Как авогадро открыл число почему такие величины. Что скрывает число Авогадро, и как посчитать молекулы

Моль - одно из важнейших понятий в химии, - это, своего рода, звено для перехода из микромира атомов и молекул в обычный макромир граммов и килограммов.

В химии часто приходится считать большие количества атомов и молекул. Для быстрого и эффективного подсчета принято пользоваться методом взвешивания. Но при этом надо знать, вес отдельных атомов и молекул. Для того, чтобы узнать молекулярную массу надо сложить массу всех атомов, входящих в соединение.

Возьмем молекулу воды H 2 O, которая состоит из одного атома кислорода и двух атомов водорода. Из периодической таблицы Менделеева узнаем, что один атом водорода весит 1,0079 а.е.м. ; один атом кислорода - 15,999 а.е.м. Теперь, чтобы вычислить молекулярную массу воды, надо сложить атомные массы компонентов молекулы воды:

H 2 O = 2·1,0079 + 1·15,999 = 18,015 а.е.м.

Например, для сульфата аммония молекулярная масса будет равна:

Al 2 (SO 4) 3 = 2·26,982 + 3·32,066 + 12·15,999 = 315, 168 а.е.м.

Вернемся опять к повседневной жизни, в которой мы привыкли пользоваться такими понятиями, как пара, десяток, дюжина, сотня. Все это своеобразные единицы измерения определенных объектов: пара ботинок, десяток яиц, сотня скрепок. Подобной единицей измерения в химии является МОЛЬ .

Современная наука с высокой точностью определила число структурных единиц (молекулы, атомы, ионы…), которые содержатся в 1 моле вещества - это 6,022·10 23 - постоянная Авогадро , или число Авогадро .

Все вышесказанное о моле относится к микромиру. Теперь надо увязать понятие моля с повседневным макромиром.

Весь нюанс состоит в том, что в 12 граммах изотопа углерода 12 C содержится 6,022·10 23 атомов углерода, или ровно 1 моль. Таким образом, для любого другого элемента моль выражается количеством граммов, равным атомной массе элемента. Для химических соединений моль выражается количеством граммов, равным молекулярной массе соединения.

Чуть ранее мы выяснили, что молекулярная масса воды равна 18,015 а.е.м. С учетом полученных знаний о моле, можно сказать, что масса 1 моля воды = 18,015 г (т.к., моль соединения - это количество граммов, равных его молекулярной массе). Другими словами, можно сказать, что в 18,015 г воды содержится 6,022·10 23 молекул H 2 O, или 1 моль воды = 1 моль кислорода + 2 моля водорода.

Из приведенного примера понятна связь микромира и макромира через моль:

Число Авогадро ↔ МОЛЬ ↔ кол-во граммов, равных атомной (формульной) массе
  • n - кол-во вещества, моль;
  • N - кол-во частиц;
  • N A - число Авогадро, моль -1

Приведем несколько практических примеров использования моля:

Задача №1: Сколько молекул воды содержится в 16,5 молях H 2 O?

Решение: 16,5·6,022·10 23 = 9,93·10 24 молекул.

Задача №2: Сколько молей содержится в 100 граммах H 2 O?

Решение: (100 г/1)·(1 моль/18,015 г) = 5,56 моль.

Задача №3: Сколько молекул содержит 5 г диоксида углерода?

Решение:

  1. Определяем молекулярную массу CO 2: CO 2 = 1·12,011 + 2·15,999 = 44,01 г/моль
  2. Находим число молекул: (5г/1)·(1моль/44,01г)·(6,022·10 23 /1моль) = 6,84·10 22 молекул CO 2

За единицу количества вещества принят моль – количество вещества, содержащее столько же структурных единиц (атомов, ионов, молекул и др.), сколько атомов содержится в 0,012 кг изотопа углерода 12 С. Число частиц, содержащиеся в одном моле вещества, называют числом Авогадро (Постоянной Авагадро) N A . Это одна из универсальных постоянных, которая не зависит от природы вещества и внешних условий.

N A ≈ 6,022 . 10 23 моль -1 (60 способов определения).

Количество вещества, выраженное в молях, связано с его массой величиной, называемой молярной массой вещества.

Молярная масса численно равна молекулярной:

Кислород (О 2)– относительная молекулярная масса 32 у.е. и молярная масса – 32 г/моль. Зная постоянную Авогадро, можно найти абсолютное значение массы любого атома (молекулы) и оценить размеры атомов.

Массу атома (молекулы) m находят делением молярной массы М на постоянную Авагадро:

Молярный объем - это объем 1 моля вещества, выражается в л/моль.

Для определения мольного объема газов используется закон Авагадро: равные объемы всех газов при одинаковых условиях (температуре и давлении) содержат одинаковое число молекул.

Следствия закона Авагадро:

1) При одинаковых температуре и давлении 1 моль любого вещества в газообразном состоянии занимает один и тот же объем.

2) 1 моль любого газа при нормальных условиях занимает объем 22.4 л.

нормальные условия: н.у. 1атм= 101325 Па= 760 мм рт.ст. и 0 0 С.

Для определения молярной (молекулярной) массы газообразных веществ можно использовать объединенный газовый закон (закон Менделеева-Клапейрона):

,где

Р - давление, Па;

V - объем, м 3 ;

m - масса, г;

Т - температура, К;

М - молярная масса, г/моль;

R - универсальная газовая постоянная, Дж/моль∙К

Для определения молекулярной массы газообразных веществ можно использовать также данные об относительной плотности газа.

Относительная плотность одного газа по другому (D ) - это отношение массы данного газа к массе того же объема другого газа, взятого при той же температуре и том же давлении.

Например, масса 1 л углекислого газа (СО 2) равна 1,98 г, при тех же условиях масса 1 л водорода (Н 2) равна 0,09 г. Следовательно, плотность углекислого газа по водороду составляет: 1,98: 0.09 =22

, где

m 1 , m 2 - массы 1 и 2-го газов, г;

М 1 , М 2 - молярные (молекулярные) массы 1 и 2 -го газов.

Сложнее определить размер атомов. Размер атома можно определить только условно. Для кристаллических простых веществ за радиус атома принимают половину расстояния между центрами соседних атомов. Эту величину можно найти, зная плотность вещества и постоянную Авагадро. Если разделить объем занимаемый одним молем твердого простого вещества V m (молярный объем) на постоянную Авагадро, то найдем объем V , приходящийся на один атом. Этот атом приблизительно можно рассматривать как шар, вписанный в куб объемом V , тогда радиус атома r выражается уравнением



Аналогично выражается радиус молекулы.

Для точного расчета размеров атомов необходимо знать их расположение в кристаллах твердых веществ. Установлено, что многие простые вещества имеют структуру аналогичную плотнейшей упаковке шаров. В такой упаковке на долю самих шаров приходится 74,05% от занимаемого объема.

Точное значение радиуса атома:

Радиусы атомов имеет значение порядка 100 пм.

Инструкция

Зная такую величину, как количество ν, найдите число молекул в нем. Для этого количество вещества, измеренное в молях, умножьте на постоянную Авогадро (NА=6,022∙10^23 1/моль), которая равна числу молекул в 1 моле вещества N=ν/ NА. Например, если имеется 1,2 моль поваренной соли, то в ней содержится N=1,2∙6,022∙10^23 ≈7,2∙10^23 молекул .

Если известна вещества, с помощью периодической таблицы элементов найдите его молярную массу. Для этого по таблице найдите относительные атомные массы атомов, из которых состоит молекул а, и сложите их. В результате получите относительную молекул ярную массу вещества, которая численно равна его молярной массе на моль. Затем, на весах измерьте массу исследуемого вещества в . Чтобы найти количество молекул в веществе , умножьте массу вещества m на постоянную Авогадро (NА=6,022∙10^23 1/моль) и поделите результат на молярную массу M (N=m∙ NА/M).

Пример Определите количество молекул , которое содержится в 147 г . Найдите молярную массу . Ее молекул а состоит из 2-х атомов водорода одного серы и 4-х атомов кислорода. Их атомные массы равны 1, 32 и 16. Относительная молекул ярная масса равна 2∙1+32+4∙16=98. Она равна молярной массе, поэтому М=98 г/моль. Тогда количество молекул , содержащихся в 147 г серной кислоты, будет равно N=147∙6,022∙10^23/98≈9∙10^23 молекул .

Чтобы найти количество молекул газа в нормальных условиях при температуре 0ºС 760 мм рт. столба, найдите его объем. Для этого измеряйте или высчитайте V, в которой он находится в литрах. Чтобы найти количество молекул газа поделите этот объем на 22,4 л (объем одного моля газа в нормальных условиях), и умножьте на число Авогадро (NА=6,022∙10^23 1/моль) N= V∙ NА/22,4.

Источники:

  • как определить количество молекул

А. Авогадро в 1811 году, в самом начале развития атомной теории сделал предположение, что в равном количестве идеальных газов при одинаковом давлении и температуре содержится одинаковое число молекул. Позднее это предположение подтвердилось и стало необходимым следствием для кинетической теории. Теперь эта теория носит название – Авогадро.

Инструкция

Видео по теме

Молекула - это электрически нейтральная частица, обладающая всеми химическими свойствами, присущими данному конкретному веществу. В том числе и газам: кислороду, азоту, хлору и т.д. Как можно определить количество молекул газа?

Инструкция

Если вам необходимо подсчитать, кислорода содержится в 320 этого газа при нормальных условиях, прежде всего, определите, какое количество молей кислорода заключено в этом количестве. По таблице Менделеева, можно увидеть, что округленная атомная масса кислорода – 16 атомных единиц. Поскольку молекула кислорода – двухатомная, масса молекулы составит 32 атомные единицы. Следовательно, количество молей 320/32 = 10.

Дальше вам поможет универсальное число Авогадро, названное в , предположившего, что равные объемы идеальных при постоянных условиях содержат одинаковые количества молекул. Оно обозначается символом N(A) и очень велико – 6,022*10(23). Умножьте это число на вычисленное количество молей кислорода и вы узнаете, что искомое количество молекул в 320 граммах кислорода – 6,022*10(24).

А если вам кислорода, а также объем, занимаемый им, и температура? Как вычислить количество его молекул при таких данных? И тут нет ничего сложного. Надо лишь записать универсальное уравнение Менделеева-Клапейрона для идеальных газов:

Где P – давление газа в паскалях, V – его объем в кубических метрах, R – универсальная газовая постоянная, M – масса газа, а m – его молярная масса.

Cлегка преобразуя это уравнение, вы получите:

Поскольку у вас есть все необходимые данные (давление, объем, температура заданы изначально, R = 8,31, а молярная масса кислорода = 32 грамма/моль), вы элементарно найдете массу газа при данном объеме, давлении и . А дальше задача решается точно так же, как и в вышеописанном примере: N(A)M/m. Произведя вычисления, вы узнаете, сколько молекул кислорода содержится при заданных условиях.

Видео по теме

Полезный совет

Ни один реальный газ (включая кислород), конечно же, не является идеальным, поэтому уравнение Менделеева-Клапейрона можно использовать для расчетов лишь при условиях, не очень сильно отличающихся от нормальных.

Молекула обладает настолько мизерными размерами, что количество молекул даже в крохотной крупинке или капле какого-либо вещества будет просто грандиозным. Оно не поддается измерению с помощью обычных методов исчисления.

Что такое «моль» и как с его помощью находить количество молекул в веществе

Для определения, сколько молекул находится в том или ином количестве вещества, используется понятие «моль». Моль – количество вещества, в котором находится 6,022*10^23 его молекул (или атомов, или ионов). Эта громадная величина носит название «постоянная Авогадро», она названа в честь знаменитого итальянского ученого. Величина обозначается NA. С помощью постоянной Авогадро можно очень легко определить, сколько молекул содержится в любом количестве молей любого вещества. Например, в 1,5 молях содержится 1,5*NA = 9,033*10^23 молекул. В тех случаях, когда требуется очень высокая точность измерения, необходимо использовать значение числа Авогадро с большим количеством знаков после запятой. Наиболее полная его величина составляет: 6,022 141 29(27)*10^23.

Как можно найти количество молей вещества

Определить, сколько молей содержится в каком-то количестве вещества, очень просто. Для этого нужно только иметь точную формулу вещества и таблицу Менделеева под рукой. Предположим, у вас есть 116 граммов обыкновенной поваренной соли. Вам нужно определить, сколько молей содержится в таком количестве (и, соответственно, сколько там молекул)?

Прежде всего вспомните химическую формулу поваренной соли. Она выглядит следующим образом: NaCl. Молекула этого вещества состоит из двух атомов (точнее, ионов): натрия и хлора. Какова ее молекулярная масса? Она складывается из атомных масс элементов. С помощью таблицы Менделеева вы знаете, что атомная масса натрия приблизительно равна 23, а атомная масса хлора – 35. Следовательно, молекулярная масса этого вещества составляет 23 + 35 = 58. Масса измеряется в атомных единицах массы, где за эталон принят самый легкий атом – водорода.

А зная молекулярную массу вещества, вы тут же сможете определить и ее молярную массу (то есть массу одного моля). Дело в том, что численно молекулярная и молярная масса полностью совпадают, у них только разные единицы измерения. Если молекулярная масса измеряется в атомных единицах, то молярная – в граммах. Следовательно, 1 моль поваренной соли весит приблизительно 58 граммов. А у вас, по условиям задачи, 116 граммов поваренной соли, то есть 116/58 = 2 моля. Умножив 2 на постоянную Авогадро, вы определите, что в 116 граммах натрия находится примерно 12,044*10^23 молекул, или примерно 1,2044*10^24.

Январь 21, 2017

Зная количество вещества в молях и число Авогадро очень легко посчитать, сколько молекул содержится в этом веществе. Достаточно просто умножить число Авогадро на количество вещества.

N=N A *ν

И если вы пришли в поликлинику сдавать анализы, ну, скажем, кровь на сахар, зная число Авогадро, вы легко сможете посчитать количество молекул сахара в вашей крови. Ну, к примеру, анализ показал 5 моль. Умножим этот результат на число Авогадро и получим 3 010 000 000 000 000 000 000 000 штук. Глядя на эту цифру становится понятно, почему отказались мерить молекулы штуками, и стали мерить молями.

Молярная масса (M).

Если же количество вещества неизвестно, то его можно найти, разделив массу вещества на его молярную массу.

N=N A * m / M .

Единственный вопрос, который может тут возникнуть: «что же такое молярная масса?» Нет, это не масса маляра, как может показаться!!! Молярная масса — это масса одного моля вещества. Тут все просто, если в одном моле содержится N A частиц (т.е. равное числу Авогадро) , то, умножая массу одной такой частицы m 0 на число Авогадро, мы получим молярную массу.

M=m 0 *N A .

Молярная масса — это масса одного моля вещества.

И хорошо если она известна, а если нет? Придется вычислять массу одной молекулы m 0 . Но и это не проблема. Необходимо знать только её химическую формулу и иметь под рукой таблицу Менделеева.

Относительная молекулярная масса (M r).

Если количество молекул в веществе величина очень большая, то масса одной молекулы m0 напротив, величина очень маленькая. Поэтому для удобства расчетов была введена относительная молекулярная масса (M r) . Это отношение массы одной молекулы или атома вещества, к 1 / 12 массы атома углерода. Но пусть это вас не пугает, для атомов её указывают в таблице Менделеева, а для молекул она рассчитывается как сумма относительных молекулярных масс всех атомов, входящих в молекулу. Относительная молекулярная масса измеряется в атомных единицах масс (а.е.м) , в пересчете на килограммы 1 а.е.м.=1,67 10 -27 кг. Зная это, мы можем легко определить массу одной молекулы, умножив относительную молекулярную массу на 1,67 10 -27 .

m 0 = M r *1,67*10 -27 .

Относительная молекулярная масса — отношение массы одной молекулы или атома вещества, к 1 / 12 массы атома углерода.

Связь между молярной и молекулярной массами.

Вспомним формулу для нахождения молярной массы:

M=m 0 *N A .

Так как m 0 = M r * 1,67 10 -27 , мы можем выразить молярную массу как:

M=M r *N A *1,67 10 -27 .

Теперь если умножить число Авогадро N A на 1,67 10 -27 , мы получим 10 -3 , то есть чтобы узнать молярную массу вещества, достаточно только умножить его молекулярную массу на 10 -3 .

M=M r *10 -3

Но не спешите все это делать вычисляя количество молекул. Если нам известна масса вещества m, то разделив её на массу молекулы m 0 , мы получим количество молекул в этом веществе.

N=m / m 0

Конечно неблагодарное это дело молекулы считать, мало того, что они маленькие, так еще и движутся постоянно. Того и гляди собьешься, и придется считать заново. Но в науке, как в армии — есть такое слово «надо», и поэтому даже атомы и молекулы были посчитаны…

Закон Авогадро

На заре развития атомной теории () А. Авогадро выдвинул гипотезу, согласно которой при одинаковых температуре и давлении в равных объёмах идеальных газов содержится одинаковое число молекул. Позже было показано, что эта гипотеза есть необходимое следствие кинетической теории, и сейчас она известна как закон Авогадро. Его можно сформулировать так: один моль любого газа при одинаковых температуре и давлении занимает один и тот же объем, при нормальных условиях равный 22,41383 . Эта величина известна как молярный объем газа .

Сам Авогадро не делал оценок числа молекул в заданном объёме, но понимал, что это очень большая величина. Первую попытку найти число молекул, занимающих данный объем, предпринял в году Й. Лошмидт . Из вычислений Лошмидта следовало, что для воздуха количество молекул на единицу объёма составляет 1,81·10 18 см −3 , что примерно в 15 раз меньше истинного значения. Через 8 лет Максвелл привёл гораздо более близкую к истине оценку «около 19 миллионов миллионов миллионов» молекул на кубический сантиметр, или 1,9·10 19 см −3 . В действительности в 1 см³ идеального газа при нормальных условиях содержится 2,68675·10 19 молекул . Эта величина была названа числом (или постоянной) Лошмидта . С тех пор было разработано большое число независимых методов определения числа Авогадро. Превосходное совпадение полученных значений является убедительным свидетельством реального количества молекул.

Измерение константы

Официально принятое на сегодня значение числа Авогадро было измерено в 2010 году . Для этого использовались две сферы, сделанные из кремния-28 . Сферы были получены в Институте кристаллографии имени Лейбница и отполированы в австралийском Центре высокоточной оптики настолько гладко, что высоты выступов на их поверхности не превышали 98 нм . Для их производства был использован высокочистый кремний-28, выделенный в нижегородском Институте химии высокочистых веществ РАН из высокообогащённого по кремнию-28 тетрафторида кремния, полученного в Центральном конструкторском бюро машиностроения в Санкт-Петербурге.

Располагая такими практически идеальными объектами, можно с высокой точностью подсчитать число атомов кремния в шаре и тем самым определить число Авогадро. Согласно полученным результатам, оно равно 6,02214084(18)×10 23 моль −1 .

Связь между константами

  • Через произведение постоянной Больцмана Универсальная газовая постоянная , R =kN A .
  • Через произведение элементарного электрического заряда на число Авогадро выражается постоянная Фарадея , F =eN A .

См. также

Примечания

Литература

  • Число Авогадро // Большая советская энциклопедия

Wikimedia Foundation . 2010 .

Смотреть что такое "Число Авогадро" в других словарях:

    - (постоянная Авогадро, обозначение L), постоянная, равная 6,022231023, соответствует числу атомов или молекул, содержащихся в одном МОЛЕ вещества … Научно-технический энциклопедический словарь

    число Авогадро - Avogadro konstanta statusas T sritis chemija apibrėžtis Dalelių (atomų, molekulių, jonų) skaičius viename medžiagos molyje, lygus (6,02204 ± 0,000031)·10²³ mol⁻¹. santrumpa(os) Santrumpą žr. priede. priedas(ai) Grafinis formatas atitikmenys:… … Chemijos terminų aiškinamasis žodynas

    число Авогадро - Avogadro konstanta statusas T sritis fizika atitikmenys: angl. Avogadro’s constant; Avogadro’s number vok. Avogadro Konstante, f; Avogadrosche Konstante, f rus. постоянная Авогадро, f; число Авогадро, n pranc. constante d’Avogadro, f; nombre… … Fizikos terminų žodynas

    Авогадро постоянная (число Авогадро) - число частиц (атомов, молекул, ионов) в 1 моле вещества (моль это количество вещества, в котором содержится столько же частиц, сколько атомов содержится точно в 12 граммах изотопа углерода 12), обозначаемое символом N = 6,023 1023. Одна из… … Начала современного естествознания

    - (число Авогадро), число структурных элементов (атомов, молекул, ионов или др. ч ц) в ед. кол ва в ва (в одном моле). Названа в честь А. Авогадро, обозна чается NA. А. п. одна из фундаментальных физических констант, существенная для определения мн … Физическая энциклопедия

    - (число Авогадро; обозначается NА), число молекул или атомов в 1 моле вещества, NА = 6,022045(31) х 1023моль 1; назв. по имени А. Авогадро … Естествознание. Энциклопедический словарь

    - (число Авогадро), число частиц (атомов, молекул, ионов) в 1 моле в ва. Обозначается NA и равна (6,022045 … Химическая энциклопедия

    Na = (6,022045±0,000031)*10 23 число молекул в моле любого вещества или число атомов в моле простого вещества. Одна из фундаментальных постоянных, с помощью которой можно определить такие величины, как, например, массу атома или молекулы (см.… … Энциклопедия Кольера