Клеточные факторы врожденного иммунитета. Эффекты воспаления

Беляева А.С., Ванько Л.В., Матвеева Н.К., Кречетова Л.В.

НЕЙТРОФИЛЬНЫЕ ГРАНУЛОЦИТЫ КАК РЕГУЛЯТОРЫ ИММУНИТЕТА

ФГБУ «Научный центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова» Минздрава России, 117997, Москва, Россия

Результаты многих исследований подтверждают ключевую роль нейтрофильных гранулоцитов в инактивации вне-и внутриклеточных бактерий, вирусов, грибов. Наряду с эффекторной функцией, данные клетки обладают широким спектром механизмов, способствующих привлечению клеток адаптивного иммунитета к очагу воспаления, индукции их созревания, дифференцировки, пролиферации и активации, играют важную роль в формировании микроокружения и моделировании специфического антигензависимого ответа. В обзоре рассматривают значение субпопуляций нейтрофильных гранулоцитов в поддержании гомеостаза клеток адаптивного иммунитета, представлены данные об иммунорегуляторном воздействии продуктов активации нейтрофилов на дендритные клетки, Т- и В-лимфоциты.

Ключевые слова: нейтрофильные гранулоциты; иммунорегуляторная роль; миелоидные супрессорные клетки; Т-независимый иммунный ответ.

Для цитирования: Беляева А.С., Ванько Л.В., Матвеева Н.К., Кречетова Л.В. Нейтрофильные гранулоциты как регуляторы иммунитета. Иммунология. 2016; 37 (2): 129-133. DOI: 10.18821/0206-4952-2016-37-2-129-133

Belyaeva A.S., Van"ko L.V., Matveeva N.K., Krechetova L.V. NEUTROPHIL GRANULOCYTES AS A REGULATORS OF IMMUNITY

Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russian Federation, 117997, Moscow, Russia

Many studies confirm a key role of neutrophils in the inactivation of extra- and intracellular bacteria, viruses, fungi. Along with their effector function, neutrophils have a wide spectrum of mechanisms that provide signals for the attraction, activation, maturation and differentiation of cells of adaptive immunity. Neutrophil granulocytes play an important role in the regulation of specific antigen-dependent response and in the microenvironment formation. The present review demonstrates a value of neutrophils in the maintenance of homeostasis of dendritic cells, T- and B-cells.

Keywords: neutrophil granulocytes, immunoregulatory role; myeloid-derived suppressor cells; T-independent immune response.

For citation: Belyaeva A.S., Van"ko L.V., Matveeva N.K., Krechetova L.V. Neutrophil granulocytes as a regulators of immunity. Immunologiya. 2016; 37 (2): 129-133. DOI: 10.18821/0206-4952-2016-37-2-129-133

For correspondence: Belyaeva Anastasiya Sergeevna, junior researcher of laboratory of clinical immunology, E-mail: [email protected].

conflict of interest. The authors declare no conflict of interest.

Funding. The study had no sponsorship.

Received 04.03.15 Accepted 18.06.15

К настоящему времени значительно изменилось традиционное представление о нейтрофильных гранулоцитах (НГ). Данная гетерогенная популяция клеток является одним из главных эффекторов врожденного иммунитета. Обладая способностью быстро мигрировать к месту инвазии микроорганизмов и располагая обширным спектром механизмов их инактивации, НГ выступают в роли первой линии иммунной защиты. Наличие сегментированного ядра у зрелых форм позволяет НГ проникать через мелкие поры диаметром 3-5 мкм, купировать инфекционный процесс в месте инвазии патогенов, препятствуя их распространению . Результаты многих исследований свидетельствуют о ключевой роли НГ

Для корреспонденции: Беляева Анастасия Сергеевна, мл. науч. сотр. лаб. клинической иммунологии, E-mail: [email protected]

в инактивации вне- и внутриклеточных бактерий, вирусов, грибов. Конститутивно и при стимуляции патогенами фагоциты выделяют антимикробные белки, ядерный хроматин и широкий спектр растворимых медиаторов, индуцирующих воспаление и поддерживающих прогрессию воспалительной реакции .

Возрождение интереса исследователей к НГ обусловлено тем, что наряду с эффекторной функцией, данные клетки обладают мощным иммунорегуляторным потенциалом. В зависимости от степени зрелости и фенотипических особенностей, НГ могут способствовать развитию врожденного и адаптивного иммунного ответа или приводить к формированию толерантности к специфическому антигену . НГ воздействуют на другие клетки иммунной системы как путем прямых межклеточных взаимодействий, реализующихся во вторичных лимфоидных органах , так и дистанционно, посредством растворимых медиаторов . Секретируемые

в большом количестве активированными нейтрофилами медиаторы способствуют созреванию, дифференцировке, активации клеток врожденного и, в особенности, адаптивного иммунитета. Хемокины, выделяемые НГ при попадании в организм чужеродных структур, взаимодействуют с рецепторами на поверхности других клеток иммунной системы, инициируя миграцию последних к месту инвазии патогенов. В последние годы внимание исследователей привлекают сетчатые структуры, состоящие из ядерного хроматина и гранул антимикробных протеинов, названные нейтрофильными внеклеточными ловушками (NET - neutrophil extracellular traps). Они высвобождаются в результате особой формы клеточной смерти (нетоза) и служат для иммобилизации и деградации микробных патогенов, препятствуя их распространению . Помимо эффекторной функции, NET способны оказывать иммунорегуляторное воздействие на другие клетки иммунной системы: поддерживают пролиферацию, снижают порог активации клеток адаптивного иммунитета, усиливают секрецию цитокинов .

Большой интерес для исследователей представляет реализация иммунорегуляторной функции НГ не только у здоровых индивидуумов, но и при развитии заболеваний.

Взаимодействие нейтрофильных гранулоцитов с дендритными клетками

Дендритные клетки (ДК) занимают пограничное положение между врожденным и адаптивным иммунитетом: с одной стороны, они имеют много общего с клетками врожденного иммунитета предшественника, сходный с макрофагами фенотип, обладают способностью к фагоцитозу, с другой - пре-зентируют антиген в составе молекул MHC II Т-лимфоцитам, что во многом определяет тип и интенсивность специфического антигензависимого ответа. Существенный вклад в регуляцию Т-зависимого ответа вносит степень зрелости ДК, вид и количество синтезируемых ими активационных молекул, соотношение плазмацитоидных и миелоидных ДК .

Созревание и активация ДК происходят при воздействии на них антигенов бактерий и вирусов, механического стресса, Т-лимфоцитарных стимулов. Большое значение НГ в развитии ДК подтверждается в исследованиях in vitro: широкий спектр цитокинов и ростовых факторов, секретируемых НГ конститутивно и при активации, необходим на всех этапах развития ДК .

Важную роль в созревании и активации ДК, привлечении незрелых форм к месту инвазии патогенов имеют бактерицидные факторы гранул нейтрофилов: а-дефензины, катели-цидины, лактоферрин и амфотерин (HMGB1) . Данные белки способны воздействовать на ДК самостоятельно и в составе NET, образуя комплекс с ДНК нейтрофилов. Действие некоторых из них осуществляется посредством связывания с рецепторами на поверхности ДК. Показано, что при отсутствии на ДК TLR4 или при блокировании сигнала антителами к данному рецептору значительно снижается степень активации ДК при их инкубации с лактоферрином . Степень воздействия амфотерина на клетки также определяется интенсивностью экспрессии на их поверхности рецепторов TLR2, TLR4, TLR9 и рецепторов для конечных продуктов гликирования . Бактерицидные пептиды азурофильных гранул (а-дефензины) могут выступать в роли адъювантов, усиливая иммунный ответ на антигены .

Помимо активирующего влияния бактерицидных пептидов, в экспериментах in vitro и in vivo доказано ингибирую-щее воздействие на ДК миелопероксидазы (МРО) - одного из главных ферментов, содержащихся в лизосомах НГ. При активации клеток бактериальными и провоспалительными стимулами, МРО секретируется во внеклеточную среду и вступает в контакт с ДК, что приводит к достоверному снижению секреции ими ГЬ-12р70 и уменьшению экспрессии поверхностного маркера CD86 .

В процессе созревания ДК после поглощения антигена

изменяется набор их поверхностных рецепторов, в том числе хемокиновых. Наивные ДК экспрессируют CCR1, CCR2, CCR5, CCR6, CXCR1, CXCR2, а более зрелые несут на своей поверхности CCR7 и CCR9, поэтому секреция заданного спектра хемокинов нейтрофилами инициирует миграцию ДК определенной степени дифференцировки .

Кроме дистанционного воздействия цитокинов и продуктов секреции гранул, НГ способны активировать ДК путем непосредственного взаимодействия с рецепторами на их поверхности, приводящего к экспрессии молекул CD40, CD80, CD86, HLA-Dr на ДК. Важным участником этого процесса является С-лектин DC-SIGN на ДК, взаимодействующий с молекулами адгезии на поверхности нейтрофилов .

Активация ДК сопровождается более интенсивным про-цессингом антигена, экспрессией ко-стимуляторных поверхностных молекул, секрецией цитокинов, необходимых для поддержания гомеостаза популяции Т-лимфоцитов и их дифференцировки. Таким образом, посредством активации ДК нейтрофильные гранулоциты способны оказывать иммунорегулирующее влияние на антиген-специфический Т-зависимый иммунный ответ.

взаимодействие нейтрофильных гранулоцитов с Т-клетками

Т-лимфоциты признаны главными эффекторами адаптивного антигензависимого иммунного ответа. Их участие в иммунном ответе необходимо для эффективной защиты организма при вирусных инфекциях, опухолевых процессах, аутоиммунных заболеваниях, а также при формировании материнской толерантности к плоду . Соотношение субпопуляций цитотоксических, хелперных (Th1, Th2, Th17) и регуляторных (Tre) Т-лимфоцитов определяет тип иммунного ответа: клеточный, гуморальный, иммунологическая толерантность. При развитии первичного иммунного ответа небольшая часть Т-лимфоцитов трансформируется в Т-клетки памяти, обладающие большим пролиферативным потенциалом и способные быстро отвечать на повторный антигенный стимул . Под воздействием хемоаттрактантов, большая часть которых секретируется активированными НГ, происходит миграция Т-лимфоцитов. Спектр хемокиновых рецепторов специфичен для каждой субпопуляции Т-клеток. Так, для Thl-клеток характерна экспрессия CXCR3, CCR1, CCR2, CCR5, для Th2 - CCR3 и CCR4, для ТЫ7-клеток - CCR6. Treg несут на своей поверхности молекулы

CCR8, а CD8+ клетки памяти - CCR5. В зависимости от типа продуцируемых хемокинов, нейтрофилы способны избирательно инициировать миграцию Т-клеток той или иной субпопуляции .

Современные исследования доказывают способность НГ мигрировать во вторичные лимфоидные органы и презенти-ровать антиген Т-клеткам, что является одним из путей имму-норегулирующего воздействия НГ на антигенспецифический иммунный ответ . В экспериментах in vitro показано, что культивирование полиморфноядерных нейтрофилов с IFNy и GM-CSF приводит к экспрессии на их поверхности MHC II и ко-стимуляторных молекул CD80 (B7.1) и CD86 (B7.2), усиливающих пролиферацию Т-клеток. Наибольшим эффектом обладают аутологичные нейтрофилы .

В процессе системного воспаления и при других патологиях НГ могут оказывать ингибиторное воздействие на Т-клеточное звено иммунитета. В настоящее время большое внимание уделяется супрессорным клеткам миелоидного происхождения (MDSC). У здоровых взрослых незрелые мие-лоидные клетки дифференцируются в макрофаги, дендритные клетки и гранулоциты в костном мозге, и MDSC редко обнаруживаются в периферической крови. Однако при некоторых патологических состояниях дифференцировка этих клеток изменяется, приводя к накоплению циркулирующих супрессорных миелоидных клеток. Эта регуляторная популяция недифференцированных клеток способна подавлять

врожденный и адаптивный иммунный ответ, оказывая значительное ингибирующее воздействие на NK- и Т-клетки. Популяция MDSC гетерогенна, представлена фенотипически неоднородными клетками, экспрессирующими ряд цитоки-нов и хемокинов. Главными субпопуляциями являются гра-нулоцитарная (PMN-MDSC) и моноцитарная (Mo-MDSC). Они несут на своей поверхности различный набор рецепторов и реализуют свое ингибиторное воздействие на Т-клетки при участии различных механизмов . Баланс между этими субпопуляциями определяет направление дифференци-ровки наивных CD4+ Т-лимфоцитов и может влиять на тип иммунного ответа: развитие воспаления или индукция толерантности .

Супрессорная функция MDSC может быть реализована напрямую или через индукцию FOXP3+ Т-регуляторных клеток в присутствии IFNy и IL-10 . Основными механизмами прямой иммуносупрессии Т-клеточного ответа PMN-MDSC являются высокий уровень генерации активных форм кислорода (АФК) и удаление из микроокружения аминокислот, необходимых для пролиферации Т-лимфоцитов. Усиление генерации АФК PMN-MDSC приводит к подавлению поверхностной экспрессии дзета-цепи рецептора Т-клеток (TCRQ, блокированию Nf-кВ пути активации, индукции гибели Т-лимфоцитов за счет снижения экспрессии ими антиапоптотического фактора Bcl-2 . Способность PMN-MDSC секретировать аргиназу-1 является вторым важным механизмом ингибирования Т-клеточного звена иммунитета. Данный фермент катализирует расщепление аргинина, недостаток которого во внеклеточной среде приводит к нарушению пролиферации Т-лимфоцитов и снижению экспрессии TCRZ на их поверхности . Предполагают, что ингибиторы аргиназы могут быть перспективными фармакологическими веществами для лечения нежелательного подавления иммунного ответа .

Изменение активности аргиназы и метаболизма L-аргинина считается механизмом, вносящим вклад в супрессию материнской иммунной системы во время беременности . В периферической крови женщин с нормально протекающей беременностью отмечено повышенное содержание MDSC, однако после родоразрешения содержание клеток данной популяции в циркуляторном русле женщины резко сокращается . В пуповинной крови новорожденных детей в большом количестве обнаруживаются супрессорные клетки гранулоцитарной природы. Вероятно, эмбриональные MDSC вносят вклад в поддержание толерантности матери к плоду, способствуют развитию Тге -клеток, ингибируют воспалительный иммунный ответ . В течение первых месяцев жизни содержание MDSC в периферической детской крови стремительно убывает. Отмечен потенциальный вклад данных клеток в подавление иммунного ответа новорожденных детей на многие инфекции, характерные для раннего периода постнатальной жизни. Понимание их роли в формировании иммунитета новорожденных важно для улучшения схем вакцинации и снижения уровня детской смертности, обусловленной инфекционными заболеваниями .

Большое значение придается MDSC в подавлении иммунного ответа при трансплантациях, онкологических, инфекционно-воспалительных заболеваниях . При аутоиммунных патологиях супрессорное воздействие популяции MDSC распространяется не только на Т-клетки, но и на В-клеточное звено иммунитета .

взаимодействие нейтрофильных гранулоцитов с в-клетками

В-клетки, происходящие из костного мозга, заселяют вторичные лимфоидные органы, где под влиянием микроокружения происходит их созревание. Конечным этапом дифференцировки В-лимфоцитов является их трансформация в антителопродуцирующие плазматические клетки после взаимодействия с антигеном. В зависимости от природы ан-

тигенов, их подразделяют на Т-зависимые и Т-независимые. Иммунный ответ на Т-зависимые белковые антигены развивается при участии фолликулярных В2-клеток, которые распознают антиген, поглощают его, расщепляют и презен-тируют Th-лимфоцитам. В результате такого ответа образуются В-клетки памяти и долгоживущие плазматические клетки, секретирующие высокоафинные, строго специфичные к антигену иммуноглобулины. Напротив, В-лимфоциты маргинальной зоны селезенки и В1-клетки пролиферируют и секретируют иммуноглобулины в ответ на Т-независимые бактериальные полисахаридные и липополисахаридные антигены. Данный тип иммунного ответа характеризуется быстрым началом секреции низкоафинных полиреактивных иммуноглобулинов . Нейтрофильные гранулоциты могут служить индукторами для продукции этих антител благодаря способности перекрестно взаимодействовать с субпопуляцией B-лимфоцитов, расположенных в маргинальной зоне селезенки . Главной функцией популяции НГ, присутствующих в этой области, является поддержание гомеостаза В-лимфоцитов. Данная популяция НГ отличается от циркулирующих нейтрофилов фенотипически и функционально. Для них характерна высокая интенсивность экспрессии поверхностных молекул CD40L, CD86, CD95 и секреция иммуноре-гуляторных цитокинов, наиболее значимыми среди которых являются фактор, активирующий В-клетки (BAFF/BLyS) и лиганд, индуцирующий пролиферацию (APRIL). Цитоки-ны BAFF и APRIL относятся к семейству факторов некроза опухоли, основными их продуцентами являются клетки мие-лоидного ряда: макрофаги и ДК. Нейтрофилы при действии IFNa и G-CSF способны de novo синтезировать BAFF/BLyS и APRIL. Накопление и хранение данных молекул осуществляется в резервуарах комплекса Гольджи, высвобождение их из внутриклеточных хранилищ реализуется при действии про-воспалительных стимулов . BAFF/BLyS и APRIL могут находиться в свободной и мембраносвязанной формах. Их действие на клетку-мишень реализуется посредством связывания со специфическими поверхностными рецепторами TACI, BCMA и BAFF-R; последний в отличие от двух предыдущих, связывает только BAFF/BLyS. Тип поверхностных рецепторов на В-лимфоцитах зависит от степени их диффе-ренцировки: экспрессия BAFF-R характерна для наивных и В-клеток памяти, TACI и BCMA - для плазматических клеток. Взаимодействие данных рецепторов с лигандами приводит к усилению поверхностной экспрессии В-клеточного рецептора (BCR), пролиферации В-лимфоцитов, снижению их гибели за счет усиления экспрессии антиапоптотических факторов Bcl-2 и Bcl-XL . Показано участие BAFF/BLyS и APRIL в формировании Т-независимого иммунного ответа на небелковые антигены, в том числе на компоненты бактериальной стенки инкапсулированных микроорганизмов. При таком типе иммунного ответа формируются внефол-ликулярные герминальные центры и образуются В-клетки памяти. Они фенотипически отличаются от В-клеток памяти, образующихся при Т-зависимом ответе, имеют сходную с наивными В-лимфоцитами продолжительность жизни и чувствительность к полисахаридному антигену при его повторном введении . Под действием BAFF/BLyS и APRIL происходит Т-независимая дифференцировка В-лимфоцитов в плазматические клетки и переключение синтеза секрети-руемых ими иммуноглобулинов с IgM на IgG и IgA .

Несмотря на большое значение BAFF/BLyS и APRIL в формировании иммунного ответа, содержание их в сыворотке крови здоровых доноров невелико. Усиление секреции данных иммунорегуляторных цитокинов НГ может приводить к нарушению толерантности иммунной системы и развитию системных и органоспецифических аутоиммунных заболеваний: системная красная волчанка, ревматоидный артрит, синдром Шегрена, системный склероз, аутоиммунный гепатит . Однако дефицит данных иммунорегуляторных

цитокинов или рецепторов, ответственных за их связывание, приводит к В-лимфопении, патологическому снижению циркулирующих иммуноглобулинов классов G и M в сыворотке крови, неадекватному иммунному ответу на инфицирование и вакцинацию .

Таким образом, нейтрофильные гранулоциты в последнее время признаются важной составляющей эффекторных и регуляторных цепей, контролирующих величину и качество иммунного ответа. Они обладают широким спектром механизмов, способствующих привлечению эффекторов адаптивного иммунитета к очагу воспаления, индукции их созревания, дифференцировки, пролиферации и активации. Поскольку нейтрофилы являются преобладающим типом клеток в поврежденных и воспаленных тканях, растворимые медиаторы, выделяемые ими, играют ключевую роль в формировании микроокружения и моделировании специфического антигензависимого ответа. Нейтрофилы опосредуют разнообразные иммунные функции, высвобождая широкий спектр преформированных и вновь синтезируемых медиаторов, включая цитокины и хемокины. НГ оказывают иммуно-регуляторное воздействие на дендритные клетки, NK- и Т- и В-лимфоциты, поддерживая их гомеостаз за счет секреции широкого спектра цитокинов. Нарушение функции НГ может приводить к неадекватной активации эффекторов адаптивного иммунного ответа и развитию патологических состояний, угрожающих жизни и здоровью пациентов.

Исследование не имело спонсорской поддержки. Авторы заявляют об отсутствии конфликта интересов.

литература

1. Черешнев В.А., Шмагель К.В. Иммунология. М.: МАГИСТР-ПРЕСС; 2013.

7. Долгушин И.И., Андреева Ю.С., Савочкина А.Ю. Нейтрофильные внеклеточные ловушки и методы оценки функционального статуса нейтрофилов. М.: Издательство РАМН; 2009.

13. Пинегин Б.В., Карсонова М.И. Алармины - эндогенные активаторы воспаления и врожденного иммунитета. Иммунология. 2010; 31 (5): 246-55.

14. Spadaro M., Cristiana C., Ceruti P., Varadhachary A., Forni G., Per-icle F. et al. Lactoferrin, a major defense protein of innate immu-

nity, is a novel maturation factor for human dendritic cells. FASEB J. 2008; 22: 2747-57.

19. Van Gisbergen K.P.J.M., Ludwig I.S., Geijtenbeek T.B.H., van Kooyk Y. Interactions of DC-SIGN with Mac-1 and CEACAM1 regulate contact between dendritic cells and neutrophils. FEBS Letters. 2005; 579: 6159-68.

26. Gantt S., Gervassi A., Jaspan H., Horton H. The role of myeloid-derived suppressor cells in immune ontogeny. Frontiers in immunology. 2014; (5): 387. Available at http://www.ncbi.nlm.nih.gov/pmc/ articles/PMC4131407/pdffimmu-05-00387.pdf

33. Crook K.R., Jin M., Weeks M.F., Rampersad R.R., Baldi R.M., Glekas A.S. et al. Myeloid-derived suppressor cells regulate T cell and B cell responses during autoimmune disease. J. Leukocyte Biol. 2015; 97 (3): 573-82.

35. Scapini P., Carletto A., Nardelli B., Calzetti F., Roschke V., Merigo F. et al. Proinflammatory mediators elicit secretion of the intracellular

B-lymphocyte stimulator pool (BLyS) that is stored in activated neutrophils: implications for inflammatory diseases. Blood. 2005;

105 (2): 830-937.

106 (33): 13 945-50.

1. Chereshnev V.A., Shmagel" K.V. Immunology. . Moscow: MAGISTR-PRESS; 2013. (in Russian)

2. Nauseef W.M., Borregaard N. Neutrophils at work. Nat. Immunol. 2014; 15 (7): 602-11.

3. Mantovani A., Cassatella M.A., Costantini C. Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat. Rev. Immunol. 2011; (11): 519-31.

4. Rieber N., Gille C., Köstlin N., Schäfer I., Spring B., Ost M. et al. Neutrophilic myeloid-derived suppressor cells in cord blood modulate innate and adaptive immune responses. Clin. Exper. Immunol. 2013; 174 (1): 45-52.

5. Chtanova T., Shaeffer M., Han S.-J., van Dooren G.G., Nollman M., Herzmark P. et al. Dynamics of neutrophil migration in lymph nodes during infection. Immunity. 2008; 29 (3): 487-96.

6. Tecchio C., Micheletti A., Cassatella M.A. Neutrophil-derived cytokines: facts beyond expression. Frontiers in immunology. 2014; 5: 508. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/ PMC4204637/pdf/fimmu-05-00508.pdf

7. Dolgushin I.I., Andreeva Yu.S., Savochkina A.Yu. Neutrophil extracellular traps and methods for assessing of functional status of neutrophils. . Moscow: Izdatel"stvo RAMN; 2009. (in Russian)

8. Kaplan M.J., Radic M. Neutrophil extracellular traps: double-edged swords of innate immunity. J. Immunol. 2012; (189): 2689-95.

9. Tillack K., Breiden P., Martin R., Sospedra M.T lymphocyte priming by neutrophil extracellular traps links innate and adaptive immune responses. J. Immunol. 2012; 188 (7): 3150-9.

10. Barrientos L., Bignon A., Gueguen C., de Chaisemartin L., Gorges R., Sandré C. et al. Neutrophil extracellular traps downregulate li-popolysaccharide-induced activation of monocyte-derived dendritic cells. J. Immunol. 2014; 193 (11): 5689-98.

11. Adams S., O"Neill D.W., Bhardwaj N. Recent advances in dendritic cell biology. J. Clin. Immunol. 2005; 25 (2): 87-98.

12. Zou G.M., Tam Y.K. Cytokines in the generation and maturation of dendritic cells: recent advances. Eur. Cytokine Network. 2002; 13 (2): 186-99.

13. Pinegin B.V., Karsonova M.I. Alarmins - endogenous activators of inflammation and innate immunity. Immonologiya. 2010; 31 (5): 246-55. (in Russian)

14. Spadaro M., Cristiana C., Ceruti P., Varadhachary A., Forni G., Per-icle F. et al. Lactoferrin, a major defense protein of innate immunity, is a novel maturation factor for human dendritic cells. FASEB J. 2008; 22: 2747-57.

15. Kumar V., Sharma A. Neutrophils: Cinderella of innate immune system. Intern. Immunopharmacol. 2010; 10: 1325-34.

16. Presicce P., Gianelli S., Taddeo A., Villa M.L., Bella S.D. Human de-fensins activate monocyte-derived dendritic cells, promote the production of proinflammatory cytokines, and up-regulate the surface expression of CD91. J. Leukocyte Biol. 2009; 86: 941-8.

17. Odobasic D., Kitching A.R., Yang Y., O"Sullivan K.M., Muljadi R.C.M., Edgtton K.L. et al. Neutrophil myeloperoxidase regulates T-cell-driven tissue inflammation in mice by inhibiting dendritic cell function. Blood. 2013; 121 (20): 4195-04.

18. Bachmann M., Kopf M., Marsland B.J. Chemokines: more than just road signs. Nat. Rev. Immunol. 2006; 6: 159-64.

19. Van Gisbergen K.P.J.M., Ludwig I.S., Geijtenbeek T.B.H., van Kooyk Y. Interactions of DC-SIGN with Mac-1 and CEACAM1 reg-

ulate contact between dendritic cells and neutrophils. FEBS Letters. 2005; 579: 6159-68.

20. Müller I., Munder M., Kropf P., Hänsch G.M. Polymorphonuclear neutrophils and T lymphocytes: strange bedfellows or brothers in arms? Trend. Immunol. 2009; 30 (11): 522-30.

21. Pelletier M., Maggi L., Micheletti A., Lazzeri E., Tamassia N., Costantini C. et al. Evidence for a cross-talk between human neutrophils and Th17 cells. Blood. 2010; 115 (2): 335-43.

22. Abi Abdallah D., Egan C.E., Butcher B.A., Denkers E.Y. Mouse neutrophils are professional antigen-presenting cells programmed to instruct Th1 and Th17 T-cell differentiation. Intern. Immunol. 2011; 23 (5): 317-26.

23. Movahedi K., Guilliams M., Van den Bossche J., Van den Bergh R., Gysemans C., Beschin A. et al. Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood. 2008; 111 (8): 4233-44.

24. Hoechst B., Gamrekelashvili J., Manns M.P., Greten T.F., Korangy F. Plasticity of human Th17 cells and iTregs is orchestrated by different subsets of myeloid cells. Blood. 2011; 117 (24): 6532-41.

25. Pillay J., Tak T., Kamp V.M., Koenderman L. Immune suppression by neutrophils and granulocytic myeloid-derived suppressor cells: similarities and differences. Cell. Molec. Life Sci. 2013; (70): 381327.

26. Gantt S., Gervassi A., Jaspan H., Horton H. The role of myeloid-derived suppressor cells in immune ontogeny. Frontiers in immunology. 2014; (5): 387. Available at http://www.ncbi.nlm.nih. gov/pmc/articles/PMC4131407/pdf/fimmu-05-00387.pdf

27. Oberlies J., Watzl C., Giese T., Luckner C., Kropf P., Müller I. et al. Regulation of NK cell function by human granulocyte arginase. J. Immunol. 2009; 182 (9): 5259-67.

28. Kropf P., Baud D., Marshall S.E., Munder M., Mosley A., Fuentes J.M. et al. Arginase activity mediates reversible T cell hyporespon-siveness in human pregnancy. Eur. J. Immunol. 2007; 37 (4): 93545.

29. Köstlin N., Kugel H., Spring B., Leiber A., Marme A., Henes M. et al. Granulocytic myeloid derived suppressor cells expand in human pregnancy and modulate T-cell responses. Eur. J. Immunol. 2014; 44: 2582-91.

30. Gervassi A., Lejarcegui N., Dross S., Jacobson A., Itaya G., Kidzeru E. et al. Myeloid derived suppressor cells are present at high frequency in neonates and suppress in vitro T cell responses. PLOS ONE. 2014; 9 (9): e107816. Available at http://journals.plos.org/plosone/ article?id=10.1371/journal.pone.0107816

31. Wu T., Zhao Y., Zhao Y. The roles of myeloid-derived suppressor cells in transplantation. Exp. Rev. Clin. Immunol. 2014; 10 (10): 1385-94.

32. Serafini P. Myeloid derived suppressor cells in physiological and pathological conditions: the good, the bad, and the ugly. Immunologic Research. 2013; 57 (1-3): 172-84.

33. Crook K.R., Jin M., Weeks M.F., Rampersad R.R., Baldi R.M., Gle-kas A.S. et al. Myeloid-derived suppressor cells regulate T cell and B cell responses during autoimmune disease. J. Leukocyte Biol. 2015; 97 (3): 573-82.

34. Puga I., Cols M., Barra C.M., He B., Cassis L., Gentile M. et al. B cell-helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen. Nat. Immunol. 2011; 13 (2): 170-80.

35. Scapini P., Carletto A., Nardelli B., Calzetti F., Roschke V., Merigo F. et al. Proinflammatory mediators elicit secretion of the intracellular B-lymphocyte stimulator pool (BLyS) that is stored in activated neutrophils: implications for inflammatory diseases. Blood. 2005;

105 (2): 830-937.

36. Defrance T., Taillardet M., Genestier L. T cell-independent B cell memory. Curr. Opin. Immunol. 2011; 23: 330-6.

37. Castigli E., Wilson S.A., Scott S., Dedeoglu F., Xu S., Lam K.-P. et al. TACI and BAFF-R mediate isotype switching in B cells. J. Exper. Med. 2005; 201 (1): 35-9.

38. Moisini I., Davidson A. BAFF: a local and systemic target in autoimmune diseases. Clin. Exper. Immunol. 2009; 158: 155-63.

39. Warnatz K., Salzer U., Rizzi M., Fischer B., Gutenberger S., Böhm J. et al. B-cell activating factor receptor deficiency is associated with an adult-onset antibody deficiency syndrome in humans. PNAS. 2009;

СЛАЙД 1

1. Типы белых клеток крови. Миелоидные клетки

4. Нейтрофилы и макрофаги

8. Воспаление

9. Эффекты воспаления. Макрофаги и нейтрофилы при воспалении

10. Нейтрофилия. Защитные механизмы воспаления

11. Образование гноя.

12. Эозинофилы

13. Базофилы. Тучные клетки

14. Дендритные клетки

15. Естественные киллеры Т-лимфоциты. Взаимодействие естественных киллеров и дендритных клеток

Фагоцитоз. Механизмы и значение фагоцитоза

СЛАЙД 2

Типы белых клеток крови.

В норме в крови присутствуют шесть типов белых клеток крови:

Полиморфноядерные нейтрофилы,

Полиморфноядерные эозинофилы,

Полиморфноядерные базофилы,

Моноциты,

Лимфоциты

Плазматические клетки.

Кроме того, существует большое количество тромбоцитов , представляющих фрагменты клеток другого типа - мегакариоцитов, которые, подобно лейкоцитам, обнаруживают в костном мозге.

Первые три типа клеток имеют зернистость, поэтому их называют гранулоцитами или, согласно клинической терминологии, полиморфноядерными клетками из-за многочисленных ядер.

Гранулоциты и моноциты защищают организм от внедряющихся агентов, главным образом путем их поглощения, т.е. фагоцитоза. Лимфоциты и плазматические клетки функционируют в основном в связи с иммунной системой. Наконец, специфической функцией тромбоцитов является активация механизма свертывания крови.

Концентрации разных типов лейкоцитов в крови . Взрослый человек имеет около 7000 белых клеток крови на микролитр крови (сравните с 5 млн красных клеток крови). По отношению к общему количеству лейкоцитов нормальное процентное содержание разных их типов приблизительно следующее.

Количество тромбоцитов , которые являются лишь фрагментами клеток, в каждом микролитре крови в норме - около 300000.

СЛАЙД 3

СЛАЙД 4

Длительность жизни белых клеток крови. Нейтрофилы и макрофаги

Жизнь гранулоцитов после их выделения из костного мозга в норме продолжается 4-8 ч в циркулирующей крови и еще 4-5 сут в тканях, которые в них нуждаются. Во время тяжелой тканевой инфекции этот общий срок жизни часто укорачивается до нескольких часов, поскольку гранулоциты поступают еще быстрее в инфицированную область, выполняют свои функции и в процессе этого саморазрушаются.

Моноциты тоже имеют короткий транзитный период, находясь в крови 10-20 ч, затем выходят через мембраны капилляров в ткани. В тканях размер моноцитов значительно увеличивается, они становятся тканевыми макрофагами, и в такой форме могут жить месяцами до тех пор, пока не разрушатся во время выполнения фагоцитарной функции. Тканевые макрофаги составляют основу тканевой макрофагальной системы, которая обеспечивает постоянную защиту против инфекции, что подробно обсуждается далее.

Лимфоциты постоянно поступают в систему кровообращения вместе с дренажом лимфы из лимфатических узлов и другой лимфоидной ткани. Через несколько часов они выходят из крови в ткани путем диапедеза. Затем лимфоциты вновь входят в лимфу и опять возвращаются в кровь; так происходит постоянная циркуляция лимфоцитов в теле. Срок жизни лимфоцитов составляет недели или месяцы в зависимости от потребности организма в этих клетках.

Тромбоциты в крови заменяются примерно каждые 10 сут; другими словами, каждые сутки формируются примерно 30000 пластинок на каждый микролитр крови.

СЛАЙД 5

Нейтрофилы и макрофаги

Именно нейтрофилы и тканевые макрофаги в основном атакуют и разрушают внедрившиеся бактерии, вирусы и другие вредоносные агенты.

Нейтрофилы - зрелые клетки, способные атаковать и разрушать бактерии даже в циркулирующей крови. Наоборот, тканевые макрофаги начинают жизнь как моноциты крови и, пока они находятся в крови, являются незрелыми клетками с низкой способностью к борьбе с инфекционными агентами. Однако сразу после выхода в ткани моноциты начинают разбухать, иногда увеличиваясь в диаметре в 5 раз до размера, видимого невооруженным глазом - 60-80 мкм. Теперь эти клетки называют макрофагами, и они обладают очень высокой способностью бороться с внутритканевыми болезнетворными агентами.

Белые клетки крови выходят в тканевые пространства путем диапедеза. Нейтрофилы и моноциты могут протискиваться через поры кровеносных капилляров путем диапедеза. Это значит, что даже если пора гораздо меньше размера клетки, небольшая часть клетки вдвигается в нее и моментально сжимается до размера поры.

Белые клетки крови продвигаются через тканевые пространства амебоидными движениями. И нейтрофилы, и макрофаги могут двигаться через ткани амебоидными движениями. Некоторые клетки двигаются со скоростью, достигающей 40 мкм/мин, т.е. каждую минуту перемещаются на расстояние, равное их собственной длине.

Белые клетки крови притягиваются к области воспаления путем хемотаксиса. Многие химические вещества в тканях заставляют нейтрофилы и макрофаги двигаться по направлению к источнику химического агента. Этот феномен, показанный на рисунке, известен как хемотаксис. При воспалении ткани формируется, по крайней мере, дюжина разных продуктов, способных вызывать хемотаксис по направлению к воспаленной области. К таким веществам относят: (1) некоторые из бактериальных или вирусных токсинов; (2) продукты дегенерации самих воспаленных тканей; (3) некоторые продукты реакции системы комплемента, активируемой в воспаленных тканях; (4) некоторые продукты взаимодействия, возникающие при свертывании плазмы в воспаленной области, и другие вещества.

Хемотаксис зависит от градиента концентрации хемотаксического вещества. Самая высокая концентрация - около источника, который управляет однонаправленным движением белых клеток крови. Хемотаксис эффективен на расстоянии до 100 мкм от воспаленной ткани. Следовательно, поскольку практически нет тканевой области, расположенной на расстоянии больше 50 мкм от капилляра, хемотаксический сигнал может легко перемещать массы лейкоцитов из капилляров в воспаленную область.

СЛАЙД 7

СЛАЙД 8

Воспаление

При повреждении ткани независимо от его причины (бактерии, травма, химические агенты, тепло или любое другое явление) выделяется множество веществ, вызывающих существенные вторичные изменения в окружающих неповрежденных тканях. Весь комплекс этих тканевых изменений называют воспалением.

Воспаление характеризуется:

(1) расширением местных кровеносных сосудов с последующим избыточным местным кровотоком;

(2) увеличением проницаемости капилляров, что способствует утечке большого количества жидкости в интерстициальное пространство;

(3) часто - свертыванием жидкости в интерстициальном пространстве в связи с избытком фибриногена и других белков, вытекающих из капилляров;

(4) миграцией большого числа гранулоцитов и моноцитов в ткани;

(5) отеком тканевых клеток.

К тканевым продуктам , вызывающим эти реакции, относятся гистамин, брадикинин, серотонин, простагландины, несколько разных продуктов реакции системы комплемента, продукты реакции свертывающей системы крови и множество веществ, называемых лимфокинами, которые выделяются активированными Т-клетками (частью иммунной системы). Некоторые из этих веществ мощно активируют макрофагальную систему, и в течение нескольких часов макрофаги начинают уничтожать поврежденные ткани. Но иногда макрофаги повреждают еще живые тканевые клетки.

СЛАЙД 9

СЛАЙД 10

СЛАЙД 11

Образование гноя.

Когда нейтрофилы и макрофаги поглощают большое количество бактерий и некротической ткани, практически все нейтрофилы и многие (но не большинство) макрофаги погибают.

Через несколько дней в воспаленной ткани часто формируется полость, содержащая различные части некротизированной ткани, погибшие нейтрофилы и макрофаги, а также тканевую жидкость. Эту смесь обычно называют гноем.

После прекращения инфекционного процесса мертвые клетки и некротическая ткань в гное постепенно, в течение нескольких дней растворяются, а конечные продукты в итоге всасываются в окружающие ткани и лимфу до тех пор, пока большинство признаков повреждения ткани не исчезнут.

СЛАЙД 11

Эозинофилы

В норме эозинофилы составляют около 2% всех лейкоцитов крови. Эозинофилы - слабые фагоциты и способны к хемотаксису, но в отличие от нейтрофилов значение эозинофилов в защите против обычных типов инфицирования сомнительно.

Эозинофилы обычно собираются также в тканях, где осуществляются аллергические реакции, например в перибронхиальных тканях легких у людей с астмой и в коже после аллергических кожных реакций. Частично это связано с фактом участия в аллергических реакциях многих тучных клеток и базофилов, которые мы обсудим в следующем разделе. Тучные клетки и базофилы выделяют эозинофилъный хемотаксический фактора заставляющий эозинофилы мигрировать по направлению к ткани, воспаленной в связи с аллергической реакцией.

Полагают, что эозинофилы нейтрализуют некоторые из вызывающих воспаление веществ, выделяемых тучными клетками и базофилами и, вероятно, фагоцитируют и разрушают комплексы аллерген-антитело, предупреждая чрезмерное распространение местного воспалительного процесса.

СЛАЙД 12

Базофилы. Тучные клетки

Базофилы циркулирующей крови похожи на большие тканевые тучные клетки, локализованные непосредственно снаружи капилляров. И тучные клетки, и базофилы высвобождают в кровь гепарин - вещество, способное предупреждать свертывание крови.

Эти клетки выделяют также гистамин и небольшое количество брадикинина и серотонина. В воспаленных тканях именно тучные клетки в основном высвобождают эти вещества.

Тучные клетки и базофилы играют чрезвычайно важную роль в некоторых типах аллергических реакций, поскольку вызывающий эти реакции особый тип антител - иммуноглобулин Е (IgE) - имеет специфическую способность прикрепляться к тучным клеткам и базофилам. Когда впоследствии специфический антиген реагирует со специфическим IgE антителом, возникающее в результате прикрепление антигена к антителу заставляет тучную клетку или базофил разрываться и выделять очень большие количества гистамина, брадикинина, серотонина, гепарина, медленно действующей анафилактической субстанции и ряда лизосомальных ферментов.

Они вызывают локальные сосудистые и тканевые реакции, лежащие в основе большинства аллергических реакций.

СЛАЙД 13

Молекулы адгезии (селектины, интегрины)

Молекулам адгезии принадлежит основополагающая роль в формировании многоклеточного организма, поскольку они служат главными факторами контакта между клетками, а также участвуют в их перемещении.

Молекулы адгезии формируют несколько достаточно консервативных семейств. У млекопитающих известно 4 группы молекул адгезии - селектины, интегрины, молекулы суперсемейства иммуноглобулинов (IgSF) и кадхерины.

Для осуществления миграции и взаимодействия миелоидных клеток важны представители трех первых групп.

Селектины - тканевые лектины, обладающие сродством к концевым остаткам маннозы и фрукозы. Известно три варианта селектинов: P (от Platelet - тромбоцитарный), E (от Endothelial - эндотелиальный) и L (от Lymphocyte - лимфоцитарный).

Селектины - трансмембранные белки.

Р-селектин участвует в активации тромбоцитов и ранних этапах

Е-селектин - основной селектин клеток эндотелия сосудов.

Под влиянием активирующих воздействий (особенно провоспалительных цитокинов) Е-селектин экспрессируется на поверхности клеток и играет ведущую роль на ранних этапах эмигра- ции лейкоцитов из сосудистого русла.

В отличие от двух вышеназванных, L-селектин присутствует не на эндотелиальных клетках, а на лейкоцитах. Он спонтанно экспрессируется на поверхности нейтрофилов, моноцитов и лимфоцитов и обеспечивает осуществление начального этапа миграции этих клеток - этапа перекатывания.

Интегрины - наиболее важные и полифункциональные молекулы адге- зии.

Интегрины соединяют внутреннюю и внешнюю среду клетки, проводя сигналы как изнутри клетки наружу, так и наоборот - из внеклеточной среды внутрь клетки. Внутриклеточная часть интегринов связана с компонентами цитоскелета, что определяет многие функции этих молекул

Интегрины - трансмембранные гетеродимеры. Полипептидные цепи интегринов (α и β) соединены нековалентно. К настоящему времени известно 24 варианта интегринов, представляющих собой комбинации из 18 вариантов α- и 8 вариантов β-цепей.

Наибольший интерес для иммунологии представляют интег- рины семейств β1 и β2, присутствующие на поверхности иммуноцитов. Интегрины задействованы в различных реакциях, связанных с участием этих клеток в иммунных процессах: эмиграции лейкоцитов из кровотока и поступлении их в очаг воспаления, взаимодействии с клетками-мишенями, формировании иммунного синапса и т.д. β1-Интегрины (молекулы группы VLA) взаимодействуют с компонен- тами межклеточного матрикса (фибронектином, ламинином, коллагеном, фибриногеном) и мембранным рецептором VCAM-1 (СD106). Наиболее важную роль в физиологии нейтрофилов играет интегрин VLA-5, для моноцитов/макрофагов и лимфоцитов наиболее важен интегрин VLA-4, отсутствующий на нейтрофилах. β2-Интегрины (иногда называемые LeuCAM) представлены на поверхности лейкоцитов. Основной интегрин лимфоцитов LFA-1, присутствующий на всех разновидностях этих клеток, представлен и на поверхности моноцитов и макрофагов. Интегрин Мас-1 наиболее характерен для макрофагов (что отражено в его названии), но его выявляют и на других миелоидных и NK-клетках, а также перитонеальных В-лимфоцитах. Третий интегрин этой группы - p150/р95 - маркер дендритных клеток, но также представлен на других клетках миелоидного ряда.

СЛАЙД 14

Хемотаксические факторы (Хемокины)

Важнейшее условие участия миелоидных клеток в реакциях врожденного иммунитета - хемотаксис - направленное движение клеток, определяемое градиентом химических факторов (хемоаттрактантов).

Хемотаксис следует отличать от хемокинеза - ненаправленного усиления подвижности клеток под влиянием химических агентов. При реализации врожденного имму- нитета в виде воспалительной реакции хемотаксис определяет миграцию лейкоцитов из кровяного русла в очаг воспаления.

При воспалении и реакциях врожденного иммунитета в качестве хемо- аттрактантов выступают разные вещества, образующиеся в очаге воспале- ния. Прежде всего это продукты, выделяемые самими микроорганизмами. Наиболее известен пептид N-формил-метионил-лейцил-фенилаланил (fMLP) и его аналоги, обладающие очень сильным хемотаксическим действием. Этот пептид участвует в инициации синтеза белка у бактерий. Он отсутствует в эукариотических клетках и его появление служит сигналом бактериальной инфекции, фактически выступая в качестве PAMP. Миелоидные клетки (нейтрофилы, моноциты, макрофаги) имеют мембранные рецепторы для этого пептида - FPR (Formyl-peptide receptor) и FPLR (Formyl peptide-like receptor). Синтетический пептид fMLP широко применяют для моделирования хемотаксиса, обусловленного бактериальными продуктами. FPR и FPLR относят к семейству родопсиноподобных рецепторов, 7 раз пронизывающих мембрану.

Хемотаксическим действием обладают многие другие молекулы, образую- щиеся в очаге воспаления, а также продукты расщепления факторов сверты- вания крови и фибринолиза (тромбин, фибрин), нейропептиды, фрагменты иммуноглобулинов, пентраксины (С-реативный белок, сывороточный ами- лоид), фактор агрегации тромбоцитов - PAF (Platelet aggregation factor) и т.д. Ряд цитокинов (особенно провоспалительных) также оказывает на лейкоци- ты хемотаксическое действие.

Хемокины (от Chemotactic cytokines) были открыты в конце 80-х годов про- шлого столетия. Они составляют обширную группу цитокинов, объединен- ную сходным строением и способностью распознавать родопсиноподобные рецепторы.

Хемокины - полипептиды. Помимо сек- ретируемых, выделяют мембранные формы молекул хемокинов (например, фракталкин), выступающие также в роли молекул адгезии. Обычно хемо- кины присутствуют в биологических жидкостях в форме димеров, реже - тетрамеров. Четвертичная структура димеров существенно различается для хемокинов двух основных групп.

Хемокины способны формировать не только CC:хемокин CCL2 (MCP:1) CXC:хемокин СXCL8 (IL:8). Функционально важное свойство хемокинов - их способность взаимодействовать с глюкозаминогликанами (гепарин, хондро- итинсульфат и др.) на поверхности клеток или в межклеточном матриксе. Иммобилизация хемокинов в тканях важна для создания их градиента, необ- ходимого для направленного движения клеток.

По функциональной роли выделяют: гомеостатические хемокины; провоспалительные хемокины. Гомеостатические хемокины отвечают за распределение клеток (прежде всего лимфоцитов) по лимфоидным органам. Остальные хемокины (подавляющее большинство) относят к группе провоспалительных, поскольку они отве- чают за активацию клеток и привлечение их в очаг воспаления. Хемокины этих групп различаются условиями синтеза и секреции: гомеостатические цитокины секретируются постоянно, обычно стромальными и эндотелиальными.

СЛАЙД 15

Дендритные клетки

Впервые дендритные клетки были описаны Лангергансом в 1868 г., в связи с чем впоследствии они стали известны как клетки Лангерганса. Однако сам автор считал их чувствительными нейронами. Фундамент современных представлений о ДК, как клетках иммунной системы, заложили американские ученые Штайман и Кон, и коллеги в 1970-е гг., открывшие и охарактеризовавшие ДК в лимфоидных органах мышей.

В 1985 г. показана принадлежность клеток Лангерганса к ДК. 1990-е гг. характеризуются определением характеристики различных линий ДК и путей их дифференцировки, установлением роли ДК в регуляции клеточного, гуморального адаптивного ответа, началом изучения роли ДК в патогенезе инфекционных и онкологических заболеваний человека.

Подобно другим клеткам иммунной системы , предшественниками ДК являются гематопоэтические стволовые клетки костного мозга. FLT-3 лиганд и GM-CSF являются ключевыми ростовыми и дифференциро-вочными факторами in vivo.

В процессе гематопоэза стволовые клетки, несущие молекулы CD34", дают начало двум типам прекурсорных ДК (пpe-DCs) - моноцитов (пре-DC1) и плазмацитоидных клеток (пpe-DC2), из которых формируются зрелые ДК. Данные предшественники составляют около 1% всех мононуклеарных клеток периферической и пуповинной крови, а также лимфоидных органов.

Лимфоидные дендритные клетки присутствуют в крови, лимфатических узлах, селезенке и тимусе. Судьба лимфоидных ДК, поступающих в Т-клеточные области лимфоузлов из крови, неизвестна. В тимусе лимфоидные ДК принимают участие в процессе отрицательной селекции, то есть отвечают за элиминацию Т-клеток, реагирующих на собственные антигены.

Незрелые дендритные клетки и их предшественники избирательно реагируют на патогены. В отличие от миелоидных пре-ДК плазмацитоидные пре-ДК заселяют преимущественно Т-клеточные зоны вторичных лимфоидных органов, а в нелимфоидных практически отсутствуют Незрелые ДК и их предшественники (пpe-DCs) вовлекаются во врожденное распознавание микробов, в то время как пре-DCsl (предшественники миелоидных ДК) фагоцитируют и вызывают киллинг различных бактерий и грибков. Пpe-DCs2 (предшественники лимфоидных ДК) играют главную роль в раннем антивирусном иммунном ответе, продуцируя IFN-a и В. Эти клетки были названы натуральными интерферонпродуцирую-щими клетками (NIPCs).

Плазмацитоидные дендритные клетки участвуют в В-клеточном ответе на вирусы: после их элиминации из культур МЛПК уровень продукции антител резко падает. За счет секреции интерферонов I типа лимфоидные ДК стимулируют пролиферацию плазмобластов, а проведение сигналов с TLRs ДК способствует выработке ими IL-6 и индукции синтеза специфических антител В-клетками.

При аллергических реакциях и некоторых видах хронического воспаления пpe-DCs привлекаются как в пораженные нелимфоидные ткани, так и в реактивно измененные регионарные лимфатические узлы; они инфильтрируют также опухолевую ткань при некоторых злокачественных новообразованиях.

СЛАЙД 16

СЛАЙД 17

СЛАЙД 18

Фагоцитоз, осуществляемый нейтрофилами . Нейтрофилы, входящие в ткани, являются уже зрелыми клетками, способными к немедленному фагоцитозу. При встрече с частицей, которая должна быть фагоцитирована, нейтрофил сначала прикрепляется к ней, а затем выпускает псевдоподии во всех направлениях вокруг частицы. На противоположной стороне частицы псевдоподии встречаются и сливаются друг с другом. При этом образуется замкнутая камера, содержащая фагоцитируемую частицу. Затем камера погружается в цитоплазматическую полость и отрывается от наружной стороны клеточной мембраны, формируя свободно плавающий фагоцитарный пузырек (также называемый фагосомои) внутри цитоплазмы. Один нейтрофил обычно может фагоцитировать от 3 до 20 бактерий, прежде чем он сам инактивируется или погибает.

Сразу после фагоцитирования большинство частиц перевариваются внутриклеточными ферментами. После фагоцитирования инородной частицы лизосомы и другие цитоплазматические гранулы нейтрофила или макрофага немедленно вступают в контакт с фагоцитарным пузырьком, их мембраны сливаются, в результате в пузырек вбрасываются многие переваривающие ферменты и бактерицидные вещества. Таким образом, фагоцитарный пузырек теперь становится переваривающим пузырьком, и сразу начинается расщепление фагоцитированной частицы.

И нейтрофилы , и макрофаги содержат громадное количество лизосом, наполненных протеолитическими ферментами, особенно приспособленными для переваривания бактерий и других чужеродных белковых веществ. Лизосомы макрофагов (но не нейтрофилов) содержат также большое количество липаз, которые разрушают толстые липидные мембраны, покрывающие некоторые бактерии, например туберкулезную палочку.

И нейтрофилы, и макрофаги могут уничтожать бактерии. Кроме переваривания поглощенных бактерий в фагосомах нейтрофилы и макрофаги содержат бактерицидные агенты, уничтожающие большинство бактерий, даже если лизосомальные ферменты не могут их переварить. Это особенно важно, поскольку некоторые бактерии имеют защитные оболочки или другие факторы, предупреждающие их разрушение пищеварительными ферментами. Основная часть «убивающего» эффекта связана с действием некоторых мощных окислителей, образуемых в больших количествах ферментами мембраны фагосомы, или специфической органеллой, называемой пероксисомой. К этим окислителям относятся супероксид (О2), пероксид водорода (Н2О2) и гидроксилъные ионы (-ОН), каждый из них даже в небольших количествах смертелен для большинства бактерий. Кроме того, один из лизосомальных ферментов - миелопероксидаза - катализирует реакцию между Н2О2 и ионами Сl с образованием гипохлорита - мощного бактерицидного агента.

Однако некоторые бактерии , особенно туберкулезная палочка, имеют оболочки, устойчивые к лизосомальному перевариванию, и к тому же секретируют вещества, отчасти препятствующие «убивающим» эффектам нейтрофилов и макрофагов. Такие бактерии ответственны за многие хронические болезни, например туберкулез.

СЛАЙД 1

Лекция №3. Врожденный иммунитет. Клеточные факторы врожденного иммунитета

1. Типы белых клеток крови. Миелоидные клетки (нейтрофилы, эозинофилы, тучные клетки, базофилы, моноциты, макрофаги, дендритные клетки)

2. Происхождение белых клеток крови

3. Длительность жизни белых клеток крови.

4. Нейтрофилы и макрофаги

5. Ретикулоэндотелиальная система.

Одним из первых результатов воспаления является «ограждение» области повреждения от остальных тканей. Тканевые пространства и лимфатические сосуды в воспаленной области блокируются сгустками фибрина, поэтому через небольшой промежуток времени жидкость с трудом протекает через интерстиций. Этот процесс отгораживания задерживает распространение бактерий или токсических продуктов.

Интенсивность воспалительного процесса обычно пропорциональна степени повреждения ткани. Например, когда стафилококки проникают в ткани, они выделяют смертельно опасные клеточные токсины. В результате воспаление развивается быстро, гораздо быстрее, чем сами стафилококки могут размножиться и распространиться. Следовательно, для локальной стафилококковой инфекции характерно быстрое отгораживание, предохраняющее от распространения ее по телу.

Стрептококки , напротив, не вызывают такого интенсивного локального разрушения тканей. Следовательно, процесс отгораживания развивается медленно, на протяжении многих часов, в течение которых стрептококки успевают размножиться и мигрировать. В результате стрептококки часто проявляют гораздо более выраженную тенденцию к распространению в организме и развитию смертельных состояний, чем стафилококки, несмотря на то, что стафилококки гораздо более губительны для тканей.

Тканевые макрофаги - первая «линия обороны» против инфекции. В течение нескольких минут после начала воспаления макрофаги, уже присутствующие в тканях, немедленно начинают свое фагоцитарное действие, будь то гистиоциты в подкожных тканях, альвеолярные макрофаги в легких, микроглия в мозге или др. При активации продуктами инфицирования и воспаления первым эффектом является быстрое увеличение каждого из макрофагов.

Затем многие из ранее неподвижных макрофагов отделяются от мест их прикрепления и становятся мобильными, формируя первую «линию обороны» против инфекции в течение примерно первого часа. Количество этих рано мобилизуемых макрофагов часто незначительно, но они спасают жизнь.

Вторжение нейтрофилов в воспаленную область является второй «линией обороны». В течение примерно первого часа после начала воспаления большое число нейтрофилов начинает внедряться в воспаленную область из крови. Этот процесс вызывается продуктами воспаленных тканей, которые инициируют следующие реакции: (1) изменяют внутреннюю поверхность эндотелия капилляров, способствуя прилипанию нейтрофилов к стенкам капилляров в воспаленной области.

Этот эффект, показанный на рисунке, называют маргинацией (или краевым стоянием лейкоцитов), (2) ведут к разрыхлению сцеплений между эндотелиальными клетками капилляров и небольших венул, обеспечивая появление достаточно больших отверстий для прохождения нейтрофилов путем диапедеза непосредственно из крови в тканевые пространства; (3) другие продукты воспаления вызывают хемотаксис нейтрофилов в направлении поврежденных тканей, как объяснялось ранее.

Таким образом, в течение нескольких часов после начала повреждения тканей область обильно заполняется нейтрофилами. Поскольку нейтрофилы крови - уже зрелые клетки, они готовы немедленно начать свои очистительные функции для уничтожения бактерий и удаления инородного материала.

монобласт ® промоноцит ® моноцит ® макрофаг

Стволовая кроветворная клетка (СКК) ® ... ® гранулоцит-макрофагальный предшественник

(precursor, CFU,или КОЕ-колониеобразующая единица)

миелобласт ® промиелоцит ® миелоцит ® нейтрофил

GM-CSF, GM-CSF GM-CSF,

Высокая концентрация GM - CSF контролирует онтогенез макрофагов, низкая - нейтрофилов

Основные отличия фагоцитов - макрофагов и нейтрофилов

Нейтрофилы

Моноциты/макрофаги

Время жизни

в крови - несколько суток, в тканях - длительное время

Способность к делению

отсутствует

тканевые макрофаги способны к делению

Синтетические способности

зрелые нейтрофилы не способны к синтезу

высокая биосинтетическая активность

Способности к репарации мембраны и др. клеточных структур

отсутствует

Наличие антиоксидантных систем

Спектр выполняемых функций

узкий, фактически только фагоцитоз

широкий, участвуют как в реакциях неспецифического иммунитета, активируют и регулируют иммунный ответ

Характеристика фагоцитарного процесса, осуществляемого макрофагами и нейтрофилами

Нейтрофилы

Моноциты/макрофаги

Объекты фагоцитоза

Компоненты собственных разрушенных клеток и тканей, включая апоптические тела, внеклеточно размножающиеся бактерии и грибы, относящиеся к условно патогенным микроорганизмам

Те же, что и для нейтрофилов.

Биологическая цель фагоцитоза

Только киллинг (или разрушение крупных структур для подготовки к элиминации из организма)

Киллинг и распознавание чужеродности для подготовки и активации иммунного ответа

Жизнеспособность клетки после осуществления фагоцитоза

Сохраняется

CD - cluster of differentiation

CAM - cell adhesion molecule

Механизмы адгезии

Адгезия - явление комплексное, в нем одновременно или последовательно принимают участие разные молекулы адгезии («адгезивный каскад»). Фазы адгезии: касание, роллинг, прикрепление (активация и усиление адгезии).

За адгезивные свойства фагоцитов ответственны селектины и интегрины . С помощью селектинов осуществляется роллинг клетки по поверхности эндотелия, с помощью интегринов - твердое прикрепление к поверхности эндотелия.

Селектины (CD62): L- присутствуют на лейкоцитах (кроме активированных Т-клеток памяти),

P -на тромбоцитах,

E - на эндотелиальных клетках

Индукторы селектинов: 1) неспецифические - изменение рН, температруры, микроповреждения клеток, замедление скорости кровотока; 2) специфические - медиаторы и цитокины воспаления (gIFN, TNF, IL-1), митогены, нейропептиды.

Интегрины : CD18, CD11a, CD11b, CD11c

Регуляторы интегринов: 1) неспецифические - изменение рН, температруры, микроповреждения клеток, замедление скорости кровотока; 2) специфические - протеинкиназа С, аутоактивация (взаимодействие единичных сигнальных молекул той же специфичности), взаимодействие с другими адгезивными молекулами.

В целом все адгезивные молекулы объединены в 5 семейств: суперсемейство иммуноглобулинов, интегрины, селектины, кадхерины, протеогликаны и неклассифицированные представители.

Некоторые адгезивные молекулы: номенклатура, экспрессирующие клетки и функции

Лейкоциты в крови представлены пятью типами клеток (нейтрофилы, эозинофилы, базофилы, лимфоциты и моноциты ), различных по функциональным и морфологическим признакам, в отличие от эритроцитов, популяция которых однородна. Анализ общего количества лейкоцитов позволяет определить общее (суммарное) количество всех типов клеток, в отличие от дифференциального анализа, с помощью которого определяют количество каждого отдельного типа лейкоцитов.

Повышение уровня лейкоцитов в крови - основной признак заболеваний, которые сопровождаются патологическими процессами, таких как воспаление, инфекции, онкология. Снижение уровня лейкоцитов встречается реже и является признаком нарушения функции иммунной системы, в результате появляется высокий риск возникновения инфекционных заболеваний.

Полноценная верификация субпопуляции лейкоцитов, особенно при лечении больных с онкогематологической патологией, имеет принципиальное значение. Поэтому сегодня в медицинской практике широкое применение приобрела технология проточной цитофлуориметрии.

ФИЗИОЛОГИЯ

Как и другие форменные элементы крови (эритроциты и тромбоциты), лейкоциты формируются в костном мозге из плюрипотентных (полипотентных) стволовых клеток (см рисунок 1).


Рисунок 1. Формирование и развитие клеток крови

Нейтрофилы

Нейтрофилы - самая многочисленная разновидность лейкоцитов, циркулирующих в крови (их доля составляет 45-70% от общего количества лейкоцитов. В структуру зрелого нейтрофила входят сегментированное ядро и темно-фиолетовые гранулы, находящиеся в цитоплазме. Основная функция нейтрофилов - проникать в ткани и уничтожать там инфекцию. Зрелые нейтрофилы, покидая костный мозг, находятся в циркулирующей крови около 8 часов - остальное время (примерно 5-8 суток) они находятся в тканях, после чего погибают.

В места воспаления или очага инфекции нейтрофилы «привлекают» выделяемые бактериями и другими клетками (макрофагами, лимфоцитами, базофилами) химические вещества (хемотаксические факторы, или хемокины). Проникая в ткани, нейтрофилы окружают инфекцию и поглощают ее - этот процесс называется фагоцитоз . В нейтрофилах образуются специальные ферменты и высокоактивные свободные радикалы, которые убивают инфекцию. В качестве свидетельства функционирования нейтрофилов может выступать гной (густая жидкость), который образуется в месте воспаления. Гной состоит в основном из ослабленных и мертвых нейтрофилов, фрагментов бактериальных клеток и других клеточных остатков, которые образуются в процессе фагоцитоза, вызванного пиогенной (гноеродной) инфекцией.

Эозинофилы

Эозинофилы локализуются в местах воспаления, вызванных аллергическими реакциями (например, бронхиальной астмой или сенной лихорадкой). Одним из компонентов патогенеза аллергических заболеваний является высвобождение химических веществ из эозинофилов.

Базофилы

В крови содержится очень мало базофилов, а в периферической крови они встречаются очень редко. В структуру базофила входит дольчатое ядро, которое маскируется крупными темно-синими гранулами.

Базофилы мигрируют в ткани, где созревают в тучные клетки. При активации из тучных клеток высвобождается большое количество химических медиаторов, среди которых хемотаксический фактор (привлекает нейтрофилы), гистамин (расширяет кровеносные сосуды, тем самым усиливая кровоток в пораженной области), гепарин (антикоагулянт, способствующий восстановлению поврежденных кровеносных сосудов).

Моноциты

В структуру моноцита входит несегментированное овальное или округлое ядро и цитоплазму, в которой обычно отсутствуют гранулы. В крови моноциты циркулируют недолго (примерно 20-40 часов), после чего проникают в ткани, где созревают в макрофаги , которые участвуют в фагоцитозе, как и нейтрофилы. Помимо фагоцитоза, макрофаги выполняют другую важную задачу - перерабатывают и представляют антигены (чужеродные белки) Т-лимфоцитам, чтобы запустить клеточный иммунный ответ . Также макрофаги принимают участие в важном физиологическом процессе - когда эритроцит становится нежизнеспособным, макрофаги обеспечивают их разрушение.

Лимфоциты

Среди всех лейкоцитов, циркулирующих в крови, лимфоциты составляют 20-40% - это вторая по численности разновидность иммунных клеток. Лимфоциты, как и другие форменные элементы крови, образуются в костном мозге. Однако некоторые из этих лимфоцитов нуждаются в дополнительном формирование в тимусе (вилочковой железе) - это Т-лимфоциты (или тимусозависимые лимфоциты . Среди всех циркулирующих в крови лимфоцитов доля Т-лимфоцитов составляет около 70%. Остальные 30% - В-лимфоциты . Также существую NK-лимфоциты (естественные (натуральные) киллеры - Natural killer cells; NK-cells) - популяция «ни Т- ни В-лимфоцитов», обладающих выраженной цитотоксичностью к опухолевым и инфицированным клеткам.

Лимфоциты, как и нейтрофилы, принимают участие в иммунной защите организма от действия патогенных элементов (инфекции). В B-лимфоцитах образуются антитела (иммуноглобулины, Ig) - белки, которые обладают способностью связывать антигены (чужеродные белковые соединения). Микробы (грибки, бактерии, вирусы и т.д.) на своей поверхности содержат особые белки, действующие как антигены. Антитела связывают эти поверхностные антигены, тем самым предупреждая проникновение вирусов и бактерий в тканевые клетки. Кроме этого, окруженный антителами микроб более подвержен фагоцитозу нейтрофилами и макрофагами. Также антитела связывают и нейтрализуют токсины, выделяемые микробами.

Несмотря на то, что антитела эффективно действуют вне клетки, они не способны проникать в саму клетку, поэтому неэффективны против внутриклеточной инфекции. Для борьбы с инфекцией, проникшей в клетку, иммунная система направляет Т-лимфоциты.

Одним из достоинств Т- и B-лимфоцитов, в отличие от других клеток крови, является способность «запоминать» микробы, с которыми им приходилось «иметь дело». Поэтому в случае последующего инфицирования (заражения), иммунная система реагирует гораздо быстрее и эффективнее. То есть, лимфоциты обеспечивают приобретенный иммунитет , поэтому люди редко страдают повторно одним и тем же инфекционным заболеванием, так как при первом контакте вырабатывается иммунитет, обеспечивающий защиту с той же инфекцией.

На функцию NK-лимфоцитов не влияет механизм приобретенного иммунитета - они вместе с нейтрофилами, эозинофилами, базофилами и моноцитами участвуют в обеспечении врожденного иммунитета .

АНАЛИЗ НА ФОРМЕННЫЕ ЭЛЕМЕНТЫ КРОВИ

ИНТЕРПРЕТАЦИЯ РЕЗУЛЬТАТОВ АНАЛИЗА
(количество лейкоцитов и дифференциальный подсчет)

Референсные значения

Общее количество лейкоцитов

3,7-9,5 × 10 9 /л

3,9-11,1 × 10 9 /л

Дифференциальное количество лейкоцитов

Нейтрофилы

2,5-7,0 × 10 9 /л

Лимфоциты

1,5-4,0 × 10 9 /л

Моноциты

0,2-0,8 × 10 9 /л

Эозинофилы

0,04-0,44 × 10 9 /л

Базофилы

0,01-0,10 × 10 9 /л

Уровень лейкоцитов в крови у новорожденных очень высокий - 5,0-26,0 × 10 9 /л. В течение первых двух месяцев жизни ребенка количество лейкоцитов в крови снижается до 8,0-18,0 × 10 9 /л и достигает нормальных показателей (как у взрослых) к 12-15-летнему возрасту.

Критические значения

Критическим значением считается, когда количество лейкоцитов < 2,0 × 10 9 /л или > 30,0 × 10 9 /л.

Термины при интерпретации результатов анализа

Полиморфно-ядерные клетки - «клетки с разнообразными формами ядра». Этот термин применяется ко всем лейкоцитам с дольчатыми и сегментированными ядрами (нейтрофилы, базофилы, эозинофилы). Моноциты и лимфоциты не относятся к полиморфно-ядерным клеткам, поскольку имеют ядра более правильной формы.

Гранулоциты - все лейкоциты, в цитоплазме которых содержатся ядра: нейтрофилы, эозинофилы, базофилы. Моноциты и лимфоциты не относятся к гранулоцитам.

Агранулоцитоз - полное отсутствие или очень низкий уровень гранулоцитов в крови.

Фагоциты - клетки, способные к фагоцитозу (поглощению инородных структур). К фагоцитам относятся нейтрофилы, базофилы, эозинофилы и моноциты. Лимфоциты не относятся к фагоцитам.

Лейкоцитоз - повышение общего количества лейкоцитов в крови.

Нейтрофилия, Эозинофилия, Базофилия - повышение уровня нейтрофилов, эозинофилов или базофилов в крови.

Лимфоцитоз - повышение количества лимфоцитов в крови.

Лейкопения - снижение количества лейкоцитов в крови.

Нейтропения - снижение количества нейтрофилов в крови.

Лимфоцитопения - снижение количества лимфоцитов в крови.

Панцитопения - снижение уровня всех форменных элементов крови: лейкоцитов, эритроцитов и тромбоцитов.

Термины при описании микроскопического исследования лейкоцитов

Увеличение количества палочкоядерных форм - палочкоядерные клетки (незрелые нейтрофилы) легко распознаются благодаря несегментированной форме ядра. В нормальном состоянии (здоровья) содержание палочкоядерных клеток в крови составляет около 3%. Повышение их уровня свидетельствует об усиленном производстве нейтрофилов в костном мозге в ответ на инфекцию.

Сдвиг влево - еще одно название, описывающее повышение количества пасочкоядерных форм.

Бластные клетки - незрелые клетки лейкоцитов, которые в нормальном (здоровом) состоянии никогда не встречаются в крови. Присутствие бластных клеток в крови всегда означает лейкоз .

ПРИЧИНЫ ПОВЫШЕНИЯ УРОВНЯ ЛЕЙКОЦИТОВ

Лейкоцитоз развивается, как правило, в результате инфекции, воспалительного процесса или других повреждений тканей. Поскольку основная функция лейкоцитов - защита организма от инфекции, - соответственно при условии инфицирования их количество увеличивается. Очень важно уметь отличать реактивный (доброкачественный) лейкоцитоз от лейкоза (злокачественного заболевания крови, при котором также увеличивается количество лейкоцитов).

Лейкозы - группа злокачественных заболеваний с поражением костного мозга, характеризующихся неконтролируемой пролиферацией одного клона (вида) незрелых клеток с подавлением процесса формирования нормальных клеток крови. В зависимости от клинического течения заболевания (острого или хронического), а также от вида клеток, дающих начало злокачественному процессу (лимфоидные клетки - предшественники лимфоцитов; миелоидные клетки - предшественники эритроцитов, тромбоцитов, гранулоцитов и моноцитов), практически все лейкозы относятся к одной из четырех групп (типов):

  • Острый миелолейкоз
  • Хронический миелолейкоз
  • Острый лимфолейкоз
  • Хронический лимфолейкоз
ОСНОВНЫЕ ПРИЗНАКИ ЧЕТЫРЕХ ТИПОВ ЛЕЙКОЗОВ

Острый миелолейкоз

Острый лимфолейкоз

Хронический миелолейкоз

Хронический лимфолейкоз

Наиболее растпространенная форма острого лейкоза. У детей встречается редко. Вероятность возникновения патологии увеличивается с возрастом

Около 80% случаев диагностируется у детей с пиком заболеваемости в 3-4-летнем возрасте.

На этот тип приходится примерно 15-20% случаев лейкоза. Патология часто развивается в возрасте 40-60 лет, но может быть обнаружена в любом возрасте.

Самая распространенная форма лейкоза (примерно 30% всех случаев лейкозов). Патология развивается преимущественно у лиц старше 50 лет

FAB-классификация (франко-американо-британская классификация), основанная на признаках аномальных клеток, идентифицирует 8 типом острого миелолейкоза (M0-M7)

FAB-классификация идентифицирует 3 типа острого лимфолейкоза (L1-L3)*

FAB-классификация не идентифицирует и не выделяет типов

При отсутствии лечения приводит к летальному исходу

Патология прогрессирует медленно, на протяжение нескольких лет. Затем может наступить острая прогрессивная стадия

Патология прогрессирует медленно, на протяжение нескольких лет.

К моменту постановки диагноза выраженные симптомы могут отсутствовать.

Основные признаки острого миелолейкоза: слабость, сонливость в результате анемии; инфекция и лихорадка гематомы и аномальные кровотечения из-за снижения уровня тромбоцитов

На момент постановки диагноза как правило наблюдаются клинические проявления.

Основные признаки острого лимфолейкоза: слабость, сонливость в результате анемии; инфекция и лихорадка из-за низкого уровня зрелых лейкоцитов, способных функционировать; гематомы и аномальные кровотечения из-за снижения уровня тромбоцитов; часто наблюдается инфильтрация ЦНС , в результате чего возникает головная боль, тошнота, рвота

К моменту постановки диагноза выраженные симптомы появляются не всегда. К основным клиническим проявлениям относят: слабость и одышка при нагрузке из-за прогрессирующей анемии; гематомы и аномальные кровотечения из-за снижения уровня тромбоцитов; обильное потоотделение во время сна; снижение массы тела

При постановке диагноза примерно 25% больных не жалуются на состояние здоровья - патология обнаруживается при анализе крови. такой период «благополучия» может продолжаться несколько лет, затем возникают симптомы, как при хроническом миелолейкозе.

Лечение начинают с химиотерапии (в комбинации из трех цитостатических препаратов). Транспалнтация костного мозга рассматривается в случае безуспешной химиотерапии у молодых пациентов.

Несмотря на то, что около 80-90% молодых пациентов достигают ремиссии, вылечить удается примерно 30% больных.**

У пожилых пациентов прогноз хуже

Лечение начинают с химиотерапии (в комбинации из трех или четырех цитостатических препаратов). Транспалнтация костного мозга рассматривается в случае безуспешной химиотерапии.***

Эффективность химиотерапии отмечается у большинства детей и примерно у 30% взрослых

Для больных до 40 лет в качестве терапии первой линии применяют трансплантацию костного мозга. В качестве альтернативного лечения назначают химиотерапию в комбинации:

Бусульфан
- Интерферон-α
- Гливек (Иматиниб)

Вылечить можно только при условии трансплантации костного мозга

Лечение не назначают до момента проявления первых симптомов. С помощью химиотерапии можно контролировать состояние пациентов, но не вылечить.

Продолжительность жизни больного может варьироваться от 1 года до 20 лет (как правило - 3-4 года).

* - FAB-классификация в настоящее время не имеет клинического значения. Для определения группы риска заболевания сегодня применяют генетическую и иммунологическую классификацию.

** - Трансплантация гемопоэтических клеток назначается пациентам с неблагоприятным прогнозом, основанном на совокупности цитогенетических и клинико-гематологических показателей.

*** - лучевая терапия показана всем больным. Трансплантация гемопоэтических клеток назначают пациентов с высоким риском патологии.

Из-за того, что при лейкозе развитие нормальных клеток крови подавлено, к основным симптомам злокачественной патологии относится анемия (вызванная дефицитом эритроцитов), склонность к кровотечениям (по причине снижения уровня тромбоцитов) и высокая предрасположенность к инфекционным заболеваниям (вызванная снижением количества нормальных лейкоцитов).

В независимости от того, какой вид лейкоцитоза обнаружен у пациента (реактивный или злокачественный), анализ крови показывает преобладание одного из пяти типов лейкоцитов. Определить преобладающий тип лейкоцитов позволяет их дифференциальный подсчет . Так как повышение уровня определенного типа лейкоцитов имеет свой ряд причин, дифференциальный подсчет позволяет диагностировать возможную патологию, которая вызвала это состояние.

Нейтрофилия

Нейтрофилия - повышение количества нейтрофилов в крови - наиболее распространенное состояние, среди других состояний, при которых увеличивается количество лейкоцитов других типов.

Реактивная нейтрофилия может быть признаком следующих состояний:

  • Большинство острых заболеваний, вызванных бактериальной инфекцией. При гнойных инфекциях, вызванных стрептококками и стафилококками показатели нейтрофилов особенно высокие - до 50 × 10 9 /л
  • Неспецифические острые воспаления (например, воспаления кишечника, ревматоидный артрит и др.)
  • Повреждения тканей при травмах, хирургических вмешательствах, инфарктах, ожогах и др.
  • Солидные опухоли (например, при раке легких количество нейтрофилов повышается в ответ на некротические изменения тканей, которые сопровождают рост опухоли)
  • Беременность и роды
  • Чрезмерное физическое напряжение

Злокачественная нейтрофилия

Хронический миелоидный лейкоз характеризуется значительным увеличением количества лейкоцитов (часто более 50 × 10 9 /л, иногда выше 500 × 10 9 /л), представленных клетками преимущественно миелоидного ряда, среди которых преобладают нейтрофилы.

Лимфоцитоз

Причиной развития реактивного лимфоцитоза могут быть следующие патологии:

  • Инфекционный мононуклеоз (лимфоидно-клеточная ангина) - острое инфекционное заболевание, возбудителем которого является вирус Эпштейна-Барр . При мононуклеозе часто наблюдается картина изолированного лимфоцитоза (особенно среди подростков и молодых людей). Основные симптомы мононуклеоза: боль в горле, головная боль, повышенная утомляемость, лихорадка, тошнота. Наблюдается увеличение шейных лимфоузлов. Через несколько дней после начала заболевания количество лейкоцитов увеличивается до 10-30 × 10 9 /л, потом постепенно снижается и через 1-2 месяца возвращается в пределы нормы.
  • Другие, менее частые вирусные заболевания : цитомегаловирусная инфекция, краснуха, ветряная оспа, вирусный гепатит, ранние стадии ВИЧ-инфекции.
  • Хронические бактериальные инфекции (например, длительный туберкулез).
  • Другие инфекции: токсоплазмоз (возбудитель Toxoplasma gondii), коклюш (возбудитель Bordetella pertussis) и др.

Причиной развития лейкоцитоза также могут быть онкологические заболевания :

  • Хронический лимфолейкоз. Общий уровень лейкоцитов часто повышается до 50-100 × 10 9 /л. При этом большинство клеток представлено зрелыми лейкоцитами. У пожилых людей выраженный лимфоцитоз (выше 50 × 10 9 /л) с большой вероятностью является признаком хронического лимфолейкоза.
  • Неходжкинская лимфома (злокачественная опухоль лимфатических узлов) в некоторых случаях может вызвать лимфоцитоз.

Эозинофилия

По сравнению с нейтрофилией и лимфоцитозом, эозинофилия встречается гораздо реже. Наиболее распространенными причинами развития эозинофилии являются:

  • Аллергия (астма, пищевая аллергия, экзема, сенная лихорадка и др)
  • Гельминтозы (круглые и ленточные черви, Schistosoma, Strongyloides и др).
  • Ходжкинская лимфома (очень редко).

Моноцитоз и базофилия

Повышение уровня этих клеток в крови встречается не так часто. Моноцитоз, как правило, наблюдается при туберкулезе, подостром бактериальном эндокардите и других хронических инфекционных заболеваниях, вызванных бактериями. Высокий уровень базофилов может быть вызван хроническим миелолейкозом.

ЛЕЙКОПЕНИЯ

Лейкопения обнаруживается гораздо реже, чем лейкоцитоз. Снижение уровня лейкоцитов в большинстве случаев происходит за счет снижения количества нейтрофилов или лимфоцитов (или нейтрофилов и лимфоцитов вместе).

Нейтропения

  • Вирусные заболевания (грипп, эпидемический паротит, вирусный гепатит, ВИЧ-инфекция) вызывают нейтропению. Сочетание нейтропении и лимфоцитоза объясняет, почему при некоторых вирусных патологиях общее количество лейкоцитов может оставаться в пределах нормы несмотря на снижение уровня нейтрофилов.
  • Массивная бактериальная инфекция. Бывают случаи, когда при тяжелых формах инфекционных заболеваний костный мозг не способен производить необходимое количество нейтрофилов.
  • Апластическая анемия - состояние, вызванное дефицитом стволовых клеток в костном мозге. Отметим, что апластическая анемия может вызвать не только угрожающую жизни нейтропению, но и недостаточность всех типов клеток крови. В большинстве случаев причину возникновения апластической анемии определить невозможно, однако известны случаи, когда это состояние провоцируют некоторые лекарственные препараты, особенно цитотоксические (используют для химиотерапии), некоторые антибактериальные препараты (например, хлорамфеникол) и препараты золота (используются при лечении ревматоидного артрита). Также причиной развития апластической анемии может быть лучевая терапия, применяемая при лечении некоторых видов рака. Кроме этого, одной из причин ограничения применения рентгеновского излучения с целью диагностики является риск развития апластической анемии.
  • Острый лейкоз. При остром лейкозе злокачественные клетки пролиферируют в ущерб развитию нормальных клеток крови, что также проявляется нейтропенией. Много видов рака метастазируют в костную ткань, откуда злокачественные клетки инфильтрируют костный мозг и подавляют процесс образования клеток крови. То есть, нейтропения может выступать в роли признака запущенной формы рака.

Лимфоцитопения

  • СПИД. ВИЧ (вирус иммунодефицита человека), который вызывает синдром приобретенного иммунодефицита человека (СПИД), оказывает свое опустошительное действие путем избирательного поражения Т-лимфоцитов. Вирус проникает внутрь Т-лимфоцитов, где и размножается, вызывая гибель клеток. Поэтому при СПИДе происходит прогрессирующая деструкция Т-лимфоцитов, что в результате приводит к развитию тяжелой формы прогрессирующей лимфоцитопении.
  • Аутоиммунная деструкция лимфоцитов (например, при системной красной волчанке) - одна из причин развития лимфоцитопении.
  • Острые воспалительные состояния (например, болезнь Крона, панкреатит, аппендицит) могут сопровождаться легкой формой лимфоцитопении.
  • Травмы, хирургические вмешательства, ожоги.
  • Грипп
  • Глубокий дефицит лимфоцитов является признаком некоторых врожденных заболеваний новорожденных, например, синдром Ди Георга (при этом заболевании недостаточно развита вилочковая железа (тимус), в результате чего ребенок рождается без Т-лимфоциов); или тяжелый синдром комбинированного иммунодефицита (SCID) , который характеризуется недостатком B- и Т-лимфоцитов.

ПОСЛЕДСТВИЯ НАРУШЕНИЯ УРОВНЯ ЛЕЙКОЦИТОВ

Повышение количества лейкоцитов в крови всегда является признаком активации иммунитета (защитной реакции организма) против инфекции, воспалительных процессов, повреждений. То есть, лейкоцитоз является естественным физиологическим процессов и, как правило, не приводит к каким-либо последствиям. Бывают случаи, когда при лейкозе уровень лейкоцитов достигает настолько высоких показателей (более 100 × 10 9 /л), что может привести к повышению вязкости крови, уменьшая ее текучесть - такое состояние называют гиперлейкоцитоз (при этом лейкоциты закупоривают микроциркуляторное русло в разных тканях и органах, тем самым нарушая в них кровоток и может представлять угрозу для жизни).

При лейкопении организм подвержен разного рода инфекционным заболеваниям. Такое состояние имеет явные клинические проявления, когда уровень нейтрофилов опускается ниже 1,0 × 10 9 /л, особенно при бактериальной инфекции полости рта и глотки. Без необходимого количества нейтрофилов эти инфекции не могут разрешится, в результате в местах инфицирования образуются изъязвления. Больные, количество нейтрофилов у которых не превышает 1,5 × 10 9 /л, рискуют умереть от неконтролируемой бактериальной инфекции. Для таких пациентов серьезную угрозу жизни представляют даже обычные (непатогенные) микроорганизмы, которые обитают на поверхности кожи. Поэтому они нуждаются в особом уходе, направленном на снижение риска возникновения инфекции.

Тяжелая лифмоцитопения значительно эффективность иммунного ответа, тем самым подвергая больного высокому риску инфицирования грибами, бактериями и вирусами. Так, в результате снижения уровня Т-лимфоцитов, больные СПИДом страдают угрожающими жизни инфекциями.