График уравнения шредингера для частицы в прямоугольной. §217

  • § 217. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний
  • § 219. Движение свободной частицы
  • § 220. Частица в одномерной прямоугольной «потенциальной ям*» с бесконечно высокими «стенками*
  • § 221. Прохождение частицы сквозь потенциальный барьер. Туннельный эффект
  • § 222. Линейный гармонический осциллятор квантовой механике
  • Глава 29
  • § 223. Атом водорода в квантовой механике
  • 2. Квантовые числа. В квантовой механике доказывается, что уравнению Шредин-гера (223.2) удовлетворяют собственные функцииопределяемые тремя
  • § 225. Спин электрона. Спиновое квантовое число
  • § 226. Принцип неразличимости тождественных частиц. Фермионы и бозоны
  • § 227. Принцип Паули. Распределение электронов в атома по состояниям
  • § 228. Периодическая система элементов Менделеева
  • § 229. Рентгеновские спектры
  • § 230. Молекулы: химические связи, понятие об энергетических уровнях
  • § 231. Молекулярные спектры. Комбинационное рассеяние света
  • § 232. Поглощение. Спонтанное и вынужденное излучения
  • § 233. Оптические квантовые генераторы (лазеры) .
  • Глава 30 Элементы квантовой статистики
  • § 234. Квантовая статистика. Фазовое пространство. Функция распределения
  • § 235. Понятие о квантовой статистика Бозе - Эйнштейна и Ферми - Дирака
  • § 236. Вырожденный электронный газ в металлах
  • § 237. Понятие о квантовой теории теплоемкости. Фононы
  • § 238. Выводы квантовой теории электропроводности металлов
  • § 239. Сверхпроводимость. Понятие об эффекте Джозефсона
  • Глава 31 Элементы физики твердого тела
  • § 240. Понятие о зонной теории твердых тел
  • § 241. Металлы, диэлектрики и полупроводники по зонной теории
  • § 242. Собственная проводимость полупроводников
  • § 243. Примесная проводимость полупроводников
  • § 244. Фотопроводимость полупроводников
  • § 245. Люминесценция твердых тел
  • § 246. Контакт двух металлов по зонной теории
  • 1. Контактная разность потенциалов зависит лишь от химического состава и тем­пературы соприкасающихся металлов.
  • § 247.. Термоэлектрические явления и их применение
  • § 248. Выпрямление на контакте металл - полупроводник
  • § 249. Контакт электронного и дырочного полупроводников
  • § 250. Полупроводниковые диоды и триоды (транзисторы)
  • 7 Элементы физики атомного ядра и элементарных частиц
  • Глава 32 Элементы физики атомного ядра
  • § 251. Размер, состав и заряд атомного ядра. Массовое и зарядовое числа
  • § 252. Дефект массы и энергия связи ядра
  • § 253. Спин ядра и его магнитный момент
  • § 254. Ядерные силы. Модели ядра
  • 1) Ядерные силы являются силами притяжения;
  • § 255. Радиоактивное излучение и его виды
  • § 256. Закон радиоактивного распада. Правила смещения
  • § 257. Закономерности а-раепада
  • § 258.-Распад. Нейтрино
  • § 259. Гамма-излучение и его свойства
  • § 260. Резонансное поглощение-излучения (эффект Мeссбауэра**)
  • § 261. Методы наблюдения и регистрации радиоактивных излучений и частиц
  • § 262. Ядерные реакции и их основные типы
  • 1) По роду участвующих в них частиц - реакции под действием нейтронов; реакции под действием заряженных частиц (например, протонов, дейтронов,частиц); реакции под действием-квантов;
  • §263. Позитрон.,-Распад. Электронный захват "-
  • § 264. Открытие нейтрона. Ядерные реакции под действием
  • § 265. Реакция деления ядра
  • § 266. Цепная реакция деления
  • § 267. Понятие о ядерной энергетике
  • § 268. Реакция синтеза атомных ядер. Проблема управляемых термоядерных реакций
  • 1) Протонно-протонный, или водородный, цикл, характерный для температур (приме­рно 107 к):
  • 2) Углеродно-азотный, или углеродный, цикл, характерный для более высоких тем­ператур (примерно 2 107 к):
  • Глава 33 Элементы физики элементарных частиц
  • § 269. Космическое излучение
  • § 270. Мюоны и их свойства
  • § 271. Мезоны и их свойства
  • § 272. Типы взаимодействий элементарных частиц
  • § 273. Частицы и античастицы
  • § 274. Гипероны. Странность и четность элементарных частиц
  • § 275. Классификация элементарных частиц. Кварки
  • § 217. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний

    Статистическое толкование волн да Бройля (см. § 216) и соотношение неопределен­ностей Гейзенберга (см. §215) привели к выводу, что уравнением движения в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравнение, из которого бы вытекали наблюдаемые на опыте волновые свойства частиц. Основное уравнение должно быть уравнением относительно волновой функции (х, у, z , t ), так как именно она, или, точнее, величина, определяет вероятность пребывания частицы в момент времени t в объеме dV , т. е. в области с координатами x и x + dx . y и y + dy . zuz + dz . Так как искомое уравнение должно учитывать волновые свойства частиц, то оно должно быть волновым уравнением, подобно уравнению, описывающему электромагнитные волны.

    Основное уравнение нерелятивистской квантовой механики сформулировано в 1926 г. Э. Шредингером. Уравнение Шредингера, как и все основные уравнения физики (например, уравнения Ньютона в классической механике и уравнения Максвел­ла для электромагнитного поля), не выводится, а постулируется. Правильность этого уравнения подтверждается согласием с опытом получаемых с его помощью резуль­татов, что, в свою очередь, придает ему характер закона природы. Уравнение Шредин­гера имеет вид

    (217.1)

    где, т - масса частицы,- оператор Лапласа,

    - мнимая единица, V {х, у, z , t ) - потенциальная функция частицы в силовом поле, в котором она движется, (х, у, z , t ) - искомая волновая функция частицы.

    Уравнение (217.1) справедливо для любой частицы (со спином, равным 0; см. § 225), движущейся с малой (по сравнению со скоростью света) скоростью, т. е. со скоростью Оно дополняется условиями, накладываемыми на волновую функцию: 1) волно­вая функция должна быть конечной, однозначной и непрерывной (см. § 216); 2) произ­водныедолжны быть непрерывны; 3) функциядолжна быть

    интегрируема; это условие в простейших случаях сводится к условию нормировки вероятностей (216.3).

    Чтобы прийти к уравнению Шредингера, рассмотрим свободно движущуюся частицу, кото­рой, согласно идее де Бройля, сопоставляется плоская волна. Для простоты рассмотрим одномер­ный случай. Уравнение плоской волны, распространяющейся вдоль оси х, имеет вид (см. § 154) , или в комплексной записиСледовательно, плоская

    волна де Бройля имеет вид

    (217.2)

    (учтено, чтоВ квантовой механике показатель экспоненты берут со знаком минус,

    но поскольку физический смысл имеет только, то это (см. (217.2)) несущественно. Тогда

    откуда

    Используя взаимосвязь между энергией Е и импульсоми подставляя выражения

    (217.3), получим дифференциальное уравнение

    которое совпадает с уравнением (217.1) для случая U =0 (мы рассматривали свободную частицу).

    Если частица движется в силовом поле, характеризуемом потенциальной энергией U , то

    полная энергия Е складывается из типич еской и потенциальной энергий. Проводя аналогичные

    рассуждения и используя взаимосвязь между Е и р (для данного случаяпридем

    ° к дифференциальному уравнению, совпадающему с (217.1).

    Приведенные рассуждения не должны восприниматься как вывод уравнения Шреди-нгера. Они лишь поясняют, как можно прийти к этому уравнению. Доказательством правильности уравнения Шредингера является согласие с опытом тех выводов, к кото­рым оно приводит.

    Уравнение (217.1) является обкщим уравнением Шредингера. Его также называют уравнением Шреднягера, зависящим от времени. Для многих физических явлений, происходящих в микромире, уравнение (217.1) можно упростить, исключив зависимость от времени, иными словами, найти уравнение Шредингера для стационарных состояний - состояний с фиксированными значениями энергии. Это возможно, если силовое поле, в котором частица движется, стационарно, т. е. функция не зависит явно от времени и имеет смысл потенциальной энергии. В данном случае решение уравнения Шредингера может быть представлено в виде произведения двух функций, одна из которых есть функция только координат, другая - только времени, причем зависимость от времени выражается множителем

    так что

    где Е - полная энергия частицы, постоянная в случае стационарного поля. Подставляя (217.4) в (217.1), получим

    откуда после деления на общий множительи соответствующих преобразований

    придем к уравнению, определяющему функцию

    (217.5)

    Уравнение (217.5) называется уравнением Шредингера для стационарных состояний. В это уравнение в качестве параметра входит полная энергия Е частицы. В теории дифференциальных уравнений доказывается, что подобные уравнения имеют бесчис­ленное множество решений, из которых посредством наложения граничных условий отбирают решения, имеющие физический смысл. Для уравнения Шредингера такими условиями являются условия регулярности волновых функций: волновые функции должны быть конечными, однозначными и непрерывными вместе со своими первыми производными. Таким образом, реальный физический смысл имеют только такие решения, которые выражаются регулярными функциямиНо регулярные решения имеют место не при любых значениях параметра Е, а лишь при определенном их наборе, характерном для данной задачи. Эти значения энергии называются собствев-нымн. Решения же, которые соответствуют собственным значениям энергии, называют­ся собственными функциями. Собственные значения Е могут образовывать как непре-

    рывный, так и дискретный ряд. В первом случае говорят о непрерывном, или сплошном, спектре, во втором - о дискретном спектре.

    § 218. Принцип причинности ■ квантовой механике

    Из соотношения неопределенностей часто делают вывод о неприменимости принципа причинности к явлениям, происходящим в микромире. При этом основываются на следующих соображениях. В классической механике, согласно принципу причинно­сти - принципу классического детермизма, по известному состоянию системы в неко­торый момент времени (полностью определяется значениями координат и импульсов всех частиц системы) и силам, приложенным к ней, можно абсолютно точно задать ее состояние в любой последующий момент. Следовательно, классическая физика ос­новывается на следующем понимании причинности: состояние механической системы в начальный момент времени с известным законом взаимодействия частиц есть причи­на, а ее состояние в последующий момент - следствие.

    С другой стороны, микрообъекты не могут иметь одновременно и определенную координату, и определенную соответствующую проекцию импульса (задаются соот­ношением неопределенностей (215.1)), поэтому и делается вывод о том, что в началь­ный момент времени состояние системы точно не определяется. Если же состояние системы не определено в начальный момент времени, то не могут быть предсказаны и последующие состояния, т. е. нарушается принцип причинности.

    Однако никакого нарушения принципа причинности применительно к микрообъ­ектам не наблюдается, поскольку в квантовой механике понятие состояния микрообъ­екта приобретает совершенно иной смысл, чем в классической механике. В кванто­вой механике состояние микрообъекта полностью определяется волновой функцией (х,у, z , t ), квадрат модуля которой(х,у, z , t )\ 2 задает плотность вероятности нахождения частицы в точке с координатами х, у, z .

    В свою очередь, волновая функция(х,у, z , t ) удовлетворяет уравнению Шредин-гера (217.1), содержащему первую производную функции по времени. Это же означает, что задание функции(для момента времениt 0) определяет ее значение в последующие моменты. Следовательно, в квантовой механике начальное состояние

    Есть причина, а состояниев последующий момент - следствие. Это и есть форма принципа причинности в квантовой механике, т. е. задание функциипредопределяет ее значения для любых последующих моментов. Таким образом, состояние системы микрочастиц, определенное в квантовой механике, однозначно вытекает из предшест­вующего состояния, как того требует принцип причинности.

    Сделаем рисунок

    В нашей задаче функция U(x) имеет особый, разрывный вид: она равна нулю между стенками, а на краях ямы (на стенках) обращается в бесконечность:

    Запишем уравнение Шредингера для стационарных состояний частиц в точках расположенных между стенками:

    или, если учесть формулу (1.1)

    К уравнению (1.3) необходимо добавить граничные условия на стенках ямы. Примем во внимание, что волновая функция связана с вероятностью нахождения частиц. Кроме того, по условиям задачи за пределами стенок частица не может быть обнаружена. Тогда волновая функция на стенках и за их пределами должна обращаться в нуль, и граничные условия задачи принимают простой вид:

    Теперь приступим к решению уравнения (1.3) . В частности, можно учесть, что его решением являются волны де-Бройля. Но одна волна де-Бройля как решение, к нашей задаче явно не относится, так как она заведомо описывает свободную частицу, «бегущую» в одном направлении. У нас же частица бегает «туда-сюда» между стенками. В таком случае на основании принципа суперпозиции искомое решение можно попытаться представить в виде двух волн де-Бройля, бегущих друг другу навстречу с импульсами p и -p, то есть в виде:

    Постоянные и можно найти из одного из граничных условий и условия нормировки. Последнее говорит о том, что если сложить все вероятности, то есть найти вероятность обнаружения электрона между стенками вообще в (любом месте), то получится единица (вероятность достоверного события равна 1), т.е.:

    Согласно первому граничному условию имеем:

    Таким образом, получим решение нашей задачи:

    Как известно, . Поэтому найденное решение можно переписать в виде:

    Постоянная А определяется из условия нормировки. Но здесь не она представляет особый интерес. Осталось неиспользованным второе граничное условие. Какой результат оно позволяет получить? Применительно к найденному решению (1.5) оно приводит к уравнению:

    Из него видим, что в нашей задаче импульс p может принимать не любые значения, а только значения

    Кстати, n не может равняться нулю, так как волновая функция тогда бы всюду на промежутке (0…l) равнялась нулю! Это означает, что частица между стенками не может находиться в покое! Она обязательно должна двигаться. В аналогичных условиях находятся электроны проводимости в металле. Полученный вывод распространяется и на них: электроны в металле не могут быть неподвижными.

    Наименьший возможный импульс движущегося электрона равен

    Мы указали, что импульс электрона при отражении от стенок меняет знак. Поэтому на вопрос, каков импульс у электрона, когда он заперт между стенками, определённо ответить нельзя: то ли +p, то ли -p. Импульс неопределённый. Его степень неопределённости, очевидно, определяется так: =p-(-p)=2p. Неопределённость же координаты равна l; если попытаться «поймать» электрон, то он будет обнаружен в пределах между стенками, но где точно — неизвестно. Поскольку наименьшее значение p равно , то получаем:

    Мы подтвердили соотношение Гейзенберга в условиях нашей задачи, то есть при условии существования наименьшего значения p. Если же иметь в виду произвольно-возможное значение импульса, то соотношение неопределённости получает следующий вид:

    Это означает, что исходный постулат Гейзенберга-Боpа о неопределённости и устанавливает лишь нижнюю границу неопределенностей, возможную при измерениях. Если в начале движения система была наделена минимальными неопределённостями, то с течением времени они могут расти.

    Однако формула (1.6) указывает и на другой чрезвычайно интересный вывод: оказывается, импульс системы в квантовой механике не всегда в состоянии изменяться непрерывно (как это всегда имеет место в классической механике). Спектр импульса частицы в нашем примере дискретный, импульс частицы между стенками может изменяться только скачками (квантами). Величина скачка в рассмотренной задаче постоянна и равна .

    На рис. 2. наглядно изображён спектр возможных значений импульса частицы. Таким образом, дискретность изменения механических величин, совершенно чуждая классической механике, в квантовой механике вытекает из ее математического аппарата. На вопрос, почему импульс изменяется скачками, наглядного найти нельзя. Таковы законы квантовой механики; наш вывод вытекает из них логически — в этом все объяснение.

    Обратимся теперь к энергии частицы. Энергия связана с импульсом формулой (1). Если спектр импульса дискретный, то автоматически получается, что и спектр значений энергии частицы между стенками дискретный. И он находится элементарно. Если возможные значения согласно формуле (1.6) подставить в формулу (1.1), получим:

    где n = 1, 2,…, и называется квантовым числом.

    Таким образом, мы получили энергетические уровни.

    Рис. 3 изображает расположение энергетических уровней, соответствующее условиям нашей задачи. Ясно, что для другой задачи расположение энергетических уровней будет иным. Если частица является заряженной (например, это электрон), то, находясь не на низшем энергетическом уровне, она будет в состоянии спонтанно излучать свет (в виде фотона). При этом она перейдёт на более низкий энергетический уровень в соответствии с условием:

    Волновые функции для каждого стационарного состояния в нашей задаче представляют собой синусоиды, нулевые значения которых обязательно попадают на стенки. Две такие волновые функции для n = 1,2 изображены на рис. 1.

    Для частиц квантового мира действуют другие законы, чем для объектов классической механики. Согласно предположению де Бройля, микрообъекты обладают свойствами и частицы, и волны – и, действительно, при рассеивании пучка электронов на отверстии наблюдается дифракция, характерная для волн.

    Поэтому можно говорить не о движения квантовых частиц, а о вероятности того, что частица будет находиться в конкретной точке в некий момент времени.

    Что описывает уравнение Шредингера

    Уравнение Шрёдингера предназначено для описания особенностей движения квантовых объектов в полях внешних сил. Зачастую частица передвигается сквозь силовое поле, не зависящее от времени. Для этого случая записывается стационарное уравнение Шрёдингера:

    В представленном уравнении m и Е – и соответственно энергия частицы, пребывающей в силовом поле, а U – этого поля. — оператор Лапласа. — постоянная Планка, равная 6,626 10 -34 Дж с.

    (её также называют амплитудой вероятности, или пси-функцией) – это и есть функция, позволяющая узнать, в каком месте пространства, скорее всего, будет находиться наш микрообъект. Физический смысл имеет не сама функция, а её квадрат. Вероятность того, что частица находится в элементарном объеме :

    Следовательно, найти функцию в конечном объеме можно с вероятностью:

    Так как пси-функция – вероятность, то она не может быть ни меньше нуля, ни превышать единицу. Полная вероятность найти частицу в бесконечном объеме – это условие нормировки:

    Для пси-функции работает принцип суперпозиции: если частица или система может находиться в ряде квантовых состояний , то для нее возможно и состояние, определяемое их суммой:

    Стационарное уравнение Шрёдингера имеет множество решений, однако при решении следует учесть граничные условия и отобрать только собственные решения – те, которые обладают физическим смыслом. Такие решения существуют только для отдельных значений энергии частицы Е, которые и образуют дискретный энергетический спектр частицы.

    Примеры решения задач

    ПРИМЕР 1

    Задание Волновая функция описывает расстояние электрона до ядра водорода: r – расстояние между электроном и ядром, a – первый Боровский радиус. На каком расстоянии от ядра электрон, скорее всего, находится?
    Решение 1) Выразив объем через радиус ядра, найдем вероятность того, что электрон находится в пределах некоторого расстояния от ядра:

    2) Вероятность того, что электрон находится в пределах элементарного «кольца» dr:

    3) Чтобы найти наиболее вероятное расстояние, найдем из последнего выражения:

    Решив это уравнение, получим r = a – самое вероятное расстояние между электроном и ядром.

    Ответ r = a – с наибольшей вероятностью ядро находится на расстоянии первого Боровского радиуса от ядра.

    ПРИМЕР 2

    Задание Найти уровни энергии частицы в бесконечно глубокой потенциальной яме.
    Решение Пусть частица движется по оси абсцисс. Ширина ямы – l. Энергию мы отсчитываем от дна ямы и описываем функцией:


    Запишем одномерное стационарное уравнение Шрёдингера:

    Рассмотрим граничные условия. Так как мы считаем, что частица не может проникнуть за стенки, то за пределами ямы =0. На границе ямы пси-функция также равна нулю: В яме потенциальная энергия U=0.

    Тогда уравнение Шрёдингера, записанное для ямы, упростится:

    По форме это – ДУ гармонического осциллятора:

    Обще уравнение Шредингера. Уравнение Шредингера для стационарных состояний

    Статистическое толкование волн де Бройля (см. § 216) и соотношение неопределенностей Гейзенберга (см. 5 215) привели к выводу, что уравнением движения в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравнение, из которого бы вытекали наблюдаемые на опыте волновые свойства частиц. Основное уравнение должно быть уравнением относительно волновой функции Ψ (х, у, z, t), так как именно она, или, точнее, величина |Ψ| 2 , определяет вероятность пребывания частицы в момент времени t в объеме dV, т. е. в области с координатами x и x+dx, y иy+dy, z и z+dz. Так как искомое уравнение должно учитывать волновые свойства частиц, то оно должно быть волновым уравнением, подобно уравнению, описывающему электромагнитные волны.

    Основное уравнение нерелятивистской квантовой механики сформулировано в 1926 г. Э. Шредингером. Уравнение Шредингера,как и все основные уравнения физики (например, уравнения Ньютона в классической механике и уравнения Максвелла для электромагнитного поля), не выводится, а постулируется. Правильность этого уравнения подтверждается согласием с опытом получаемых с его помощью результатов, что, в свою очередь, придает ему характер закона природы. Уравнение Шредингера имеет вид

    где h=h/(2π), m-масса частицы, ∆ -оператор Лапласа (),

    i - мнимая единица, U (х, у, z, t) - потенциальная функция частицы в силовом поле, в котором она движется, Ψ (х, у, z, t) - искомая волновая функция частицы.

    Уравнение (217.1) справедливо для любой частицы (со спином, равным 0; см. § 225), движущейся с малой (по сравнению со скоростью света) скоростью, т. е. со скоростью υ<<с. Оно дополняется условиями, накладываемыми на волновую функцию: 1) волновая функция должна быть конечной, однозначной и непрерывной (см. § 216); 2) производные

    должны быть непрерывны; 3) функция |Ψ| 2 должна быть интегрируема; это условие в простейших случаях сводится к условию нормировки вероятностей (216.3).

    Чтобы прийти к уравнению Шредингера, рассмотрим свободно движущуюся частицу, которой, согласно идее де Бройля, сопоставляется плоская волна. Для простоты рассмотрим одномерный случай. Уравнение плоской волны, распространяющейся вдоль оси х, имеет вид (см. § 154)

    Или в комплексной записи . Следовательно, плоская волна де Бройля имеет вид

    (217.2)

    (учтено, что ω = E/h, k=p/h). В квантовой механике показатель экспоненты берут со знаком минус, но поскольку физический смысл имеет только |Ψ| 2 , то это (см. (217.2)) несущественно. Тогда

    ,

    ; (217.3)

    Используя взаимосвязь между энергией Е и импульсом p (E = p 2 /(2m)) и подставляя выражения (217.3), получим дифференциальное уравнение

    которое совпадает с уравнением (217.1) для случая U= 0 (ми рассматривали свободную частицу).

    Если частица движется в силовом поле, характеризуемом потенциальной энергией U, то полная энергия Е складывается из кинетической и потенциальной энергий. Проводя аналогичные рассуждения используя взаимосвязь между Еи р (для данного случая р 2 /(2m)=E -U), прядем к дифференциальному уравнению, совпадающему с (217.1).

    Приведенные рассуждения не должны восприниматься как вывод уравнения Шредингера. Они лишь поясняют, как можно прийти к этому уравнению. Доказательством правильности уравнения Шредингера является согласие с опытом тех выводов, к которым оно приводит.

    Уравнение (217.1) является общим уравнением Шредингера. Его также называют уравнением Шредингера, зависящем от времени. Для многих физических явлений, происходящих в микромире, уравнение (217.1) можно упростить, исключив зависимость Ψ от времени, иными словами, найти уравнение Шредингера для стационарных состоянии - состоянии с фиксированными значениями энергии. Это возможно, если силовое поле, в котором частица движется, стационарно, т. е. функция U = U(х, у, z) не зависит явно от времени и имеет смысл потенциальной энергии. В данном случае решение уравнения Шредингера может быть представлено в виде произведения двух функций, одна из которых есть функция только координат, другая - только времени, причем зависимость от времени выражается множителем

    ,

    где Е - полная энергия частицы, постоянная в случае стационарного поля. Подставляя (217.4) в (217.1), получим

    откуда после деления на общий множитель е – i (E/ h) t и соответствующих преобразований придем к уравнению, определяющему функцию ψ:

    (217.5)

    Уравнение (217.5) называетсяуравнением Шредингера для стационарных состояний.

    В это уравнение в качестве параметра входит полная энергия Е частицы. В теории дифференциальных уравнений доказывается, что подобные уравнения имеют бесчисленное множество решений, из которых посредством наложения граничных условий отбирают решения, имеющие физический смысл. Для уравнения Шредингера такими условиями являются условия регулярности волновых функций: волновые функции должны быть конечными, однозначными и непрерывными вместе со своими первыми производными. Таким образом, реальный физический смысл имеют только такие решения, которые выражаются регулярными функциями ψ. Но регулярные решения имеют место не при любых значениях параметра Е, а лишь при определенном их наборе, характерном для данной задачи. Эти значения энергии называютсясобственными. Решения же, которые соответствуютсобственным значениям энергии, называютсясобственными функциями. Собственные значения Е могут образовывать как непрерывный, так и дискретный ряд. В первом случае говорят о непрерывном, или сплошном, спектре, во втором - о дискретном спектре.

    Движение микрочастиц в различных силовых полях описывается в рамках нерелятивистской квантовой механики с помощью уравнения Шредингера, из которого вытекают наблюдаемые на опыте волновые свойства частиц. Это уравнение, как и все основные уравнения физики, не выводятся, а постулируется. Его правильность подтверждается согласием результатов расчета с опытом. Волновое уравнение Шредингера имеет следующий общий вид :

    - (ħ 2 / 2m) ∙ ∆ψ + U (x, y, z, t) ∙ ψ = i ∙ ħ ∙ (∂ψ / ∂t)

    где ħ = h / 2π, h = 6,623∙10 -34 Дж ∙ с - постоянная Планка;
    m - масса частицы;
    ∆ - оператор Лапласа (∆ = ∂ 2 / ∂x 2 + ∂ 2 / ∂y 2 + ∂ 2 / ∂z 2);
    ψ = ψ (x, y, z, t) - искомая волновая функция;
    U (x, y, z, t) - потенциальная функция частицы в силовом поле, где она движется;
    i - мнимая единица.

    Это уравнение имеет решение лишь при условиях, накладываемых на волновую функцию:

    1. ψ (x, y, z, t) должна быть конечной, однозначной и непрерывной;
    2. первые производные от нее должны быть непрерывны;
    3. функция | ψ | 2 должна быть интегрируема, что в простейших случаях сводится к условию нормировки вероятностей.
    Для многих физических явлений, происходящих в микромире, уравнение (8.1) можно упростить, исключив зависимость ψ от времени, т.е. найти уравнение Шредингера для стационарных состояний с фиксированными значениями энергии. Это возможно, если силовое поле, в котором частица движется, стационарно, т.е. U = U (x, y, z) не зависит явно от времени и имеет смысл потенциальной энергии. Тогда после преобразований можно прийти к уравнению Шредингера для стационарных состояний:

    ∆ψ + (2m / ħ 2) ∙ (E - U) ∙ ψ = 0

    где ψ = ψ (x, y, z) - волновая функция только координат;
    E - параметр уравнения - полная энергия частицы.

    Для этого уравнения реальный физический смысл имеют лишь такие решения, которые выражаются регулярными функциями ψ (называемыми собственными функциями), имеющими место только при определенных значениях параметра E, называемого собственным значением энергии. Эти значения E могут образовывать как непрерывный, так и дискретный ряд, т.е. как сплошной, так и дискретный спектр энергий.

    Для какой-либо микрочастицы при наличии уравнения Шредингера типа (8.2) задача квантовой механики сводится к решению этого уравнения, т.е. нахождению значений волновых функций ψ = ψ (x, y, z), соответствующих спектру собственных энергией E. Далее находится плотность вероятности | ψ | 2 , определяющая в квантовой механике вероятность нахождения частицы в единичном объеме в окрестности точки с координатами (x, y, z).

    Одним из простейших случаев решения уравнения Шредингера является задача о поведении частицы в одномерной прямоугольной "потенциальной яме" с бесконечно высокими "стенками". Такая "яма" для частицы, движущейся только вдоль оси Х, описывается потенциальной энергией вида

    где l - ширина "ямы", а энергия отсчитывается от ее дна (рис. 8.1).

    Уравнение Шредингера для стационарных состояний в случае одномерной задачи запишется в виде:

    ∂ 2 ψ / ∂x 2 + (2m / ħ 2) ∙ (E - U) ∙ ψ = 0

    В силу того, что "стенки ямы" бесконечно высокие, частица не проникает за пределы "ямы". Это приводит к граничным условиям:

    ψ (0) = ψ (l) = 0

    В пределах "ямы" (0 ≤ x ≤ l) уравнение (8.4) сводится к виду:

    ∂ 2 ψ / ∂x 2 + (2m / ħ 2) ∙ E ∙ ψ = 0

    ∂ 2 ψ / ∂x 2 + (k 2 ∙ ψ) = 0

    где k 2 = (2m ∙ E) / ħ 2


    Решение уравнения (8.7) с учетом граничных условий (8.5) имеет в простейшем случае вид:

    ψ (x) = A ∙ sin (kx)


    где k = (n ∙ π)/ l

    при целочисленных значениях n.

    Из выражений (8.8) и (8.10) следует, что

    E n = (n 2 ∙ π 2 ∙ ħ 2) / (2m ∙ l 2) (n = 1, 2, 3 ...)


    т.е. энергия стационарных состояний зависит от целого числа n (называемого квантовым числом) и имеет определенные дискретные значения, называемые уровнями энергии.

    Следовательно, микрочастица в "потенциальной яме" с бесконечно высокими "стенками" может находится только на определенном энергетическом уровне E n , т.е. в дискретных квантовых состояниях n.

    Подставив выражение (8.10) в (8.9) найдем собственные функции

    ψ n (x) = A ∙ sin (nπ / l) ∙ x


    Постоянная интегрирования А найдется из квантовомеханического (вероятностного) условия нормировки

    которое для данного случая запишется в виде:

    Откуда в результате интегрирования получим А = √ (2 / l) и тогда имеем

    ψ n (x) = (√ (2 / l)) ∙ sin (nπ / l) ∙ x (n = 1, 2, 3 ...)

    Графики функции ψ n (х) не имеют физического смысла, тогда как графики функции | ψ n | 2 показывают распределение плотности вероятности обнаружения частицы на различных расстояниях от "стенок ямы"(рис. 8.1). Как раз эти графики (как и ψ n (х) - для сравнения) изучаются в данной работе и наглядно показывают, что представления о траекториях частицы в квантовой механике несостоятельны.

    Из выражения (8.11) вытекает, что энергетический интервал между двумя соседними уровнями равен

    ∆E n = E n-1 - E n = (π 2 ∙ ħ 2) / (2m ∙ l 2) ∙ (2n + 1)

    Отсюда видно, что для микрочастиц (типа электрона) при больших размерах "ямы" (l≈ 10 -1 м), энергетические уровни располагаются настолько тесно, что образуют практически непрерывный спектр. Такое состояние имеет место, например, для свободных электронов в металле. Если же размеры "ямы" соизмеримы с атомными (l ≈ 10 -10 м), то получается дискретный спектр энергии (линейчатый спектр). Эти виды спектров также могут быть изучены в данной работе для различных микрочастиц.

    Другим случаем поведения микрочастиц (как, впрочем, и микросистем - маятников), часто встречаемым на практике (и рассматриваемым в этой работе), является задача о линейном гармоническом осцилляторе в квантовой механике.

    Как известно, потенциальная энергия одномерного гармонического осциллятора массой m равна

    U (x) = (m ∙ ω 0 2 ∙ x 2)/ 2

    где ω 0 - собственная частота колебаний осциллятора ω 0 = √ (k / m);
    k - коэффициент упругости осциллятора.

    Зависимость (8.17) имеет вид параболы, т.е. "потенциальная яма" в данном случае является параболической (рис. 8.2).



    Квантовый гармонический осциллятор описывается уравнением Шредингера (8.2), учитывающим выражение (8.17) для потенциальной энергии. Решение этого уравнения записывается в виде :

    ψ n (x) = (N n ∙ e -αx2 / 2) ∙ H n (x)

    где N n - постоянный нормирующий множитель, зависящий от целого числа n;
    α = (m ∙ ω 0) / ħ;
    H n (x) - полином степени n, коэффициенты которого вычисляются при помощи рекуррентной формулы при различных целочисленных n.
    В теории дифференциальных уравнений можно доказать, что уравнение Шредингера имеет решение (8.18) лишь для собственных значений энергии:

    E n = (n + (1 / 2)) ∙ ħ ∙ ω 0


    где n = 0, 1, 2, 3... - квантовое число.

    Это значит, что энергия квантового осциллятора может принимать лишь дискретные значения, т.е. квантуется. При n = 0 имеет место E 0 = (ħ ∙ ω 0) / 2, т.е. энергия нулевых колебаний, что является типичным для квантовых систем и представляет собой прямое следствие соотношения неопределенности.

    Как показывает детальное решение уравнения Шредингера для квантового осциллятора , каждому собственному значению энергии при разных n соответствует своя волновая функция, т.к. от n зависит постоянный нормирующий множитель

    а также H n (x) - полином Чебышева-Эрмита степени n.
    При том первые два полинома равны:

    H 0 (x) = 1;
    H 1 (x) = 2x ∙ √ α

    Любой последующий полином связан с нми по следующей рекуррентной формуле:

    H n+1 (x) = 2x ∙ √ α ∙ H n (x) - 2n ∙ H n-1 (x)

    Собственные функции типа (8.18) позволяют найти для квантового осциллятора плотность вероятности нахождения микрочастицы как | ψ n (х) | 2 и исследовать ее поведение на различных уровнях энергии. Решение этой задачи затруднительно ввиду необходимости использования рекуррентной формулы. Эта задача успешно может решаться лишь с использованием ЭВМ, что и делается в настоящей работе.