. Капнограмма является также чувствительным индикатором разгер­ метизации дыхательного контура и прекращения вентиляции вслед­ ствие закупорки, перегиба интубационной трубки или интубации пищевода.

Простым, не требующим особых затрат видом мониторинга является применение прекордиальных стетоскопов. Целесообразно использовать их во время операции, а также во время транспорти­ ровки больных из оперблока в ОИТ. Головку прекордиального сте­ тоскопа устанавливают в области яремной вырезки и фиксируют к коже бумажным кольцом с двухсторонним клеящим слоем. Длинная соединительная трубка с моноаурикулярным наконечником дает анестезиологу определенную степень свободы и обеспечивает не­ прерывную связь его с пациентом для оценки кардиореспираторных звуков. Однако количество получаемой таким образом информации невелико вследствие ограниченности зоны аускультации. Современ­ ной альтернативой прекордиальным являются многофункциональ­ ные пищеводные стетоскопы. Они часто содержат термисторы для измерения температуры, электроды для пищеводного отведения ЭКГ, предсердной электрокардиостимуляции и даже датчики для ультразвуковых исследований. Пищеводные стетоскопы просты, дешевы, но используются они только у интубированных пациентов. В целом они применяются как дополнение к более сложным аппара­ турным методам контроля.

Отрицательные эффекты искусственной вентиляции легких

ИВЛ - существенный компонент поддержки газообмена при дыхательной недостаточности. Наряду с положительными сторона­ ми, такими как улучшение газообмена, увеличение транспортной емкости крови по кислороду, уменьшение энергозатрат на дыхание с уменьшением потребления кислорода, ИВЛ присущ ряд побочных эффектов. Ее использование может сопровождаться осложнениями, многие из которых могут быть предотвращены при раннем распо­ знавании. Среди осложнений различных категорий - потенциальные проблемы, связанные с использованием искусственных дыхатель­ ных путей (интубационные трубки, воздуховоды), сбои в работе ме­ ханического респиратора, повышенная вероятность инфекции. Баро­ травма легких, сердечно-сосудистые нарушения, дисфункции ЦНС, почек и ЖКТ в основном связаны с повышением внутригрудного. давления, особенно при вентиляции с ПДКВ. Увеличение внутригрудного давления приводит к:

уменьшению венозного возврата;

увеличению легочного сосудистого сопротивления;

уменьшению МОС;

снижению перфузии почек, печени и ЖКТ;

уменьшению венозного оттока из мозга с последующим увели­ чением внутричерепного давления;

баротравме легких, особенно если пик инспираторного давления превышает 40 см вод. ст.

Неблагоприятные эффекты ИВЛ суммированы табл.7.1.

Глава 7. Отрицательные эффекты искусственной вентиляции легких

Таблица 7.1. Отрицательные эффекты вентиляции с положительным давлением

Уменьшение венозного возврата.

Сердечно-сосудистые

Изменение легочного и системного сосудистого

давления и сопротивления.

Желудочковая дисфункция.

Изменение соотношения вентиляция/перфузия.

Увеличение мертвого пространства в легких.

Влияние на легкие

Внесосудистое накопление воды в легких.

Повреждение паренхимы легких, легочная ин­

Неадекватная секреция антидиуретического гор­

Почечные и водно-

мона (вазопрессина).

электролитные

Нарушение почечной и внутрипочечной гемоди­

расстройства

Чрезмерное накопление жидкости в организме.

Неврологические

Увеличение внутричерепного давления.

нарушения

Мозговая ишемия.

Влияние на ЖКТ

Снижение перфузии печени и пищеварительного

Кислотно-щелочное

Гиповентиляция.

состояние

Гипервентиляция.

Повреждения слизистой оболочки.

Проблемы

Некроз от сдавления трубкой.

Неправильное положение трубки или спонтанная

дыхательных путей

экстубация.

Частичная или полная закупорка трубки.

Технические

Прекращение питания и отказ аппарата.

нарушения

Плохая функция аппарата.

Пациенты в критическом состоянии, требующие ИВЛ, являются группой высокого риска осложнений, большинство из которых свя­ зано с основным заболеванием. Однако ряд хорошо известных ле­ гочных и внелегочных осложнений обусловлены непосредственно ИВЛ. Их часто, по крайней мере, если рано распознать, можно пре­ дотвратить.

Глава 7. Отрицательные эффекты искусственной вентиляции легких

7.1. Осложнения, связанные с введением интубационных (трахеотомических) трубок

Проблемы дыхательных путей не специфичны для ИВЛ, но сле­ дуют из потребности в интубации трахеи для передачи в легкие по­ ложительного давления. Эти проблемы составляют унылый пере­ чень осложнений от повреждения слизистой ротовой полости до подсвязочного стеноза. Вероятность этих осложнений растет с уве­ личением продолжительности интубации и ИВЛ. Обычные и отно­ сительно редкие проблемы, которые могут возникать в связи с необ­ ходимостью создания искусственных воздухоносных путей для про­ ведения ИВЛ, представлены в табл.7.2.

Одной из наиболее драматичных проблем является смещение трубки в один из бронхов, что приводит к перераздуванию одного легкого и гиповентиляции другого. Менее драматичной, но более частой проблемой является повреждение трахеи непосредственно трубкой (табл.7.2, 7.3). Хотя при использовании пластичных трубок острая эрозия и перфорация в настоящее время бывают редко, но все еще встречается образование язв слизистой трахеи, сопровождаемое трахеомаляцией с последующим развитием стеноза трахеи. Чтобы обеспечить герметизацию дыхательных путей и уменьшить при этом осложнения, необходимо поддерживать давления в манжетке на са­ мом низком возможном уровне. Повреждения трахеи также возни­ кают из-за того, что пациент двигается и смещает трубку, при этом часто возникают эрозии слизистой рта и носа. Этих проблем можно избежать при стабилизации трубки. Комбинация интубационной трубки и желудочного зонда повышают риск образования трахеопищеводного свища. Бактериальный синусит чаще возникает у па­ циентов при назотрахеальной интубации в связи с нарушением дре­ нажа синуса. Проведение назогастрального зонда и интубационной трубки через носовые ходы может привести к эрозии носовой пере­ городки. Перегиб интубационной трубки вызывает внезапную поте­ рю ее проходимости, что является потенциально летальным ослож­ нением. Осложнения могут возникать даже при тщательной интуба­ ции и наблюдении за интубационной трубкой. Использование тру­ бок большого диаметра (8 мм или 9 мм) у взрослых уменьшает веро­ ятность перегибов трубки, но увеличивает вероятность травмы тра-

Глава 7. Отрицательные эффекты искусственной вентиляции легких

хеи. Отсасывание из интубационной трубки сопровождается допол­ нительными механическими травмами, если манипуляции проводят­ ся нещадяще. При выраженном беспокойстве ребенка во время отса­ сывания может возникать острая гипоксия с последующими арит­ миями.

Таблица 7.2. Повреждения дыхательных путей, связанные с интубацией

Локализация повреждения

Профилактика повреждений

Носоглотка или ротоглотка

Повреждение зубов при инту­

Осторожная технически правильная

интубация.

Некроз участков носовой пере­

Не использовать трубки слишком боль­

городки, рта.

шого диаметра при назотрахеальной

Синуситы при назотрахеальной

интубации.

интубации в результате нару­

Предупреждать длительное сдавление

шения дренажа.

тканей непластичной трубкой путем из­

менения ее позиции.

Заменять назальную интубацию на

оротрахеальную при появлении призна­

ков синусита.

Использовать сосудосуживающие носо­

вые капли.

Избегать использования трубок слиш­

ком большого диаметра или травматич­

Паралич связок.

ной интубации.

Образование полипов.

Трахеомаляция.

Ущерб непосредственно связан с давле­

Трахео-эзофагеальный свищ.

нием манжеты на трахею, которое ведет к

Стенозирование трахеи.

нарушению капиллярного кровотока в

Трахеально-артериальный

тканях с последующим повреждением.

Должны использоваться податливые

манжеты, а давление в манжете, если

возможно, должно поддерживаться ниже

30 мм рт. ст.

Глава 7. Отрицательные эффекты искусственной вентиляции легких

Таблица 7.3. Осложнения, связанные с дислокацией интубационной трубки

Симптомы дислокации трубки

Профилактика дислокации трубки

Интубация пищевода

Вздутие живота, гипоксия, гипер-

Визуализация гортани при прохож­

Определение СО2 в выдыхаемом

Наблюдение за экскурсией грудной

Однолегочная интубация

Чрезмерно глубокое продвижение

Проверка после интубации двусто­

трубки при интубации или ее

роннего проведения дыхательных

смещение при движении головы.

шумов и наблюдение симметричного

Признаки гипоксии, увеличенное

движения грудной клетки с обеих

давление в дыхательных путях,

повышенный сброс воздуха из

Рентгенологический контроль по­

аппарата.

ложения трубки.

Ателектаз на невентилируемой

Отметка на трубке ее правильного

положения и надежная фиксация.

Преобладание дыхательных шу­

мов с одной стороны при аускуль-

тации грудной клетки.

Смещение раздувной манжетки в гортань

Связано с непосредственным сме­

Рентгенологическое уточнение по­

щением трубки.

ложения трубки.

Большая утечка воздуха со вто­

Надежная защита трубки от сме­

ричными нарушениями газообме­

Проблемы, связанные с обструкцией интубационной трубки представлены в табл.7.4.

Глава 7. Отрицательные эффекты искусственной вентиляции легких

Таблица 7.4. Типичные осложнения, связанные с обструкцией интубационной трубки

Закрытие интубационной трубки раздувной манжеткой

Причины и симптомы

Профилактика

Смещение манжетки при ее

Замена интубационной трубки, если

пераздувании

манжетка чрезмерно большая и необхо­

Признаки: внезапное повышение

дима изоляция верхней и нижней частей

пикового давления на вдохе с

развитием респираторной де­

компенсации

Невозможность проведения ка­

тетера для отсасывания

Закупорка трубки слизью

Причины и симптомы

Профилактика

Уплотнение секрета (обычно в

Замена трубки при наличии свиде­

трубке небольшого диаметра)

тельства ее сужения, например затруд­

Признаки: указаны выше

ненное продвижение катетера.

Использование адекватного увлажне­ ния.

Увеличение размера трубки или, если проблема постоянна, трахеостомирование.

7.2. Нарушения работы аппарата ИВЛ

Респираторы становятся все более и более сложными, оснаща­ ются дополнительными функциями, что несомненно полезно, по­ скольку появляется возможность более тонкой настройки аппарата при лечении вентиляционной недостаточности и дифференцирован­ ного подхода к пациентам с дыхательной недостаточностью. Однако увеличение количества технических манипуляций с аппаратом по­ вышает риск ятрогенных и технических осложнений. Приведем ти­ пичные нарушения работы аппарата ИВЛ:

Негерметичность и рассоединение дыхательного контура.

Недостатки в управлении аппаратом и отказ включения сигнала тревоги.

Глава 7. Отрицательные эффекты искусственной вентиляции легких

Неправильная настройка дыхательных параметров аппарата.

Неадекватное увлажнение дыхательной смеси.

Чрезмерное увлажнение, скопление воды в дыхательных шлан­

гах, аспирация воды, повышение давления в дыхательном кон­ туре.

Техническая сложность современных дыхательных аппаратов не позволяет клиницисту постоянно проводить адекватную оценку рабо­ ты респиратора, и часто нарушения функции аппарата ИВЛ регистри­ руются только при включении сигнала тревоги. Однако включение тревожной сигнализации активируется лишь третью нарушений функции аппарата ИВЛ. Отсоединение коннектора, так же как и де­ фекты работы клапанов аппарата, составляет около 40% случаев, и, по крайней мере, около 30% сбоев в работе аппарата являются итогом человеческих ошибок. По данным литературы, 30% этих событий со­ провождались существенными осложнениями. Неправильная уста­ новка параметров вентиляции может быть причиной баротравмы лег­ ких, более вероятной, если максимальное давление на вдохе превы­ шает 40 см вод. ст. Дополнительные проблемы возникают при спон­ танной вентиляции интубированных больных и связаны они с увели­ чением работы дыхания пациента для обеспечения движения воздуха через трубку и шланги аппарата. Отлучение от респиратора также проблематично из-за дополнительной рабочей нагрузки. Для облегче­ ния преодоления сопротивления дыханию целесообразна поддержка давлением (от 5 до 10 см вод. ст.).

7.3. Побочное влияние ИВЛ на легкие

ИВЛ оказывает отрицательное влияние на легкие. Проблемами являются инфицирование легких, изменения соотношения вентиля­ ции, и перфузии, податливости легких и вентиляция мертвого про­ странства. Паренхиматозные повреждения или баротравма - наибо­ лее тревожащая проблема. Разрыв альвеол вследствие перерастяже­ ния - обычный результат вентиляции с положительным давлением и может привести к потенциально опасному пневмотораксу, пневмомедиастинуму или пневмоперикарду. Длительное воздействие по­ ложительного давления вызывает развитие бронхо-легочной дисплазии.

Глава 7. Отрицательные эффекты искусственной вентиляции легких

Большинство детей после операций на сердце в раннем после­ операционном периоде нуждаются во вспомогательной вентиляции. Изменения дыхательной функции после анестезии и искусственного кровообращения требуют определенного периода восстановления, прежде чем вентиляция может быть прекращена и удалена интубационная трубка. Множество факторов, единичных или в сочетании, могут способствовать дыхательной недостаточности, и поэтому к проблеме необходим системный подход.

Баротравма: общие концепции и патофизиология. Классиче­ ская диагностика легочной баротравмы основана на обнаружении экстраальвеолярного воздуха в безвоздушных в норме полостях и тканях тела. К типичной локализации воздуха при баротравме отно­ сится пневмоторакс, пневмоперикард, пневмомедиастинум, подкож­ ная эмфизема и пневмоперитонеум. Все они являются вероятным следствием перерастяжения и разрыва альвеол. Баротравма легких обычно относится к тяжелым осложнениям. Менее драматичным, но одинаково серьезным, является длительное перерастяжение альвеол. Разрывы альвеол могут приводить к интерстициальной эмфиземе с формированием булл в паренхиме легкого, которые обнаруживают­ ся при рентгенографии, особенно если присутствуют плотные ин­ фильтраты. Рентгенографическими исследованиями почти в 90% случаев установлено наличие интерстициальной эмфиземы, предше­ ствующей развитию серьезной баротравмы. Рентгенографические изменения при этом достаточно тонкие и могут быть выявлены только квалифицированными клиницистами.

Основной причиной баротравмы является увеличение давления в дыхательных путях. Уровень PEEP, среднего давления и пикового давления на вдохе коррелирует со степенью баротравмы. Вообще Ppeak меньше 40 см вод. ст. у взрослых не вызывает очевидной ба­ ротравмы. Ppeak больше 70 см вод. ст. ведет к баротравме почти в половине случаев. Стоит обратить внимание на эти сообщения, и предельные давления применять только у пациентов с низким комплайнсом при РДС, у которых большое положительное давление не передается альвеолам. У пациентов с нормальной или высокой по­ датливостью легких вероятность баротравмы выше при низком дав­ лении, поскольку положительное давление передается альвеолам,

Глава 7. Отрицательные эффекты искусственной вентиляции легких

что ведет к их расширению и разрыву. Чрезмерно ослабленными легкие бывают в случае абсцедирующей и некротизирующей пнев­ монии. При лечении стероидами риск баротравмы при низком дав­ лении на вдохе также повышенный. Взаимосвязь между баротрав­ мой и увеличением летальности во многом отражает степень выра­ женности патологии самого легкого. Однако прогностическая цен­ ность баротравмы не выше, чем других признаков, таких как дли­ тельность вентиляции, фракция внутрилегочного шунтирования или легочный комплайнс.

Предотвращение. При развитии баротравмы ее трудно лечить, поскольку разрывы альвеол не отменяют необходимость проведения ИВЛ. Сопротивление экстраальвеолярных воздухоносных путей обычно очень низкое. Поэтому главным в профилактике баротравмы является снижение положительного давления на вдохе. Давление в дыхательных путях зависит от объема подаваемого воздуха, времени вдоха, характера потока и адекватности времени выдоха. В общем, у пациента с нормальным весом тела ДО составляет от 10 до 15 мл/кг массы тела. Нужно избегать неконтролируемого положительного давления с резким повышением объема вдоха при обеспечении ды­ хательной поддержки. Например, при расширенной волне вдуваемо­ го воздуха повышение пикового давления на вдохе более вероятно, чем при узкой волне. Неадекватно установленное время выдоха при­ водит к «накоплению воздуха» (внутреннее ПДКВ) и поэтому необ­ ходимо контролировать вероятное перераздувание. Наиболее часто перераздувание возникает при попытке отлучения пациента от аппа­ рата ИВЛ с использованием режима IMV у ослабленных больных с жесткими легкими, которые при спонтанном дыхании дышат ма­ ленькими объемами с большой частотой. Несинхронизированные дыхательные циклы аппаратного дыхания с неизменными времен­ ными параметрами заставляют пациентов прилагать дополнитель­ ные усилия при дыхании против потока аппаратной циркуляции, в результате чего увеличивается Рреаk.

Ситуация с более серьезными последствиями может возникать у пациентов с неврологическими расстройствами или у пациентов с несогласованной дыхательной активностью, которым проводится поддержка в режиме вспомогательно-контролируемой вентиляции.


0

Давление в дыхательных путях - чувствительный параметр, контролируемый во время . Монитор давления в дыхательных путях может быть установлен в аппарате, совмещен с абсорбером углекислого газа, находиться в разветвлении контура или около клапана вдоха со стороны пациента (оптимальное расположение). При последнем месторасположении можно выявить высокое, низкое или не меняющееся давление в дыхательных путях, что при двух других вариантах расположения может быть пропущено. При нахождении в области разветвления контура в случае обструкции инспираторного сегмента циркуляционного контура отмечается понижение пикового давления на вдохе, при обструкции экспираторного сегмента контура возникает повышение нижней точки и пикового давления в дыхательных путях. Для удобства в циркуляционном дыхательном контуре давление в дыхательных путях часто определяют в абсорбере углекислого газа. При таком расположении обструкция в любой части дыхательного контура (инспираторной или экспираторной) приведет к повышению пикового давления в дыхательных путях без изменения давления в нижней точке.

Высокое давление в дыхательных путях при ИВЛ: причины

A . Пиковое давление в дыхательных путях повышается при кашле, обструкции контура (обычно на уровне эндотрахеальной трубки), большом дыхательном объеме. В старых типах наркозных аппаратов повышение скорости потока газа приводит к повышению доставляемого дыхательного объема, особенно когда установлен небольшой дыхательный объем (например, у детей).

Б . Обструкция инспираторного сегмента дыхательного контура происходит вследствие различных причин, например при нарушении направления потока (при неправильной установке увлажнителя). При обструкции канала вдоха контура отмечается повышение пикового давления в дыхательных путях, если давление измеряется проксимальнее места обструкции (например, в абсорбере углекислого газа), и отмечается понижение давления в дыхательных путях, если давление измеряется дистальнее места обструкции (например в области разветвления контура)

B . Давление при инспираторной паузе (статическое давление в дыхательных путях во время задержки дыхания на вдохе) помогает дифференцировать повышенное сопротивление дыхательных путей и пониженную податливость грудной клетки (рисунок ниже, верхние графики). Пониженная податливость грудной клетки повышает уровень давления плато, тогда как при повышении сопротивления дыхательных путей уровень давления во время паузы понижен или не изменяется. Разница между давлением во время паузы и пиковым давлением в норме составляет 4-8 см водн. ст., оказывается больше при возрастании сопротивления дыхательных путей, так как увеличение пикового давления в данном случае происходит без сопутствующего повышения давления во время паузы.


Давление в дыхательных путях (верхние графики) и поток (нижние графики) помогает дифференцировать проблемы, связанные с низким комплайнсом и высоким сопротивлением. В норме разница между пиковым давлением и давлением во время паузы составляет 4-8 см водн. ст. Понижение комплайнса вызывает пропорциональное повышение обоих давлений, тогда как при увеличении сопротивления дыхательных путей возрастает только пиковое давление. Снижение комплайнса грудной клетки вызывает повышение пикового экспираторного потока и укорочение продолжительности экспираторного потока. При повышении сопротивления дыхательных путей, наоборот, снижается пиковый экспираторный поток и увеличивается длительность фазы выдоха.

Инспираторная пауза может создаваться некоторыми анестезиологическими вентиляторами, или вручную путем кратковременной окклюзии экспираторной части контура в начале выдоха. Такой ручной метод может быть использован, только если давление в дыхательных путях определяется в области разветвления контура. Скорость экспираторного потока также помогает дифференцировать повышения сопротивления от нарушений податливости. Скорость экспираторного потока можно качественно оценить путем наблюдения за скоростью подъема меха аппарата или с помощью аускультации длительности выдоха. Лучше всего его измерять спирометром, расположенным вблизи дыхательных путей или в экспираторной части дыхательного контура (рисунок выше, нижние кривые).

Г . Уменьшенная площадь поперечного сечения мелких или крупных дыхательных путей или эндотрахеальной трубки повышает сопротивление потоку. Для выявления уровня обструкции выслушивайте экспираторные шумы и наблюдайте за формой . Обструкция мелких дыхательных путей (бронхоспазм или хроническая обструктивная болезнь легких (ХОБЛ)) сопровождается экспираторными хрипами и скошенной формой альвеолярного плато капнограммы, которая обусловлена неравномерностью альвеолярной вентиляции. Обструкция крупных дыхательных путей (инородное тело в бронхе) или эндотрахеальной трубки (перегиб эндотрахеальной трубки) не сопровождается хрипами на выдохе или неравномерностью альвеолярной вентиляции. Наличие слизи или крови в дыхательных путях может создавать характерные слышимые свистящие хрипы, но не вызывает сглаживание альвеолярного плато на капнограмме.

Стоит отметить, что любой вид обструкции ведет к гипоксии, которая в свою очередь вызывает повреждение головного мозга и аритмии. Именно поэтому в входит мониторинг ЭКГ электрокардиографами (из этого можно узнать подробнее о таком оборудовании) или кардиомониторами.


Осложнения и побочные эффекты длительной искусственной вентиляции легких
со стороны пищеварительной системы. Обзор литературы.

(Институт исследований в хирургии, Форт Сэм Хьюстон, Сан Антонио, США)

Нет необходимости доказывать выраженный лечебный эффект искусственной вентиляции легких (ИВЛ) при многих вариантах как острой, так и хронической дыхательной недостаточности. Известно также, что ИВЛ не является абсолютно безопасным видом респираторной поддержки, – при определенных обстоятельствах этот метод может явиться непосредственной причиной, или, что случается чаще, благоприятным фоном для возникновения разнообразных патологических реакций в организме больного.

Лечение и интенсивный уход за больным на ИВЛ – процесс, требующий от медицинского персонала не только существенных затрат времени и физических сил, но и разностороннего опыта. Неслучайно в США считается правилом, что в ОРИТ за каждым таким больным должна быть закреплена индивидуальная круглосуточная медсестра, которая не должна отвлекаться для оказания плановой медпомощи другим пациентам отделения. Кроме того, больной на ИВЛ в течение суток многократно осматривается дежурным реаниматологом, респираторным терапевтом, а также ежедневно консультируется врачом-диетологом, рентгенологом, бронхологом и, по необходимости, другими специалистами клиники.

За рубежом уделяется пристальное внимание вопросам патогенеза, лечения и профилактики осложнений и побочных эффектов ИВЛ. Только в англоязычной прессе в течение года по этой теме публикуется несколько тысяч статей. Такой большой поток информации обусловлен как высокой частотой возникновения осложнений, так и тем влиянием, которое они оказывают на важнейшие показатели качества работы ОРИТ (сроки пребывания больного в палате интенсивного наблюдения, суммараная стоимость лечения, уровень летальности и т.д.)

Подавляющая часть публикаций по проблеме осложнений ИВЛ касается патологии, возникающей на уровне легких (вентилятор-индуцированное повреждение легких, вентилятор-ассоциированная пневмония, баротравма и т.д.). Внелегочные осложнения освещаются в печати заметно хуже. Пожалуй, среди этой группы побочных эффектов ИВЛ наиболее изученными являются изменения в системе гемодинамики . В меньшей степени известны практическим реаниматологам такие осложнения, как снижение контрактильной способности диафрагмы , неврологические нарушения , возникновение острых психопатий и посттравматического стресс-синдрома , изменения в структуре и функции желудочно-кишечной системы , почек , а также ряда других органов. Патогенетические механизмы реализации повреждающего воздействия ИВЛ при большинстве внелегочных осложнений многкомпонентны и носят опосредованный характер.

У больных ОРИТ динамика основного заболевания, функциональное состояние желудочно-кишечного тракта (ЖКТ) и адекватность легочной вентиляции находятся в постоянном динамическом взаимодействии. Кроме того, частота возникновения и тяжесть осложнений со стороны ЖКТ у больных реанимационного профиля может зависеть от ряда факторов, непосредственно влияющих систему пищеварения. К ним относятся: состояние после хирургического вмещательства на органах пищеварения, особенности проводимого питания больного, адекватность мер медикаментозной и немедикаментозной профилактики эрозивного гастрита и острых язв; прямой или опосредованный повреждающий эффект лекарственных препаратов, назначаемых больным во время ИВЛ, и т.д. (рис 1). Частота выявляемости тех или иных дисфункций пищеварительной системы во время длительной ИВЛ и наиболее типичные варианты патологии обобщены в таблицах 1 и 2 .

Снижение параметров спланхического кровообращения в целом и локальная гипоперфузия пищеварительной системы представляются наиболее значимыми механизмами негативного влияния ИВЛ на функциональное состояние ЖКТ . Выполнение ИВЛ, особенно с положительным давлением конца вдоха (ПДКВ), приводит к повышению внутригрудного давления, снижению венозного возврата за счет уменьшение градиента между средним давлением в венозной системе и давлением в правом предсердии . Уменьшение преднагрузки вызывает снижение сердечного выброса и гипотонию, которая более выражена у пациентов с фоновой гиповолемией, а также у лиц со сниженной способностью венозного русла к вазоконстрикции (например, – при назначении во время ИВЛ опиатов) .

Некоторые отличительные особенности сосудистой системы пищеварительной системы предрасполагают к гипоперфузии и ишемизации слизистой оболочки ЖКТ. Среди анатомических структур желудка и кишечника наиболее чувствительными к нарушениям микроциркуляции является мукозный слой . Сосуды, располагающиеся в нем, обладают весьма ограниченной способностью к ауторегуляции ответных реакций, возникающих в ходе снижения параметров системного кровотока, - компенсаторный спазм сохраняется долгое время даже после нормализации параметров общей гемодинамики . Во вторых, архитектура сосудистых сплетений слизистой оболочки ЖКТ обладает особенностями, схожими с медуллярным слоем почек, т.е. допускает шунтирование артериальной крови с формированием феномена обкрадывания верхушечной (дистальной) части ворсинок кишечника даже в условиях сравнительно стабильной гемодинамики. Наконец, содержание кислорода в сосудах, питающих мукозный слой ЖКТ, существенно снижено за счет выраженной гемодилюции, обусловленной абсорбцией жидкости и нутриентов из просвета кишечной трубки. В капиллярном русле кишечника показатель гематокрита может снижаться до 10% .

Проведение ИВЛ с положительными значениями давления конца вдоха (ПДКВ) сопровождается активизацией системы ренин-ангиотезин-альдостерон и повышением в крови уровня катехоламинов (симпатическая активация). Первоначально это было продемонстрировано в экспериментальных исследованиях, а недавно подтверждено в клинических условиях . Симпатомиметические эффекты, обусловленные ИВЛ, резко нарастают при одновременном введении пациентам с нестабильной гемодинамикой экзогенных катехоламинов . Снижение показателей системной и локальной гемодинамики в условиях ИВЛ с ПДКВ и повышенного сосудистого сопротивления приводит к гипоксии слизистой оболочки желудка и кишечника и повреждению ее целостности (образование эрозий, язв), а также замедлению скорости опорожнения желудка и снижению перистальтической активности кишечника .

Возможно, большую опасность, чем собственно гипоперфузия, представляет «реперфузионное повреждение», приводящее к более грубому повреждению эпителиальных клеток ЖКТ. Этот феномен описан при непродолжительных, но повторяющихся эпизодах ишемии кишечника . Считается, что именно реперфузионное повреждение играет ведущую роль в формировании у больных реанимационного профиля синдрома острой неокклюзивной мезентериальной ишемии .

Исследования, проводимые на протяжении последних 10 лет, подтвердили высокую значимость в развитии легочных и внелегочных осложнений ИВЛ дисбаланса цитокинов . Во время ИВЛ фактор некроза опухолей, интерлейкин (ИЛ)-1, ИЛ-8 и целый ряд других цитокинов, относящихся к провоспалительным медиаторам, способны высвобождаться из легких в системный кровоток и вызывать дистанционное повреждение во многих органах в том числе - ЖКТ . Было показано, что указанный механизм может быть вовлечен в патогенез синдрома спланхической гипоперфузии, а так же участвовать в гипотонии и атонии кишечника . С другой стороны, по некоторым экспериментальным данным, выбор режима ИВЛ способен оказывать корригирующее воздействие на локальную продукцию цитокинов в ишемизированном кишечнике .

Существенная часть побочных эффектов ИВЛ обусловлена медикаментозными назначениями, а также разнообразными методиками обеспечивающими проведение этого вида респираторной поддержки. Среди лекарственных препаратов, используемых у данной группы больных, с наибольшей частотой приводят к различным дисфункциям ЖКТ опиаты и седативные средства (особенно бензодиазепины) . Назначение медикаментов из этих групп способно привести к угнетению моторики желудка и кишечника, а также вызвать дилятацию венозного русла в ЖКТ и снижение перфузии кишечника. К другим лекарственным соединениям, применение которых может сопровождаться клинически значимыми побочными эффектами со стороны ЖКТ, относятся вазопрессоры, отдельные антибиотики, а также некоторые наполнители таблетированных препаратов (в частности, – сорбитол) .

Эрозивные и язвенные кровотечения. Повреждения мукозного слоя (ПМС) ЖКТ, обусловленные стрессом, представляют собой наиболее частую причину возникновения желудочных и кишечных кровотечений у больных ОРИТ, в том числе – среди пациентов на длительной ИВЛ. Уже через несколько часов после развития критического состояния при эндоскопии желудка становятся заметными субэпитальные петехии, часть из которых способна быстро прогрессировать в эрозии и язвы. По истечению суток эрозивный гастрит и стрессорные язвы желудка выявляются уже у 74-100% пациентов ОРИТ, имевших эпизод острой гипоксии . В типичных случаях петехии локализуются в области дна желудка. В пилорическом отделе ПМС форимруются реже и позднее, чем фундальные, но как правило, охватывают более глубокие слои. Кроме того, кровотечения из пилорических и 12-перстных язв чаще отличаются массивностью и хуже поддаются консервативному лечению .

Точечные субэпителиальные геморрагии и эрозии в желудке как правило асимптомны, однако, при целенаправленном обследовании нередко удается выявить признаки желудочного кровотечения в виде положительной реакции кала на «скрытую кровь». Более яркая симптоматика в виде отчетливой примеси крови в желудочном содержимом («кофейной гущи») или мелены свидетельствует о язвенным поражениям слизистой оболочки ЖКТ . Отмечено, что среди больных, нуждающихся в длительной респираторной поддержке, наибольшее число желудочных кровотечений наступает в течение первых двух недель ИВЛ .

С точки зрения практического удобства к желудочно-кишечным кровотечениям, несущим угрозу жизни больного, в США принято относить ситуации, когда: 1) отмечается снижение систолического артериального давления > 20 мм Hg (при отстутствии других причин для гипотензии), 2) объем кровопотери предопределяет необходимость в проведении гемотрансфузи. Отказ от назначения профилактической противоязвенной терапии повышает вероятность образования стрессорных язв. В этих условиях язвенное кровотечение той или иной степени выраженности отмечается у 25% больных . Далее, среди лиц с язвенным кровотечением у 20% отмечается кровопотеря, которая соответствует критериям «угрожающая жизни». Таким образом, тяжелое желудочно-кишечное кровотечение обнаруживается у 3-4% больных ОРИТ, не получающих специфической противоязвенной терапии . У этих пациентов сроки пребывания в ОРИТ возрастают в среднем на 11 дней , а стоимость лечения – на 12 тысяч долларов США .

Профилактика кровотечений. В последнее десятилетие в западных странах было отмечено существенное снижение частоты возникновения кровотечений из стрессорных язв желудка . Убедительного объяснения этому наблюдению пока не найдено. Вероятно, в какой-то мере это обусловлено повышением качества медицинского обслуживания больных ОРИТ и, возможно, более эффективной профилактикой гипоперфузии и ацидоза в слизистой оболочке желудка и кишечника .

В исследовании, включившем наблюдение за 167 пациентами ОРИТ, Zandstra и Stoutenbeek показали, что применение агрессивной гемодинамической поддержки, обеспечивающей адекватную перфузию слизистого слоя желудка, приводило к практически полному исчезновению случаев язвенного кровотечения (снижение частоты до 0,6%). Так как стабилизация гемодинамики на достаточном уровне достижима далеко не у всех реанимационных больных, использование других методов профилактики повреждений слизистого слоя ЖКТ представляется практически оправданным. В патогенезе язвенной болезни существеная роль отводится свободной соляной кислоте. В связи с этим, большинство используемых в настоящее время методов профилактики в ОРИТ основываются преимущественно на применении препаратов, препятствующих образованию соляной кислоты, нейтрализующей её или защищающих стенки желудка от воздействий HCl. В настоящее время в реанимационной практике используются практически все известные противоязвенные препараты и результаты их профилактического использования достаточно близкие . Возможно, некоторыми преимуществами обладают ингибиторы протонной помпы (эзомепразол, лансопразол, пантопразол и др.) . Существовавшее в 90-х гг. мнение о большей безопасности (риск ВАП!) и эффективности сукралфата в настоящее время поставлено под сомнение . При профилактическом назначении антацидов у больных на длительной ИВЛ измерение кислотности желудочного сока рекомендуется проводить по крайней мере один раз в сутки, считается желательным повышение рН желудочного сока выше 4,0. Частота введения антацидов рекомендована с интервалом в 1-2 часа. Применение Н 2 -блокторов даже в высоких дозах не гарантирует достижения указанного значения рН .

Другим, немедикаментозным методом профилактики кровотечений из стрессорных язв ЖКТ во время длительной ИВЛ считается назначение энтерального питания, которое, по некоторым данным, обладает эффективностью, не уступающей назначению противоязвенных препаратов . Механизм защитного действия энтерального питания до настоящего времени полностью не раскрыт. Однако, существуют предположения, что цитопротективный эффект может быть отчасти объяснен восстановлением энергетических источников в клетках эпителия желудка и ощелачивающим эффектом вводимой пищи . Заканчивая краткое рассмотрение подходов к профилактике кровотечений из ПМС, следует упомянуть о возможном повышении риска развития ВАП при назначении противоязвеных средств во время ИВЛ.

Эзофагиты. Повреждение слизистого слоя пищевода наблюдаются практически у половины больных, находящихся на длительной ИВЛ и составляют у них около 25% от всех кровотечений из верхних этажей ЖКТ . Предполагается, что ведущими механизмами возникновения эзофагитов могут служить желудочные зонды, гастроэзофагальный рефлюкс и дуоденогастральный рефлюкс (заброс желчи) .

Желудочные зонды (как постоянные, так и устанавливаемые лишь на непродолжительное время) приводят к механическому повреждению целостности слизистой оболочки и изменяют нормальный тонус мышечных сфинктеров пищевода, провоцируюя гастроэзофагальный рефлюкс . Считается, что введение желудочного зонда резко увеличивают вероятность и дуоденогастрального заброса, причем частота этого нежелательного феномена не зависит ни от размеров зонда, ни от его локализации [ 48, 59 ], но может быть связана с положением туловища больного в постели (желательно приподнять головной конец койки на 30-40 o) [ 51 ].

Вероятность возникновения эзофагита увеличивается при нарушении эвакуационной функции желудка (определяется как сохранение питательной смеси в желудке к моменту очередного планового введения зондового питания), а также при росте микробного числа в содержимом желудка (возрастает при забросе желчи в результате дуоденогастрального рефлюкса) .

Снижение моторики ЖКТ . Такие типичные проявления пониженной моторики ЖКТ, как застойное содержимое в желудке, снижение частоты возникновения кишечных шумов при аускультации брюшной полости, вздутие живота, задержка отхождения кишечных газов отмечается у половины больных, нуждающихся в длительной ИВЛ . С наибольшей частотой встречается застой в желудке (39%). Гипомоторика толстого кишечника выявляется несколько реже (16%). Большинство больных с явлениями нарушения моторики ЖКТ не способны к усвоению зондового питатания. Также у этой группы больных часто выявляется дуоденогастральный рефлюкс и колонизация желудка кишечной грам-отрицатоельной микрофлорой .

Достаточно эффективной мерой профилактики является коррекция электролитных нарушений (К, Mg) и рациональный подход при оценке целесообразности назначения препаратов, угнетающих перистальтику кишечника (впервую очередь – опиатов, допамина в дозах > 5 µg /кг/мин, фенотиазидов, дилтиазема, веропамила, лекарств, обладающих антихолинергическими эффектами). Нередко для декомпрессии ЖКТ используются введение постоянного зонда в желудок, введение в прямую кишку газоотводной трубки, в отдельных случаях – колоноскопия. Ректальные трубки вызывают выраженный дискомфорт у больных, изязвление слизистой кишки, инфекционные осложнения и даже перфорацию rectum .

К числу препаратов со стимулирующим эффектом на перестальтику кишечника относят эритромицин (200 мг х 1 раз в день) . Этот антибиотик не только вызывает повышение моторики пилорического отдела желудка, но и синхронизирует возникающие сокращения с перистальтическими волнами 12-перстной кишки. Другим эффективным препаратом для профилактики и лечения снижения моторики ЖКТ является метоклопрамид (10 мг х 2 р в день). Его применение позволяет резко ослабить угнетающий эффект допамина на перистальтку желудка и кишечника. Цисаприд (10 мг х 2 р в день), нередко используемый для стимуляции моторики ЖКТ, обладает выраженными побочными эффектами, среди которых наиболее опасными являются сердечные аритмии и высокий риск внезапной смерти больных .

Диаррея. Понос наблюдается почти у 50% больных, длительно находящихся на лечении в ОРИТ и он особенно вероятен среди пациентов, нуждающихся в ИВЛ . Несколько факторов могут быть вовлечены в патогенез диарреи у пациентов реанимационного профиля. Одной из наиболее распространенных причин являются погрешности в проведении зондового энтерального питания (12-25% от всех случаев поноса) . Smith с соавт. обнаружил достоверное повышение вероятности возникновения диарреи при скорости введения питательной смеси > 50 мл/час, а также при использовании гиперосмолярных смесей. С другой стороны, Heimburger с соавт. не нашел никакой связи между осмолярностью питательных смесей и вероятностью возникновения поноса. Другими возможными причинами поноса могут оказаться высокое содержание жиров в назначенном зондовом питании, кишечная инфекция (в частности, вызванная Clostridium difficile), назначение некоторых медикаментов, гипоальбуминемия, длительное голодание и т.д. Сравнительно недавно к числу вероятных причин возникновения поноса у больных реанимационного профиля был отнесен избыток желчных кислот в просвете кишечника. Исследования, выполненные на лабораторных животных, показали, что голодание в течение нескольких суток приводит к диффузной атрофии слизистой оболочки тонкого кишечника . Hernandez с соавт. получили аналогичные данные в ходе изучения биопсийного материала 12-перстной кишки, взятого у пациентов ОРИТ, не получавших энтерального питания более 4 дней. С теоретической точки зрения, нарушения функции слизистого слоя в дистальном отделе подвздошной кишки могут вызывать грубые нарушения обмена желчных кислот. Для проверки этого предположения DeMeo с соавт. провели изучение концентрации желчных кислот в кале у больных реанимационного профиля, не получавших энтерального питания более 5 дней. Из 19 обследованных больных тяжелый понос после начала энтерального питания возник у 18 (95%). У 85% больных концентрация желчных кислот в кале превышала нормальное значение в 5-10 раз. В этом исследовании назначение препаратов, связывающих желчные кислоты, привело к существенному улучшению состояния больных.

Нерациональное назначение антибиотиков служит причиной наступления поноса у 20-50% больных реанимационного профиля . Понос выявляется у 5-38% больных, получающих антибиотики . Частота обнаружения этого осложнения в ходе проведения антибиотикотерапии увеличилась за последнее годы в 5 раз . 15%-25% поносов, обусловленных приемом антибиотиков, связаны с дисбактериозом и колонизацией кишечника C . difficile . Проведение ИВЛ рассматривается как один из факторов риска для роста указанного микроорганизма . Те случаи, котрые не связаны с размножением указанного возбудителя, как правило ассоциированы с прямым действием антимикробных препаратов на двигательную активность тонкого кишечника, уменьшением ферментации сахаров в ЖКТ, выраженным повреждением кишечной стенки.

Поносы, обусловленные дисфункцией кишечника на фоне приема антибиотиков, обычно прекращаются вскоре после отмены препарата. Поносы, обуслолвенные C . difficile могут протекать очень тяжело и способны приводить не только к удлинению сроков госпитализации (в среднем на 3 недели ), но и к смерти больного. Ощутимые технические трудности в микробиологическом выявлении этого возбудителя могут затруднять своевременную этиологическую диагностику кишечной патологии. Первым шагом в лечении поноса, обусловленного C . difficile должно стать прекращение антибиотикотерапии (если для этого нет строгих противопоказаний). Пероральное назначение метронидазола остается остаётся средством выбора при лечении энтеритов, вызванных C . difficile . Ванкомицин следует считать средством резерва и назначать (per os ) лишь при полном отстуствии эффекта от метронидазола или при индивидуальной непереносимости этого препарата. Кроме того, вместо метронидазола ванкомицин назначают беременным .

Изоосмолярное зондовое питание может оказаться средством выбора при поносах, вызыванных предшествующим назначением гиперсомолярных смесей. Искусственно создавать гипоосмолярные питательные смеси (за счет разведения их водой) не имеет смысла, так как прекращению поноса это не способствует . Добавление в зондовое питание смесей, основанных на цельных или ферментативно модифицированных белках (Peptamine , Nestle , Deerfield и др.) не играет существенной роли в лечении диарреи у больных в критическом состоянии .

Общая гемодинамика и функциональное состояние ЖКТ . Как упоминалось выше, ИВЛ оказывает достаточно заметное влияние на системную гемодинмаку, особенно в тех случаях, когда применяется ПДКВ. Изучение особенностей перфузии ЖКТ при разных режимах ИВЛ проводилось преимущественно на экспериментальных моделях , которые, как представляется, достаточно точно отражают процессы, происходящие в организме больного человека. В исследованях на животных было показано, что применение ПДКВ = 10 см Н 2 О сопровождалось уменьшением сердечного выброса на 31%, а мезентериального кровотока – на 75% . В данном эксперименте инфузионная терапия способствовала почти полной нормализации сердечного выброса, но в меньшей степени влияла на показатели мезентереального кровотока, – они составляли не более 45% от физиологического уровня. По видимому, этот феномен обусловлен длительным артериолоспазмом. В пользу такого продположения свидетельствует и хороший клинический эффект от применения допексамина (мощный b 2 - адреностимулятор, агонист дофаминовых рецепторов), который обладает способностью препятствовать спазму артериол в кишечной стенке и избирательно улучшать мезентериальный кровоток во время ИВЛ . По экспериментальным данным при ишемии слизистой оболочки ЖКТ выраженным нормализующим эффектом на локальную перфузию также обладает длительная инфузия нового инотропного вазодилататора (инодилататора) левосимендана .

По результатам исследований, полученным около 20 лет назад, применение ПДКВ способствует снижению кровотока не только в кишечнике, но и в поджелудочной железе и желудке . Этот эффект может быть даже более выраженным, чем снижение перфузии в кишечнике. В экспериментальных моделях было показано, что применение ПДКВ = 15 Н 2 О в течение 24 часов сопровождается развитием острого панкреатита у значительной части лабораторный животных . В доступной литературе не удалось найти данных о роли ИВЛ в возникновении острого панкреатита у пациентов реанимационного профиля.

В экспериментах было доказано негативное влияние ПДКВ на показатели портального и печеночного артериального кровотока, а также на уровень оксигенации крови в печеночных венах (диагностический показатель адекватности снабжения печени кислородом) . Эти изменения поддавались коррекции при использовании интенсивной инфузионной терапии и, что интересно, также регрессировали при назначении энтерального питания .

Результаты выполненных к настоящему времени исследований не позволяют с уверенностью считать увеличение внутрибрюшного давления во время ИВЛ с ПДКВ существенным фатором в снижении спланхической гемодинамике. Однако, этот механизм (в сочетании с компрессией, вызывамой более низким расположением диафрагмы при ПДКВ) может оказаться задействованным в механизмах нарушения кровотока в печени . Этот эффект особенно заметен у больных с гипоксемией, гипотензией, а также при любых других патологических состояниях, ухудшающих снабжение печени кислородом .

Острый акалькулезный холецистит. Частота возникновения острого акалькулезного холецистиа (ОАХ) у больных, находящихся в ОРИТ, колеблется от 0,2% до 3% . Разумеется, кроме ИВЛ у данной группы пациентов имеются и другие факторы риска, такие как шок, сепсис, многочисленные гемотрансфузии, дегидратация, длительное отсутствие энтерального питания, назначение некоторых медикаментов, способствующих развитию гипокинезии желчного пузыря (опиаты, седативные препараты и др.) и т.д. Патогенез ОАХ сложный и включает по меньшей мере два основных фактора, воздействующих на эпителий желчноного пузыря: ишемический и химический (желчный). Снижение спланхического кровообращения под вляиением ИВЛ может иметь прямое повреждающее действие на эпителий желчного пузыря за счет ухудшения локальной гипоперфузии. В результате ишемии возникает гипомоторика желчного пузыря, приводящая к застою желчи. По некоторым данным гипотония желчного пузыря значительно чаще встречается у больных, находящихся на ИВЛ, по сравнению с пациентами ОРИТ с аналогичной патологией, но не нуждающихся в данном методе респираторной поддержки .

Снижение интенсивности и частоты сокращений желчного пузыря начинают выявляться уже через 24 часа после начала ИВЛ . Ранняя диагностика и активная лечебная тактика позволяет существенно снизить риск наступления летального исхода, вероятность которого в запущенных случаях ОАХ достигает 50% . Своевременное выявление данного осложнения у больных в критическом состоянии представляет собой достаточно сложную задачу (тяжесть основной и сопутствующей патлогии, нечеткая клиническая симптоматика, отсутствие патогномонических лабораторных критериев и т.д.). Диагностический поиск в первую очередь должен учитывать результаты ультразвукового исследования брюшной полости. Ведущими УЗИ-проявлениями ОАХ являются: утолщение стенок и расширение желчного пузыря в сочетании с обнаружение «хлопьев» желчи в его просвете (при отсутствии асцита или гипоальбуминемии) . Перечисленные признаки не обладают 100% специфичностью и чувствительностью, но являются весомым диагностическим аргументом. Проведение повторных УЗИ-исседований позволяет оценивать характер выявленных изменений в динамике, что существенно повышает информативность метода . Предложены специальные шкалы, позволяющие дать оценку вероятности ОАХ у больного в баллах . Имеются указания на существенно более высокую диагностическую чувствительность и специфичность компьютерной томографии и магнитно-ядерного резонанса по сравнению с УЗИ , однако выполнение этих методов исследования у больных в критическом состоянии представляет определенные технические трудности, особенно у пациентов на ИВЛ.

Проведение холецистэктомии является наиболее традиционным методом лечения ОАХ. У лиц в тяжелом и крайнетяжелом состоянии методом выбора может оказаться чрезкожная холецистостомия . Другой альтернативой может явиться эндоскопическая транспапиллярная холецистостомия .

Рис 1. Взаимодействие различных факторов, определяющих функциональное состояние желудочно-кишечного тракта у больных реанимационного профиля во время искусственной вентиляции легких. Обозначена возможность позитивного (+) и негативного (-) влияния отдельных звеньев представленной системы.

Таблица 1. Частота выявляемости различных изменений со стороны органов пищеварительной системы у больных, находящихся на длительной искусственной вентиляции легких (по Multlu G . с соавт., 2001).

Осложнение

Частота выявляемости (%)
Эрозивный эзофагит 48
Стресс-обусловленное повреждение мукозного слоя ЖКТ:

Асимптомное
- кровотечение, выявляемое при углубленном обследовании больного
- кровотечение, выявляемое при осмотре больного

74-100
5-25
3-4

Понос 15-51
Ослабление перистальтики кишечника 50
Наличие застоя в желудке 39
Запоры 15
Кишечная непроходимость 4-10
Острый акалькулезный холецистит 0,2-3

Список литературы

  1. Ackland G. Grocott M.P., Mythen M.G. Understanding gastrointestinal perfusion in critical care: so near, and yet so far // Crit Care.-2000.-V.5,№5-P.269-281.
  2. Aneman A., Ponten J., Fandriks L., et al. Hemodynamic, sympathetic and angiotensin II responses to PEEP ventilation before and during administration of isoflurane // Acta Anaesthesiol. Scand.-1997.-V.41,Jan(1Pt.1)-P.41-48.
  3. Archibald L.K., Banerjee S.N., Jarvis W.R. Secular trends in hospital-acquired Clostridium difficile disease in the United States, 1987-2001 // J. Infect. Dis.-2004.- V.189,№9.-P.1585-1589.
  4. Barbieri A., Siniscalchi A., De Pietri L., et al. Modifications of plasma concentrations of hormonal and tissue factors during mechanical ventilation with positive end-expiratory pressure // Int Angiol.-2004.-V.23,№2.-P.177-184.
  5. Bartsch S., Bruning A., Reimann F.M., et al. Haemodynamic effects of dopexamine on postprandial splanchnic hyperaemia // Eur J Clin Invest.-2004.- V34,№4.- P.268-274.
  6. Bassiouny H.S. Nonocclusive mesenteric ischemia // Surg Clin North Am.-1997.- V.77, №2.- P.319-326.
  7. Bellomo R. The cytokine network in the critically ill // Anaesth Intensive Care.-1992.- V.20,№3.-P.288-302.
  8. Beyer J., Messmer K. The effect of PEEP ventilation on hemodynamics and regional blood flow (author"s transl) // Klin Wochenschr. -1981.-V.59,№23.-P.1289-1295.
  9. Bonventre J.V. Pathophysiology of ischemic acute renal failure. Inflammation, lung-kidney cross-talk, and biomarkers // Contrib Nephrol.- 2004.-V.144.- P.19-30.
  10. Bouadma L., Schortgen F., Ricard J.D., et al. Ventilation strategy affects cytokine release after mesenteric ischemia-reperfusion in rats // Crit Care Med.- 2004.-V.32, №7.- P.1563-1569.
  11. Brienza N., Revelly J.P., Ayuse T., et al. Effects of PEEP on liver arterial and venous blood flows // Am J Respir Crit Care Med.-1995.- V.152, №2.- P.504-510.
  12. Brugge W.R., Friedman L.S. A new endoscopic procedure provides insight into an old disease: acute acalculous cholecystitis // Gastroenterology.-1994.- V.106, №6.-P.1718-1720.
  13. Chu E.K., Whitehead T., Slutsky A.S. Effects of cyclic opening and closing at low- and high-volume ventilation on bronchoalveolar lavage cytokines // Crit Care Med.- 2004.- V.32,№1.-P.168-174.
  14. Cleary R.K. Clostridium difficile-associated diarrhea and colitis: clinical manifestations, diagnosis, and treatment // Dis Colon Rectum.-1998.-V.41,№11.-P.1435-1449.
  15. Cook D.J., Griffith L.E., Walter S.D., et al. The attributable mortality and length of intensive care unit stay of clinically important gastrointestinal bleeding in critically ill patients // Crit Care.-2001.-V.5,№6.-P.368-375.
  16. Dark D.S., Pingleton S.K. Nonhemorrhagic gastrointestinal complications in acute respiratory failure // Crit Care Med.-1989.-V.17,№8.- P.755-758.
  17. Darlong V., Jayalakhsmi T.S., Kaul H.L., Tandon R. Stress ulcer prophylaxis in patients on ventilator // Trop Gastroenterol.-2003.-V.24,№3.- P.124-128.
  18. DeMeo M., Kolli S., Keshavarzian A., et al. Beneficial effect of a bile acid resin binder on enteral feeding induced diarrhea // Am J Gastroenterol.-1998.-V.93,№6.-P.967-671.
  19. Faehnrich J.A., Noone R.B.Jr., White W.D., et al. Effects of positive-pressure ventilation, pericardial effusion, and cardiac tamponade on respiratory variation in transmitral flow velocities // J Cardiothorac Vasc Anesth.-2003.-V.17,№1.-P.45-50.
  20. Fleischer G.M., Beau I., Herden P., et al. Is there a PEEP-induced pancreatitis in experiments? // Langenbecks Arch Chir.-1984.-V.362,№3.-P.185-192.
  21. Fournell A., Schwarte L.A., Kindgen-Milles D., et al. Assessment of microvascular oxygen saturation in gastric mucosa in volunteers breathing continuous positive airway pressure // Crit Care Med.-2003.-V.31,№6.- P.1705-1710.
  22. Gately J.F., Thomas E.J. Acute cholecystitis occurring as a complication of other diseases // Arch Surg.-1983.-V.118,№10.-P.1137-1141.
  23. Gottschlich M.M., Jenkins M.E., Mayes T., et al. The 2002 Clinical Research Award. An evaluation of the safety of early vs delayed enteral support and effects on clinical, nutritional, and endocrine outcomes after severe burns // J Burn Care Rehabil. 2002.-V.23,№6.-P.401-415.
  24. Granberg A., Engberg I.B., Lundberg D. Acute confusion and unreal experiences in intensive care patients in relation to the ICU syndrome. Part II // Intensive Crit Care Nurs.-1999.- V.15,№1.-P.19-33.
  25. Griffith D.P., McNally A.T., Battey C.H., et al. Intravenous erythromycin facilitates bedside placement of postpyloric feeding tubes in critically ill adults: a double-blind, randomized, placebo-controlled study // Crit Care Med.-2003.-V.31,№1.-P.39-44.
  26. Grossmann M., Abiose A., Tangphao O., et al. Morphine-induced venodilation in humans // Clin Pharmacol Ther.-1996.-V.60,№5.-P.554-560.
  27. Haitsma J.J., Uhlig S., Goggel R., et al. Ventilator-induced lung injury leads to loss of alveolar and systemic compartmentalization of tumor necrosis factor-alpha // Intensive Care Med.-2000.-V.26,№10.-P.1515-1522.
  28. Heimburger D.C., Geels W.J., Thiesse K.T., Bartolucci A.A. Randomized trial of tolerance and efficacy of a small-peptide enteral feeding formula versus a whole-protein formula // Nutrition.-1995.-V.11,№4.-P.360-364.
  29. Heimburger D.C., Sockwell D.G., Geels W.J. Diarrhea with enteral feeding: prospective reappraisal of putative causes // Nutrition.-1994.-V.10 б №5.-P.392-396.
  30. Helbich T.H., Mallek R., Madl C., et al. Sonomorphology of the gallbladder in critically ill patients. Value of a scoring system and follow-up examinations // Acta Radiol.-1997.- V.38,№1.-P.129-134.
  31. Hernandez G., Velasco N., Wainstein C., et al. Gut mucosal atrophy after a short enteral fasting period in critically ill patients // J Crit Care.-1999.-V.14,№2.-P.73-77.
  32. Ibanez J., Penafiel A., Raurich J.M., et al. Gastroesophageal reflux in intubated patients receiving enteral nutrition: effect of supine and semirecumbent positions // JPEN J Parenter Enteral Nutr.-1992.-V.16,№5.-P.419-422.
  33. Ibrahim E.H., Mehringer L., Prentice D., et al. Early versus late enteral feeding of mechanically ventilated patients: results of a clinical trial // JPEN J Parenter Enteral Nutr.-2002.-V.26,№3.-P.174-181.
  34. Jardin F., Vieillard-Baron A. Right ventricular function and positive pressure ventilation in clinical practice: from hemodynamic subsets to respirator settings // Intensive Care Med.-2003.-V.29,№9.-P.1426-1434.
  35. Jeffrey R.B.Jr., Sommer F.G. Follow-up sonography in suspected acalculous cholecystitis: preliminary clinical experience // J Ultrasound Med.-1993.-V.12,№4.-P.183-187.
  36. Jobe B.A., Grasley A., Deveney K.E., et al. Clostridium difficile colitis: an increasing hospital-acquired illness // Am J Surg.-1995.-V.169,№5.-P.480-483.
  37. Kaczmarczyk G., Vogel S., Krebs M., et al. Vasopressin and renin-angiotensin maintain arterial pressure during PEEP in nonexpanded, conscious dogs // Am J Physiol.-1996.-V.271,№5(Pt 2).-P.1396-402.
  38. Kahle M., Lippert J., Willemer S., et al. Effects of positive end-expiratory pressure (PEEP) ventilation on the exocrine pancreas in minipigs // Res Exp Med (Berl).-1991.-V.191,№5.-P.309-325.
  39. Kantorova I., Svoboda P., Scheer P., et al. Stress ulcer prophylaxis in critically ill patients: a randomized controlled trial // Hepatogastroenterology.-2004.-V.51,№57.-P.757-761.
  40. Kiefer P., Nunes S., Kosonen P., et al. Effect of positive end-expiratory pressure on splanchnic perfusion in acute lung injury // Intensive Care Med.-2000.-V.26,№4.-P.376-383.
  41. Kitchen P., Forbes A. Parenteral nutrition // Curr Opin Gastroenterol.-2003.- V.19,№2.-P.144-147.
  42. Klemm K., Moody F.G. Regional intestinal blood flow and nitric oxide synthase inhibition during sepsis in the rat // Ann Surg.-1998.-V.227,№1.-P.126-133.
  43. Lehtipalo S., Biber B., Frojse R., et al. Effects of dopexamine and positive end-expiratory pressure on intestinal blood flow and oxygenation: the perfusion pressure perspective // Chest.-2003.-V.124,№2.-P.688-698.
  44. Levy H., Hayes J., Boivin M., Tomba T. Transpyloric feeding tube placement in critically ill patients using electromyogram and erythromycin infusion // Chest.-2004.- V.125,№2.-P.587-591.
  45. Love R., Choe E., Lippton H., et al. Positive end-expiratory pressure decreases mesenteric blood flow despite normalization of cardiac output // J Trauma.-1995.- V.39,№2.-P.195-199.
  46. Maher J., Rutledge F., Remtulla H., et al. Neuromuscular disorders associated with failure to wean from the ventilator // Intensive Care Med.-1995.-V.21,№9.-P.737-743.
  47. Marik P.E., Kaufman D. The effects of neuromuscular paralysis on systemic and splanchnic oxygen utilization in mechanically ventilated patients // Chest.-1996.- V.109,№4.-P.1038-1042.
  48. Meert K.L., Daphtary K.M., Metheny N.A. Gastric vs small-bowel feeding in critically ill children receiving mechanical ventilation: a randomized controlled trial // Chest.-2004.-V.126,№3.-P.872-878.
  49. Meisner F.G., Habler O.P., Kemming G.I., et al. Changes in p(i)CO(2) reflect splanchnic mucosal ischaemia more reliably than changes in pH(i) during haemorrhagic shock // Langenbecks Arch Surg.-2001.-V.386,№5.-P.333-338.
  50. Melin M.M., Sarr M.G., Bender C.E., et al. Percutaneous cholecystostomy: a valuable technique in high-risk patients with presumed acute cholecystitis // Br J Surg.-1995.- V.82,№9.-P.1274-1277.
  51. Metheny N.A., Schallom M.E., Edwards S.J. Effect of gastrointestinal motility and feeding tube site on aspiration risk in critically ill patients: a review // Heart Lung.- 2004.-V.33,№3.-P.131-145.
  52. Milla P.J. Inflammatory cells and the regulation of gut motility // J Pediatr Gastroenterol Nutr.-2004.-V.39 (Suppl 3).-S.750.
  53. Mutlu G.M., Mutlu E.A., Factor P. GI complications in patients receiving mechanical ventilation // Chest.-2001.-V.119,№4.-P.1222-1241.
  54. Mutlu G.M., Mutlu E.A., Factor P. Prevention and treatment of gastrointestinal complications in patients on mechanical ventilation // Am J Respir Med.-2003.- V.2,№5.-P.:395-411.
  55. Nies C., Zielke A., Hasse C., et al. Atony of the gallbladder as a risk factor for acalculous cholecystitis. What is the effect of intensive care? // Zentralbl Chir.- 1994.-V.119,№2.-P.75-80.
  56. Noone T.C., Semelka R.C., Chaney D.M., et al. Abdominal imaging studies: comparison of diagnostic accuracies resulting from ultrasound, computed tomography, and magnetic resonance imaging in the same individual // Magn Reson Imaging.-2004.-V.22,№1.-P.19-24.
  57. Nunes S., Rothen H.U., Brander L., et al. Changes in splanchnic circulation during an alveolar recruitment maneuver in healthy porcine lungs // Anesth Analg.-2004.- V.98,№5.-P.1432-1438.
  58. Oldenburg W.A., Lau L.L., Rodenberg T.J. et al. Acute mesenteric ischemia: a clinical review // Arch Intern Med.-2004.-V.24,164(10).-P.1054-1062.
  59. Orozco-Levi M., Felez M., Martinez-Miralles E., et al. Gastro-oesophageal reflux in mechanically ventilated patients: effects of an oesophageal balloon // Eur Respir J.- 2003.-V.22,№2.-P.348-353.
  60. Pannu N., Mehta R.L. Effect of mechanical ventilation on the kidney // Best Pract Res Clin Anaesthesiol.-2004.-V.18,№1.-P.189-203.
  61. Plaisier P.W., van Buuren H.R., Bruining H.A. An analysis of upper GI endoscopy done for patients in surgical intensive care: high incidence of, and morbidity from reflux oesophagitis // Eur J Surg.-1997.-V.163,№12.-P.903-907.
  62. Purcell P.N., Branson R.D., Hurst J.M, et al. Gut feeding and hepatic hemodynamics during PEEP ventilation for acute lung injury // J Surg Res.-1992.-V.53,№4.-P.335-341.
  63. Rady M.Y., Kodavatiganti R., Ryan T. Perioperative predictors of acute cholecystitis after cardiovascular surgery // Chest. 1998.-V.114,№1.-P.76-84.
  64. Raff T., Germann G., Hartmann B. The value of early enteral nutrition in the prophylaxis of stress ulceration in the severely burned patient // Burns.-1997.-V.23,№4.-P.313-318.
  65. Rello J., Lorente C., Diaz E., et al. Incidence, etiology, and outcome of nosocomial pneumonia in ICU patients requiring percutaneous tracheotomy for mechanical ventilation // Chest.-2003.-V.124,№6.-P.2239-2243.
  66. Ringel A.F., Jameson G.L., Foster E.S. Diarrhea in the intensive care patient // Crit Care Clin.-1995.- V.11,№2.-P.465-477.
  67. Ruiz-Santana S., Ortiz E., Gonzalez B., et al. Stress-induced gastroduodenal lesions and total parenteral nutrition in critically ill patients: frequency, complications, and the value of prophylactic treatment. A prospective, randomized study // Crit Care Med.-1991 Jul;19(7):887-91.
  68. Schuster D.P., Rowley H., Feinstein S., et al. Prospective evaluation of the risk of upper gastrointestinal bleeding after admission to a medical intensive care unit // Am J Med.-1984.-V.76,№4.-623-630.
  69. Schwarte L.A., Picker O., Bornstein S.R., et al. Levosimendan is superior to milrinone and dobutamine in selectively increasing microvascular gastric mucosal oxygenation in dogs // Crit Care Med.-2005.-V.33,№1.-P.135-142.
  70. Severinghaus J.W. Continuous positive airway pressure, shock therapy, and gastric mucosal oxygenation // Crit Care Med.-2003.-V.31,№6.-P.1870-1871.
  71. Shanely R.A., Zergeroglu M.A., Lennon S.L., et al. Mechanical ventilation-induced diaphragmatic atrophy is associated with oxidative injury and increased proteolytic activity // Am J Respir Crit Care Med.-2002.-V.166,№10.-P.1369-1374.
  72. Shaw R.J., Harvey J.E., Nelson K.L., et al. Linguistic analysis to assess medically related posttraumatic stress symptoms // Psychosomatics.-2001.-V.42,№1.-P.35-40.
  73. Silk D.B. Enteral vs parenteral nutrition // Clin Nutr.-2003.-V.22.(Suppl 2).-P.43-48.
  74. Smith C.E., Marien L., Brogdon C., et al. Diarrhea associated with tube feeding in mechanically ventilated critically ill patients // Nurs Res.-1990.-V.39,№3.-P.148-152.
  75. Spain D.A., Kawabe T., Keelan P.C., et al. Decreased alpha-adrenergic response in the intestinal microcirculation after "two-hit" hemorrhage/resuscitation and bacteremia // J Surg Res.-1999.-V.84,№2.-P.180-185.
  76. Spirt M.J. Stress-related Mucosal Disease // Curr Treat Options Gastroenterol.-2003.- V.6,№2.-P.135-145.
  77. Spirt M.J.. Stress-related mucosal disease: risk factors and prophylactic therapy // Clin Ther.-2004.-V.26,№2.-P.197-213.
  78. Sung J.J. The role of acid suppression in the management and prevention of gastrointestinal hemorrhage associated with gastroduodenal ulcers // Gastroenterol Clin North Am.-2003.-V.32(3 Suppl).-S.11-23.
  79. Terdiman J.P., Ostroff J.W. Gastrointestinal bleeding in the hospitalized patient: a case-control study to assess risk factors, causes, and outcome // Am J Med.-1998.- V.104,№4.-P.349-354.
  80. Tryba M., Cook D. Current guidelines on stress ulcer prophylaxis // Drugs.-1997.- V.54,№4.-P.581-596.
  81. Tyberg J.V., Grant D.A., Kingma I., et al. Effects of positive intrathoracic pressure on pulmonary and systemic hemodynamics // Respir Physiol.-2000.-V.119,№2-3.-P.171-179.
  82. Uhlig S., Ranieri M., Slutsky A.S. Biotrauma hypothesis of ventilator-induced lung injury // Am J Respir Crit Care Med.-2004.-V.169,№2.-P.314-315
  83. Vincent J.L. Ventilator-associated pneumonia // J Hosp Infect.-2004.-V.57,№4.-P.272-280.
  84. Wang A.J., Wang T.E., Lin C.C., et al. Clinical predictors of severe gallbladder complications in acute acalculous cholecystitis // World J Gastroenterol.-2003.- V.9,№12.-P.2821-2823.
  85. Wilmer A., Tack J., Frans E., et al. Duodenogastroesophageal reflux and esophageal mucosal injury in mechanically ventilated patients // Gastroenterology.-1999.- V.116,№6.-P.1293-1299.
  86. Wu T.J., Liu Z.J., Zhao Y.M., et al. Clinical analysis of the factors related to diarrhea in intensive care unit // Zhongguo Wei Zhong Bing Ji Jiu Yi Xue.-2004.-V.16,№12.-P.747-749.
  87. Yang Y.X., Lewis J.D. Prevention and treatment of stress ulcers in critically ill patients // Semin Gastrointest Dis.-2003.-V.14,№1.-P.11-19.
  88. Zandstra D.F., Stoutenbeek C.P. The virtual absence of stress-ulceration related bleeding in ICU patients receiving prolonged mechanical ventilation without any prophylaxis. A prospective cohort study // Intensive Care Med.-1994.-V.20,№5.-P.335-340.

При разработке подходов к подбору параметров ИВЛ нам пришлось преодолеть ряд предубеждений, традиционно «кочующих» из одной книги в другую и для многих реаниматологов ставших практически аксиомами. Эти предубеждения можно сформулировать следующим образом:

ИВЛ вредна для мозга, так как повышает ВЧД и опасна для центральной гемодинамики, так как снижает сердечный выброс.
Если врач вынужден проводить ИВЛ у пострадавшего с тяжелой ЧМТ, ни в коем случае нельзя применять PEEP, так как это еще больше повысит внутригрудное давление и усилит отрицательные эффекты ИВЛ на мозг и центральную гемодинамику.
Повышенные концентрации кислорода во вдыхаемой больным смеси опасны из-за вызываемого ими спазма сосудов мозга и прямого повреждающего эффекта на легкие. Кроме того, при проведении оксигенотерапии имеются возможность угнетения дыхания из-за снятия гипоксической стимуляции дыхательного центра.

Специально проведенные нами исследования показали, что бытующие представления об отрицательном влиянии аппаратного дыхания на внутричерепное давление не имеют под собой почвы. ВЧД при проведении ИВЛ может повышаться не из-за простого факта перевода больного со спонтанной вентиляции на поддержку респиратором, а из-за возникновения борьбы больного с респиратором. Влияние перевода больного с самостоятельного дыхания на искусственную вентиляцию легких на показатели церебральной гемодинамики и оксигенации мозга был исследован нами у 43 пострадавших с тяжелой ЧМТ.

Респираторная поддержка начиналась ввиду угнетения уровня сознания до сопора и комы. Признаки дыхательной недостаточности отсутствовали. При проведении ИВЛ у большинства пациентов отмечена нормализация церебральной артериовенозной разницы по кислороду, что свидетельствало об улучшении его доставки к мозгу и купировании церебральной гипоксии. При переводе больных со спонтанного дыхания на искусственную вентиляцию легких существенных изменений ВЧД и ЦПД не было.

Совершенно другая ситуация складывалась при несинхронности дыхательных попыток больного и работы респиратора. Подчеркнем, что нужно различать два понятия. Первое понятие – это несинхронность дыхания больного и работы респиратора, присущее ряду современных режимов вентиляции (в частности BiPAP), когда независимо друг от друга существуют спонтанное дыхание и механические вдохи. При правильном подборе параметров режима данная несинхронность не сопровождается повышением внутригрудного давления и каким-либо отрицательным влиянием на ВЧД и центральную гемодинамику. Второе понятие – борьба больного с респиратором, которая сопровождается дыханием пациента через закрытый контур аппарата ИВЛ и вызывает повышение внутригрудного давления более 40-50 см вод. ст. «Борьба с респиратором» очень опасна для мозга. В наших исследованиях получена следующая динамика показателей нейромониторинга - снижение церебральной артериовенозной разницы по кислороду до 10-15% и повышение ВЧД до 50 мм рт.ст. и выше. Это свидетельствовало о развитии гиперемии мозга, вызывавшей нарастание внутричерепной гипертензии.

На основании проведенных исследований и клинического опыта для предупреждения борьбы с респиратором мы рекомендуем применять специальный алгоритм подбора параметров вспомогательной вентиляции.

Алгоритм подбора параметров ИВЛ.
Устанавливают так называемые базовые параметры вентиляции, обеспечивающие поступление кислородно-воздушной смеси в режиме нормовентиляции: V T = 8-10 мл/кг, F PEAK = 35-45 л/мин, f = 10-12 в 1 мин, PEEP = 5 см вод. ст., нисходящая форма потока. Величина МОД должна составлять 8-9 л/мин. Обычно используют Assist Control или SIMV + Pressure Support, в зависимости от вида респиратора. Подбирают такую чувствительность триггера, которая будет достаточно высокой, чтобы не вызывать десинхронизации больного и респиратора. В то же время она должна быть достаточно низкой, чтобы не вызывать аутоциклирования аппарата ИВЛ. Обычная величина чувствительности по давлению (-3)–(-4) см вод. ст., по потоку (-2)–(-3) л/мин. В результате больному обеспечивается поступление гарантированного минутного объема дыхания. При возникновении дополнительных дыхательных попыток респиратор увеличивает поступление кислородно-воздушной смеси. Такой подход удобен и безопасен, однако требует постоянного контроля над величиной МОД, paCO 2 , насыщения кислородом гемоглобина в венозной крови мозга, так как имеется опасность развития пролонгированной гипервентиляции.

Что касается возможных расстройств гемодинамики при проведении ИВЛ, то к этому выводу приходят обычно на основании следующей цепочки умозаключений: «ИВЛ проводится методом вдувания воздуха в легкие, поэтому при ней повышается внутригрудное давление, что вызывает нарушения венозного возврата к сердцу. В результате повышается ВЧД и падает сердечный выброс». Однако вопрос не столь однозначен. В зависимости от величины давления в дыхательных путях, состояния миокарда и степени волемии при проведении ИВЛ сердечный выброс может как повышаться, так и снижаться.

Следующей проблемой при проведении ИВЛ у пострадавших с ЧМТ является безопасность применения повышенного давления в конце выдоха (РЕЕР). Хотя G. МcGuire et al. (1997) продемонстрировали отсутствие существенных изменений ВЧД и ЦПД при повышении РЕЕР до 5, 10 и 15 см вод.ст. у пациентов с разным уровнем внутричерепной гипертензии, мы провели собственное исследование. По нашим данным, в первые 5 сут тяжелой ЧМТ при величинах PEEP к концу выдоха 5 и 8 см вод.ст. отмечались незначительные изменения ВЧД, что позволяло сделать вывод о допустимости применения этих значений РЕЕР с точки зрения внутричерепной гемодинамики. В то же время уровень РЕЕР 10 см вод.ст. и выше у ряда больных существенно влиял на ВЧД, повышая его на 5 мм рт. ст. и более. Следовательно, такое повышение давления в конце выдоха можно использовать только при незначительной исходной внутричерепной гипертензии.

В реальной клинической практике проблема влияния PЕEP на ВЧД не встает столь остро. Дело в том, что вызываемое применением РЕЕР повышение внутригрудного давления по-разному влияет на давление в венозной системе в зависимости от степени повреждения легких. В случае здоровых легких с нормальной податливостью повышение РЕЕР распределяется примерно поровну между грудной клеткой и легкими. На венозное давление влияет только давление в легких. Приведем примерный расчет: при здоровых легких повышение РЕЕР на 10 см вод. ст. будет сопровождаться повышением ЦВД и ВЧД на 5 см вод. ст. (что составляет примерно 4 мм рт. ст.). В случае увеличения жесткости легких повышение РЕЕР в основном приводит к растяжению грудной клетки и практически вообще не сказывается на внутрилегочном давлении. Продолжим расчеты: при пораженных легких повышение РЕЕР на 10 см вод. ст. будет сопровождаться повышением ЦВД и ВЧД лишь на 3 см вод. ст. (что составляет примерно 2 мм рт. ст.). Таким образом, в тех клинических ситуациях, в которых необходимо значительное повышение PEEP (остром повреждении легких и ОРДС), даже большие его величины существенно не влияют на ЦВД и ВЧД.

Еще одна проблема – возможные отрицательные эффекты повышенных концентраций кислорода. В нашей клинике у 34 пациентов специально исследовано влияние оксигенации 100%-ным кислородом продолжительностью от 5 до 60 мин на тонус сосудов головного мозга. Ни в одном из клинических случаев не отмечено снижения ВЧД. Этот факт свидетельствовал о том, что внутричерепной объем крови не изменялся. Следовательно, не было сужения сосудов и развития церебрального вазоспазма. Вывод подтверждало исследование линейной скорости кровотока в крупных артериях мозга методом транскраниальной допплерографии. Ни у одного из обследованных больных при подаче кислорода линейная скорость кровотока в средней мозговой, передней мозговой и основной артериях достоверно не менялась. Существенных изменений АД и ЦПД при оксигенации 100%-ным кислородом нами также не отмечено. Таким образом, из-за особой чувствительности пострадавшего мозга к гипоксии нужно полностью отказаться от проведения ИВЛ с использованием чисто воздушных смесей. Необходимо применение кислородно-воздушных смесей с содержанием кислорода 0,35-0,5 (чаще всего 0,4) в течение всего периода проведения искусственной и вспомогательной вентиляции легких. Мы не исключаем возможности применения и более высоких концентраций кислорода (0,7-0,8, вплоть до 1,0) для целей экстренной нормализации оксигенации головного мозга. Этим достигается нормализация повышенной артериовенозной разницы по кислороду. Применение повышенного содержания кислорода в дыхательной смеси нужно стремиться ограничить короткими сроками, учитывая известные повреждающие эффекты гипероксигенации на легочную паренхиму и возникновение абсорбционных ателектазов.

Немного физиологии
Как всякое лекарство, кислород может быть и полезен, и вреден. Извечная проблема реаниматолога: «Что опаснее для больного – гипоксия или гипероксия?». О негативных эффектах гипоксии написаны целые руководства, поэтому отметим ее главный отрицательный эффект. Для того чтобы нормально функционировать, клетки нуждаются в энергии. Причем не в любом виде, а только в удобной форме, в виде молекул–макроэргов. В процессе синтеза макроэргов образуются лишние атомы водорода (протоны), эффективно удалить которые можно только по так называемой дыхательной цепочке путем связывания с атомами кислорода. Для работы этой цепочки нужно большое количество кислородных атомов.

Однако использование высоких концентраций кислорода тоже может запускать ряд патологических механизмов. Во-первых, это образование агрессивных свободных радикалов и активация процесса перекисного окисления липидов, сопровождающегося разрушением липидного слоя клеточных стенок. Особенно этот процесс опасен в альвеолах, так как они подвергаются действию наибольших концентраций кислорода. При длительной экспозиции 100%-ный кислород может вызывать поражение легких по типу ОРДС. Не исключено участие механизма перекисного окисления липидов в поражении других органов, например мозга.

Во-вторых, если в легкие поступает атмосферный воздух, то он на 21% состоит из кислорода, нескольких процентов водяных паров и более чем на 70% из азота. Азот – химически инертный газ, в кровь не всасывается и остается в альвеолах. Однако химически инертный – это не означает бесполезный. Оставаясь в альвеолах, азот поддерживает их воздушность, являясь своеобразным экспандером. Если воздух заменить чистым кислородом, то последний может полностью всосаться (абсорбироваться) из альвеолы в кровь. Альвеола спадется, и образуется абсорбционный ателектаз.

В-третьих, стимуляция дыхательного центра вызывается двумя путями: при накоплении углекислоты и недостатке кислорода. У пациентов с резко выраженной дыхательной недостаточностью, особенно у так называемых «дыхательных хроников», дыхательный центр постепенно становится нечувствителен к избытку углекислоты и основное значение в его стимуляции приобретает недостаток кислорода. Если этот недостаток купировать введением кислорода, то из-за отсутствия стимуляции может произойти остановка дыхания.

Наличие негативных эффектов повышенных концентраций кислорода диктует настоятельную необходимость сокращения времени их использования. Однако если больному угрожает гипоксия, то ее отрицательное влияние гораздо опаснее и проявится быстрее, чем негативный эффект гипероксии. В связи с этим для профилактики эпизодов гипоксии необходимо всегда применять преоксигенацию больного 100% кислородом перед любой транспортировкой, интубацией трахеи, сменой интубационной трубки, трахеостомией, санацией трахеобронхиального дерева. Что касается угнетения дыхания при повышении концентрации кислорода, то указанный механизм действительно может иметь место при ингаляции кислорода у больных с обострением хронической дыхательной недостаточности. Однако в этой ситуации необходимо не увеличение концентрации кислорода во вдыхаемом воздухе при самостоятельном дыхании больного, а перевод больного на искусственную вентиляцию, что снимает актуальность проблемы угнетения дыхательного центра гипероксическими смесями.

Кроме гиповентиляции, приводящей к гипоксии и гиперкапнии, опасной является и гипервентиляция. В наших исследованиях, как и в других работах (J. Muizelaar et al., 1991), установлено, что необходимо избегать намеренной гипервентиляции. Возникающая при этом гипокапния вызывает сужение сосудов мозга, увеличение церебральной артериовенозной разницы по кислороду, уменьшение мозгового кровотока. В то же время, если по какой-либо причине, например, из-за гипоксии или гипертермии, у больного развивается спонтанная гипервентиляция, то не все средства хороши для ее устранения.

Необходима коррекция причины, вызвавшей повышение объема минутной вентиляции. Нужно снизить температуру тела, используя ненаркотические анальгетики и (или) физические методы охлаждения, устранить гипоксию, вызванную обструкцией дыхательных путей, недостаточной оксигенацией дыхательной смеси, гиповолемией, анемией. При необходимости возможно применение седативных препаратов в расчете на снижение потребления организмом кислорода и уменьшение необходимой минутной вентиляции легких. Однако нельзя просто применить миорелаксанты и навязать больному желаемый объем вентиляции при помощи аппарата ИВЛ, так как существует серьезная опасность резкой внутричерепной гипертензии из-за быстрой нормализации уровня углекислоты в крови и гиперемии церебральных сосудов. Мы уже приводили результаты наших исследований, которые показали, что нежелательно не только повышение уровня углекислоты выше нормы 38-42 мм рт.ст., но даже быстрая нормализация значений р а СО 2 после периода длительной гипокапнии.

При выборе параметров вентиляции очень важно оставаться в рамках концепции «open lung rest» (A. Doctor, J. Arnold, 1999). Современные представления о ведущем значении баро- и волюмотравмы в развитии повреждения легких при ИВЛ диктуют необходимость тщательного контроля пикового давления в дыхательных путях, которое не должно превышать 30-35 см вод.ст. При отсутствии поражения легких дыхательный объем, подаваемый респиратором, составляет 8-10 мл/кг массы больного. При выраженном поражении легких дыхательный объем не должен превышать 6-7 мл/кг. Для профилактики коллабирования легких используют РЕЕР 5-6 см вод. ст., а также периодические раздувания легких полуторным дыхательным объемом (sigh) или повышение РЕЕР до 10-15 см. вод. ст. на протяжении 3-5 вдохов (1 раз на 100 дыхательных движений).

Статья, посвященная проблеме выбора «правильного» аппарата ИВЛ для клиники или амбулатории.

1. Что такое искусственная вентиляция лёгких?
Искусственная вентиляция лёгких (ИВЛ) - это форма вентиляции, призванная решать ту задачу, которую в норме выполняют дыхательные мышцы. Задача включает в себя обеспечение оксигенации и вентиляции (удалении углекислого газа) пациента. Существует два главных типа ИВЛ: вентиляция с положительным давлением и вентиляция с отрицательным давлением. Вентиляция с положительным давлением может быть инвазивной (через эндотрахеальную трубку) или неинвазивной (через лицевую маску). Возможна также вентиляция с переключением фаз по объёму и по давлению (см. вопрос 4). К многочисленным разным режимам ИВЛ относятся управляемая искусственная вентиляция (CMV в английской аббревиатуре - ред. ), вспомогательная искусственная вентиляция (ВИВЛ, ACV в английской аббревиатуре), перемежающаяся принудительная (мандаторная ) вентиляция (IMV в английской аббревиатуре), синхронизированная перемежающаяся принудительная вентиляция (SIMV), вентиляция с контролируемым давлением (PCV), вентиляция с поддерживающим давлением (PSV), вентиляция с инвертированным отношением вдоха и выдоха (иИВЛ, IRV), вентиляция сбросом давления (PRV в английской аббревиатуре) и высокочастотные режимы.
Важно делать отличие между эндотрахеальной интубацией и ИВЛ, поскольку одно необязательно подразумевает другое. Например, больной может нуждаться в эндотрахеальной интубации для обеспечения проходимости дыхательных путей, однако при этом оставаться ещё способным самостоятельно поддерживать вентиляцию через эндотрахеальную трубку, обходясь без помощи ИВЛ.

2. Каковы показания к ИВЛ?
ИВЛ показана при многих расстройствах. В то же время, во многих случаях показания не являются строго очерченными. К главным причинам применения ИВЛ относятся неспособность к достаточной оксигенации и утрата адекватной альвеолярной вентиляции, что может быть связано либо с первичным паренхиматозным поражением лёгких (например, при пневмонии или отёке лёгких), либо с системными процессами, опосредованно поражающими функцию лёгких (как это происходит при сепсисе или нарушениях функции центральной нервной системы). Дополнительно к этому, проведение общей анестезии часто подразумевает ИВЛ, потому что многие препараты оказывают угнетающий эффект на дыхание, а миорелаксанты вызывают паралич дыхательных мышц. Главная задача ИВЛ в условиях дыхательной недостаточности - поддержание газообмена до тех пор, пока не будет устранен патологический процесс, вызвавший эту недостаточность.

3. Что такое неинвазивная вентиляция и каковы показания для неё?
Неинвазивная вентиляция может проводиться или в режиме отрицательного, или в режиме положительного давления. Вентиляция с отрицательным давлением (обычно с помощью танкового - «железные лёгкие» - или кирасного респиратора) изредка применяется у пациентов с нейромышечными расстройствами или хроническим усталостью диафрагмы вследствие хронического обструктивного заболевания лёгких (ХОЗЛ). Оболочка респиратора обхватывает туловище ниже шеи, а создаваемое под оболочкой отрицательное давление приводит к возникновению градиента давлений и газотока из верхних дыхательных путей в лёгкие. Выдох происходит пассивно. Этот режим вентиляции позволяет отказаться от интубации трахеи и избежать связанных с нею проблем. Верхние дыхательные пути должны быть свободны, однако это делает их уязвимыми для аспирации. В связи с застоем крови во внутренних органах может возникать гипотония.
Неинвазивная вентиляция с положительным давлением (NIPPV в английской аббревиатуре - ред. ) может проводиться в нескольких режимах, включая масочную вентиляцию с непрерывным положительным давлением (НПД, CPAP в английской аббревиатуре), с двухуровневым положительным давлением (BiPAP), масочную вентиляцию с поддерживающим давлением или комбинацию этих методов вентиляции. Этот тип вентиляции может быть использован у тех больных, которым нежелательна интубация трахеи - больные с терминальной стадией заболевания или с некоторыми типами дыхательной недостаточности (например, обострением ХОЗЛ с гиперкапнией). У больных с терминальной стадией заболевания, имеющих дыхательные расстройства, проведение NIPPV является надёжным, эффективным и более комфортным, по сравнению с другими методами, средством поддержки вентиляции. Метод не столь сложен и позволяет пациенту сохранять самостоятельность и словесный контакт; окончание неинвазивной вентиляции, когда оно будет показано, сопряжено с меньшим стрессом.

4. Опишите наиболее распространённые режимы ИВЛ: CMV , ACV , IMV .
Эти три режима с обычным переключением по объёму, по сути, представляют собой три разных способа откликания респиратора. При CMV вентиляция пациента целиком контролируется с помощью предварительно установленного дыхательного объёма (ДО) и заданной частоты дыхания (ЧД). CMV применяется у пациентов, полностью утративших способность совершать попытки дыхания, что, в частности, наблюдается во время общей анестезии при центральном угнетении дыхания или вызванном миорелаксантами параличе мышц. Режим ACV (ВИВЛ) позволяет пациенту вызывать искусственный вдох (почему и содержит слово «вспомогательный»), после чего осуществляется подача заданного дыхательного объёма. Если по каким-то развивается брадипноэ или апноэ, респиратор переходит на резервный управляемый режим вентиляции. Режим IMV, первоначально предложенный в качестве средства отучения от респиратора, допускает спонтанное дыхание пациента через дыхательный контур аппарата. Респиратор проводит ИВЛ с установленными ДО и ЧД. Режим SIMV исключает аппаратные вдохи во время продолжающихся спонтанных дыханий.
Дебаты вокруг преимуществ и недостатков ACV и IMV продолжают оставаться жаркими. Теоретически, в виду того, что не каждый вдох происходит с положительным давлением, IMV позволяет снизить среднее давление в дыхательных путях (Рaw) и уменьшить, таким образом, вероятность баротравмы. Кроме того, при IMV больного легче синхронизировать с респиратором. Возможно, что ACV чаще вызывает респираторный алкалоз, поскольку пациент, даже испытывающий тахипноэ, получает с каждым вдохом заданный ДО полностью. Любой из типов вентиляции требует определённой работы дыхания от пациента (обычно большей при IMV). У пациентов же с острой дыхательной недостаточностью (ОДН) работу дыхания на начальном этапе и до тех пор, пока патологический процесс, лежащий в основе расстройства дыхания, не начнёт регрессировать, целесообразно сводить к минимуму. Обычно в таких случаях необходимо обеспечить седацию, изредка - миорелаксацию и CMV.

5. Каковы первоначальные настройки респиратора при ОДН? Какие задачи решаются с помощью этих настроек?
Большинство пациентов с ОДН нуждаются в полной заместительной вентиляции. Главными задачами при этом становятся обеспечение насыщения артериальной крови кислородом и предотвращение связанных с искусственной вентиляцией осложнений. Осложнения могут возникать из-за увеличенного давления в дыхательных путях или длительного воздействия повышенной концентрации кислорода на вдохе (FiO 2) (см. ниже).
Чаще всего начинают с режима ВИВЛ , гарантирующего поступление заданного объёма. Однако всё более популярными становятся прессоциклические режимы.
Необходимо выбрать FiO 2 . Обычно начинают с 1,0, медленно снижая до минимальной концентрации, переносимой пациентом. Длительное воздействие высоких значений FiO 2 (> 60-70%) может проявиться токсическим действием кислорода.
Дыхательный объём подбирается с учётом массы тела и патофизиологических механизмов повреждения лёгких. В настоящее время приемлемым считается установка объёма в пределах 10-12 мл/кг массы тела. Однако при состояниях, подобных острому респираторному дистресс-синдрому (ОРДС), объём лёгких снижается. Поскольку высокие значения давлений и объёмов могут ухудшать течение основного заболевания, используют меньшие объёмы - в пределах 6-10 мл/кг.
Частота дыхания (ЧД), как правило, устанавливается в диапазоне 10 - 20 дыханий в минуту. Для пациентов, нуждающихся в большом объёме минутной вентиляции, может потребоваться частота дыхания от 20 до 30 дыханий в минуту. При частоте > 25 удаление углекислого газа (СO 2) существенно не улучшается, а частота дыхания > 30 предрасполагает к возникновению газовой ловушки вследствие сокращенного времени выдоха.
Положительное давление в конце выдоха (ПДКВ; см. вопрос 6) на начальном этапе обычно устанавливается невысоким (например, 5 см Н 2 О) и может быть постепенно увеличено при необходимости улучшения оксигенации. Небольшие значения ПДКВ в большинстве случаев острого повреждения лёгких помогают поддерживать воздушность альвеол, склонных к коллапсу. Современные данные свидетельствуют о том, что невысокое ПДКВ позволяет избежать воздействия противоположно направленных сил, возникающих при повторном раскрытии и спадении альвеол. Эффект от действия таких силы может усугублять повреждение лёгких.
Объёмная скорость вдоха, форма кривой надува и соотношение вдоха и выдоха (I : E ) часто устанавливаются врачом респираторной терапии, однако смысл этих установок должен быть также понятен и врачу интенсивной терапии. Пиковая объёмная скорость вдоха определяет максимальную скорость надува, осуществляемого респиратором во время фазы вдоха. На первоначальном этапе удовлетворительным обычно считается поток, равный 50-80 л/мин. Соотношение I:E зависит от установленного минутного объёма и потока. При этом, если время вдоха определяется потоком и ДО, то время выдоха - потоком и частотой дыхания. В большинстве ситуаций оправдано соотношение I:E от 1:2 до 1:3. Однако пациенты с ХОЗЛ могут нуждаться даже в более продолжительном времени выдоха для его адекватного осуществления. Снижения I:E можно добиться увеличением скорости надува. При этом высокая скорость вдоха может увеличивать давление в дыхательных путях, а иногда ухудшать распределение газа. При более медленном потоке возможно снижение давления в дыхательных путях и улучшение распределения газа за счёт роста I:E. Увеличенное (или «обратное», как будет упоминаться ниже) отношение I:E повышает Рaw, а также усиливает побочные проявления со стороны сердечно-сосудистой системы. Укороченное время выдоха плохо переносится при обструктивных заболеваниях дыхательных путей. Кроме прочего, тип или форма кривой надува имеют незначительное влияние на вентиляцию. Постоянный поток (прямоугольная форма кривой) обеспечивает надув с установленной объёмной скоростью. Выбор нисходящей или восходящей кривой надува может приводить к улучшению распределения газа при росте давления в дыхательных путях. Пауза на вдохе, замедление выдоха и периодические удвоенные по объёму вдохи - всё это также можно установить.

6. Объясните, что такое ПДКВ. Как подобрать оптимальный уровень ПДКВ?
ПДКВ дополнительно устанавливают при многих типах и режимах вентиляции. В этом случае давление в дыхательных путях в конце выдоха остаётся выше атмосферного. ПДКВ направлено на предотвращение коллапса альвеол, а также восстановление просвета спавшихся в состоянии острого повреждения лёгких альвеол. Функциональная остаточная ёмкость (ФОЕ) и оксигенация при этом увеличиваются. Изначально ПДКВ устанавливают приблизительно на уровне 5 см Н 2 О, а увеличивают до максимальных значений - 15-20 см Н 2 О - небольшими порциями. Высокие уровни ПДКВ могут отрицательно сказаться на сердечном выбросе (см. вопрос 8). Оптимальное ПДКВ обеспечивает наилучшую артериальную оксигенацию с наименьшим снижением сердечного выброса и приемлемым давлением в дыхательных путях. Оптимальное ПДКВ соответствует также уровню наилучшего расправления спавшихся альвеол, что можно быстро установить у кровати больного, увеличивая ПДКВ до той степени пневматизации лёгких, когда их растяжимость (см. вопрос 14) начнёт падать. Отслеживать давление в дыхательных путях после каждого повышения ПДКВ несложно. Давление в дыхательных путях должно расти только пропорционально устанавливаемому ПДКВ. Если давление в дыхательных путях начнёт расти быстрее, чем устанавливаемые значения ПДКВ, это будет указывать на перерастяжение альвеол и превышение уровня оптимального раскрытия спавшихся альвеол. Непрерывное положительное давление (НПД) является формой ПДКВ, реализуемой с помощью дыхательного контура при спонтанном дыхании пациента.

7. Что такое внутреннее или ауто-ПДКВ?
Впервые описанное Pepe и Marini в 1982 г., внутреннее ПДКВ (ПДКВвн) означает возникновение положительного давления и движения газа внутри альвеол в конце выдоха при отсутствии искусственно создаваемого наружного ПДКВ (ПДКВн). В норме объём лёгких в конце выдоха (ФОЕ) зависит от результата противоборства эластической тяги лёгких и упругости грудной стенки. Уравновешивание этих сил в обычных условиях приводит к отсутствию градиента давлений или воздушного потока в конце выдоха. ПДКВвн возникает вследствие двух главных причин. Если ЧД излишне высока или время выдоха слишком укорочено, при ИВЛ здоровым лёгким остаётся недостаточно времени для того, чтобы закончить выдох до начала следующего дыхательного цикла. Это приводит к накапливанию воздуха в лёгких и появлению положительного давления в конце выдоха. Поэтому пациенты, вентилируемые большим минутным объёмом (например, при сепсисе, травме) или с высоким I:E соотношением, имеют угрозу развития ПДКВвн. Эндотрахеальная трубка небольшого диаметра также может затруднять выдох, способствуя ПДКВвн. Другой главный механизм развития ПДКВвн связан с поражением самих лёгких. Больные с повышенным сопротивлением дыхательных путей и растяжимостью лёгких (например, при астме, ХОЗЛ) имеют высокий риск ПДКВвн. Вследствие обструкции дыхательных путей и связанным с этим затруднением выдоха, такие пациенты склонны испытывать ПДКВвн и при спонтанном дыхании, и при ИВЛ. ПДКВвн обладает теми же побочными эффектами, что и ПДКВн, однако требует в отношении себя большей настороженности. Если респиратор, как это обычно бывает, имеет открытый в атмосферу выход, то единственный способ обнаружения и измерения ПДКВвн заключается в закрытии выходного отверстия выдоха на время мониторинга давления в дыхательных путях. Такая процедура должна стать привычной, особенно в отношении пациентов высокого риска. Лечебный подход опирается на этиологию. Изменение параметров респиратора (наподобие снижения ЧД или увеличения скорости надува со снижением I:E) может создать условия для полного выдоха. Кроме того, может помочь терапия основного патологического процесса (например, с помощью бронходилататоров). У пациентов с ограничением потока выдоха при обструктивном поражении дыхательных путей положительный эффект был достигнут применением ПДКВн, обеспечившим уменьшение газовой ловушки. Теоретически ПДКВн может действовать как распорка для дыхательных путей, позволяющая осуществить полный выдох. Однако, поскольку ПДКВн добавляется к ПДКВвн, могут возникать тяжёлые расстройства гемодинамики и газообмена.

8. Каковы побочные действия ПДКВн и ПДКВвн?
1. Баротравма - из-за перерастяжения альвеол.
2. Снижение сердечного выброса, которое может быть обусловлено с несколькими механизмами. ПДКВ повышает внутригрудное давление, вызывая рост трансмурального давления в правом предсердии и падение венозного возврата. Кроме того, ПДКВ ведёт к подъёму давления в лёгочной артерии, что затрудняет выброс крови из правого желудочка. Следствием дилатации правого желудочка может стать пролабирование межжелудочковой перегородки в полость левого желудочка, препятствующее наполнению последнего и способствующее снижению сердечного выброса. Всё это проявит себя гипотонией, особенно тяжёлой у больных с гиповолемией.
В обычной практике срочная эндотрахеальная интубация проводится у пациентов с ХОЗЛ и дыхательной недостаточностью. Такие больные пребывают в тяжёлом состоянии, как правило, несколько дней, в течение которых они плохо питаются и не восполняют потери жидкости. После интубации лёгкие пациентов энергично раздуваются для улучшения оксигенации и вентиляции. Ауто-ПДКВ быстро нарастает, и в условиях гиповолемии возникает тяжёлая гипотония. Лечение (если превентивные меры не увенчались успехом) включает интенсивные инфузии, обеспечение условий для более продолжительного выдоха и устранение бронхоспазма.
3. Во время ПДКВ возможна также ошибочная оценка показателей сердечного наполнения (в частности, центрального венозного давления или давления окклюзии лёгочной артерии). Давление, передающееся с альвеол на лёгочные сосуды, может приводить к ложному увеличению этих показателей. Чем более податливы лёгкие, тем большее давление передаётся. Поправку можно сделать с помощью эмпирического правила: из измеренной величины давления заклинивания лёгочных капилляров (ДЗЛК) надо вычесть половину величины ПДКВ, превышающей 5 см Н 2 О.
4. Перерастяжение альвеол избыточным ПДКВ сокращает кровоток в этих альвеолах, увеличивая мёртвое пространство (МП/ДО).
5. ПДКВ может увеличивать работу дыхания (при триггерных режимах ИВЛ или при спонтанном дыхании через контур респиратора), поскольку больному придётся создавать большее отрицательное давление для включения респиратора.
6. К другим побочным эффектам относятся увеличение внутричерепного давления (ВЧД) и задержка жидкости.

9. Опишите типы вентиляции с ограничением по давлению.
Возможность проведения ограниченной по давлению вентиляции - в триггерном (вентиляция с поддерживающим давлением) или принудительном режиме (вентиляция с управляемым давлением) - появилась на большинстве респираторов для взрослых лишь в последние годы. Для вентиляции новорождённых применение режимов с ограничением по давлению является рутинной практикой. При вентиляции с поддерживающим давлением (PSV) пациент начинает вдох, чем вызывает подачу газа респиратором до заданного - призванного увеличить ДО - давления. Искусственный вдох заканчивается после того, как поток на вдохе упадёт ниже предустановленного уровня, обычно - ниже 25% от максимального значения. Обратите внимание, что давление поддерживается до тех пор, пока поток не станет минимальным. Такие характеристики потока хорошо соответствуют требованиям внешнего дыхания пациента, в результате чего режим переносится с бóльшим комфортом. Данный режим спонтанной вентиляции может быть использован у больных, находящихся в терминальном состоянии, для снижения работы дыхания, затрачиваемой на преодоление сопротивления дыхательного контура и увеличение ДО. Поддержка давлением может применяться совместно с режимом IMV или самостоятельно, с ПДКВ или НПД и без них. Кроме того, было доказано, что PSV ускоряет восстановление спонтанного дыхания после ИВЛ.
При вентиляции с управляемым давлением (PCV) фаза вдоха прекращается после достижения заданного максимального давления. Дыхательный объём зависит от сопротивления дыхательных путей и податливости лёгких. PCV может применяться самостоятельно или в комбинации с другими режимами, например, иИВЛ (IRV) (см. вопрос 10). Характерный для PCV поток (высокий начальный с последующим падением), вероятно, обладает свойствами, улучшающими податливость лёгких и распределение газа. Было высказано мнение, что PCV можно использовать в качестве безопасного и удобного для пациента начального режима вентиляции больных с острой гипоксической дыхательной недостаточностью. В настоящее время на рынок стали поступать респираторы, обеспечивающие минимально гарантированный объём при режиме с управляемым давлением.

10. Имеет ли значение при вентиляции пациента обратное соотношение вдоха и выдоха?
Тип вентиляции, обозначаемый акронимом иИВЛ (IRV), применяется с определённым успехом у больных СОЛП. Сам режим воспринимается неоднозначно, поскольку предполагает удлинение времени вдоха свыше обычного максимума - 50% времени дыхательного цикла при прессоциклической или волюметрической вентиляции. По мере увеличения времени вдоха, соотношение I:E становится инвертированным (например, 1:1, 1.5:1, 2:1, 3:1). Большинство врачей интенсивной терапии не рекомендуют превышать соотношение 2:1 из-за возможного ухудшения гемодинамики и риска баротравмы. Хотя и было показано улучшение оксигенации при удлинении времени вдоха, на эту тему не выполнено ни одного проспективного рандомизированного исследования. Улучшение оксигенации может объясняться несколькими факторами: увеличением среднего Рaw (без увеличения пикового Рaw), раскрытием - в результате замедления инспираторного потока и развития ПДКВвн - дополнительных альвеол, имеющих бóльшую временную константу вдоха. Более медленный поток на вдохе может снижать вероятность развития баро- и волотравмы. Тем не менее, у больных с обструкцией дыхательных путей (например, с ХОЗЛ или астмой), из-за усиления ПДКВвн, данный режим может иметь отрицательное воздействие. Учитывая то, что при иИВЛ больные часто испытывают дискомфорт, может потребоваться их глубокая седация или миорелаксация. В конечном счёте, несмотря на отсутствие неопровержимо доказанных преимуществ метода, следует признать, что иИВЛ может иметь самостоятельное значение в терапии запущенных форм СОЛП.

11. Оказывает ли ИВЛ влияние на различные системы организма, кроме сердечно-сосудистой системы?
Да. Повышенное внутригрудное давление может вызывать или способствовать подъёму ВЧД. В результате длительной назотрахеальной интубации возможно развитие синуситов. Постоянная угроза для больных, находящихся на искусственной вентиляции, заключена в возможности развития госпитальной пневмонии. Достаточно распространёнными являются желудочно-кишечные кровотечения из стрессовых язв, что требует профилактической терапии. Увеличенное образование вазопрессина и сниженный уровень натрийуретического гормона могут привести к задержке воды и соли. Неподвижно лежащие больные, находящиеся в критическом состоянии, подвержены постоянному риску тромбоэмболических осложнений, поэтому здесь вполне уместны профилактические меры. Многие больные нуждаются в седации, а в некоторых случаях - в миорелаксации (см. вопрос 17).

12. Что такое управляемая гиповентиляция с допустимой гиперкапнией?
Управляемая гиповентиляция - это метод, нашедший применение у пациентов, нуждающихся в такой ИВЛ, которая могла бы предотвратить перерастяжение альвеол и возможное повреждение альвеолярно-капиллярной мембраны. Современные данные свидетельствуют, что высокие значения объёмов и давлений могут вызывать или предрасполагать к повреждению лёгких вследствие перерастяжения альвеол. Управляемая гиповентиляция (или допустимая гиперкапния) реализуют стратегию безопасной, ограниченной по давлению вентиляции лёгких, придающей приоритетное значение давлению раздутия лёгких, а не уровню рСО 2 . Проведённые в связи с этим исследования больных с СОЛП и астматическим статусом показали уменьшение частоты баротравмы, числа дней, потребовавших интенсивной терапии, и летальности. Для поддержания пикового Рaw ниже 35-40 см вод.ст., а статического Рaw - ниже 30 см вод.ст., ДО устанавливают приблизительно в пределах 6-10 мл/кг. Малый ДО оправдан при СОЛП - когда лёгкие поражены негомогенно и вентилироваться способен лишь небольшой их объём. Gattioni и др. описали три зоны в поражённых лёгких: зону ателектазированных патологическим процессом альвеол, зону коллабированных, но ещё способных раскрыться альвеол и небольшую зону (25-30% от объёма здоровых лёгких) способных вентилироваться альвеол. Традиционно задаваемый ДО, существенно превышающий доступный для вентиляции объём лёгких, может вызвать перерастяжение здоровых альвеол и этим усугубить острое повреждение лёгких. Термин «лёгкие ребёнка» был предложен именно в связи с тем, что лишь малая часть объёма лёгких, способна вентилироваться. Вполне допустим постепенный подъём рСО 2 до уровня 80-100 мм рт.ст.. Снижение рН ниже 7.20-7.25 может быть устранено введением буферных растворов. Другой вариант - подождать, пока нормально функционирующие почки компенсируют гиперкапнию задержкой бикарбоната. Допустимая гиперкапния обычно хорошо переносится. К возможным неблагоприятным следствиям относится расширение мозговых сосудов, повышающее ВЧД. Действительно, внутричерепная гипертензия является единственным абсолютным противопоказанием для допустимой гиперкапнии. Кроме того, при допустимой гиперкапнии могут встречаться повышенный симпатический тонус, лёгочная вазоконстрикция и сердечные аритмии, хотя все они редко приобретают опасное значение. У пациентов с исходным нарушением функции желудочков может иметь серьёзное значение угнетение сократимости сердца.

13. Какими ещё методами контролируют рСО 2 ?
Существует несколько альтернативных методов контроля рСО 2 . Пониженное образование СО 2 может быть достигнуто глубокой седацией, миорелаксацией, охлаждением (естественно, избегая гипотермии) и снижением количества потребляемых углеводов. Простым методом увеличения клиренса СО 2 является трахеальная инсуффляция газа (ТИГ). При этом через эндотрахеальную трубку вводят небольшой (как для проведения отсасывания) катетер, проводя его до уровня бифуркации трахеи. Через этот катетер подают смесь кислорода и азота со скоростью 4-6 л/мин. Это приводит к вымыванию газа мёртвого пространства при неизменных минутной вентиляции и давлении в дыхательных путях. Среднее снижение рСО 2 составляет 15%. Данный метод хорошо подходит той категории больных с травмой головы, в отношении которой может быть с пользой применена управляемая гиповентиляция. В редких случаях используют экстракорпоральный метод удаления СО 2 .

14. Что такое податливость лёгких? Как её определить?
Податливость - это мера растяжимости. Она выражается через зависимость изменения объёма от заданного изменения давления и для лёгких вычисляется по формуле: ДО/(Рaw - ПДКВ). Статическая растяжимость равна 70-100 мл/см вод.ст. При СОЛП она меньше 40-50 мл/см вод.ст. Податливость является интегральным показателем, не отражающим регионарных различий при СОЛП - состоянии, при котором поражённые участки чередуются с относительно здоровыми. Характер изменения податливости лёгких служит полезным ориентиром в определении динамики ОДН у конкретного больного.

15. Является ли вентиляция в положении на животе методом выбора у больных со стойкой гипоксией?
Исследования показали, что в положении на животе у большинства пациентов с СОЛП существенно улучшается оксигенация. Возможно, это связано с улучшением вентиляционно-перфузионных отношений в лёгких. Тем не менее, из-за усложнения сестринского ухода вентиляция в положении на животе не стала привычной практикой.

16. Какого подхода требуют больные, «борющиеся с респиратором»?
Возбуждение, расстройство дыхания или «борьба с респиратором» должны быть серьёзно приняты во внимание, поскольку ряд причин является жизнеугрожаемыми. Для того, чтобы избежать необратимого ухудшения состояния больного, необходимо быстро определиться с диагнозом. Для этого сначала отдельно анализируют возможные причины, связанные с респиратором (аппарат, контур и эндотрахеальная трубка), и причины, относящиеся к состоянию больного. Причины, связанные с состоянием больного, включают гипоксемию, обструкцию дыхательных путей мокротой или слизью, пневмоторакс, бронхоспазм, инфекционные процессы, подобные пневмонии или сепсису, лёгочную эмболию, ишемию миокарда, желудочно-кишечное кровотечение, нарастающую ПДКВвн и беспокойство. К причинам, связанным с респиратором, относят утечку или разгерметизацию контура, неадекватный объём вентиляции или недостаточную FiO 2 , проблемы с эндотрахеальной трубкой, включая экстубацию, обструкцию трубки, разрыв или деформацию манжетки, неправильную настройку чувствительности триггера или объёмной скорости вдоха. До тех пор, пока с ситуацией не удалось полностью разобраться, необходимо проводить ручную вентиляцию больного 100% кислородом. Без промедления следует провести аускультацию лёгких и проверить показатели жизненно важных функций (включая данные пульсоксиметрии и СО 2 в конце выдоха). Если позволяет время, следует выполнить анализ газов артериальной крови и рентгенографию грудной клетки. Для контроля проходимости эндотрахеальной трубки и удаления мокроты и слизистых пробок допустимо быстрое проведение катетера для отсасывания через трубку. При подозрении на пневмоторакс с гемодинамическими расстройствами, следует безотлагательно, не дожидаясь рентгенографии грудной клетки, выполнить декомпрессию. В случае адекватной оксигенации и вентиляции пациента, а также стабильной гемодинамики, возможен более тщательный анализ ситуации, а при необходимости - седация больного.

17. Следует ли использовать миорелаксацию для улучшения условий ИВЛ?
Миорелаксация широко используется для облегчения ИВЛ. Это способствует умеренному улучшению оксигенации, снижает пиковое Рaw и обеспечивает лучшую сопряжённость больного и респиратора. А в таких специфических ситуациях, как внутричерепная гипертензия или вентиляция в необычных режимах (например, иИВЛ или экстракорпоральный метод), миорелаксация может приносить ещё большую пользу. Недостатками миорелаксации являются потеря возможности неврологического обследования, утрата кашля, возможность непреднамеренной миорелаксации больного в сознании, многочисленные проблемы, связанные с взаимодействием препаратов и электролитов, и возможность продлённого блока. Кроме того, нет научных доказательств, что миорелаксация улучшает исходы критических состояний пациентов. Использование миорелаксантов следует хорошо продумать. Пока не выполнена адекватная седация больного, миорелаксацию следует исключить. Если же миорелаксация представляется абсолютно показанной, её следует проводить только после окончательного взвешивания всех за и против. Чтобы избежать продлённого блока, применение миорелаксации, по возможности, следует ограничивать 24-48 часами.

18. Действительно ли есть польза от раздельной вентиляции лёгких?
Раздельная вентиляция лёгких (РИВЛ) представляет собой независимую друг от друга вентиляцию каждого лёгкого обычно с помощью двухпросветной трубки и двух респираторов. Изначально возникшая с целью улучшения условий проведения торакальных операций, РИВЛ была распространена на некоторые случаи в практике интенсивной терапии. Здесь кандидатами для раздельной вентиляции лёгких могут стать пациенты с односторонним поражением лёгких. Показано, что данный вид вентиляции улучшает оксигенацию у пациентов с односторонними пневмониями, отёками и ушибами лёгких. Защита здорового лёгкого от попадания содержимого поражённого лёгкого, достигаемая изоляцией каждого из них, может стать спасительной для жизни пациентов с массивным кровотечением или абсцессом лёгких. Кроме того, РИВЛ может оказаться полезной у больных с бронхоплевральным свищом. Применительно к каждому лёгкому могут быть установлены индивидуальные параметры вертиляции, включая значения ДО, скорости потока, ПДКВ и НПД. Нет никакой необходимости в синхронизации работы двух респираторов, поскольку, как показывает практика, стабильность гемодинамики лучше достигается при асинхронной их работе.


Полезная статья? Поделитесь с друзьями из соцсетей!