Механизм слуха как мы слышим. Почему мы слышим звуки? Объективные методы оценки слуха

Слух - великий дар, которым наделено человечество. Восприятие звуков помогает людям избегать опасности, общаться между собой и получать ощущения, рождающие эмоции. До тех пор пока этот дар при нас, мы редко задумываемся о том, как мы слышим и как воспринимаем звуковое многообразие окружающего мира.

При полной или даже частичной утрате слуха люди, как правило, испытывают большие затруднения. Абсолютная тишина так же вредна для нашей психики, как и сильный шум. Но даже в подобных ситуациях всегда есть выход, который позволяет облегчить страдания, связанные с потерей слуха. Все дело в том, как и что мы слышим, как идентифицируем и различаем звуки.

Со школьной скамьи всем хорошо известно, что звук - это колебания воздуха. Воспринимает их орган слуха, в котором выделяют звукопроводящий, звуковоспринимающий и звукоанализирующий отделы. Наружное ухо подобно локатору улавливает звук, среднее ухо при помощи специальных косточек - молоточка, наковальни и стремечка, преобразовывает звуковые колебания в механические, которые затем в отделе внутреннего уха, называемого кортиевым органом или улиткой, преобразуются в электрические импульсы посредством специальных рецепторов. Затем по нервным волокнам подобно электрическому току они проводятся в височные доли головного мозга - центр управления нашими звуковыми ощущениями.

Погружаясь в мир звуков, мы мало думаем о том, что именно слышим, и как звуковые волны превращаются в ощущения. Пение птиц, барабанная дробь, гул мотора, рев сирены, оперная ария, шепот или громкая речь по-разному воспринимаются нашим ухом и интерпретируются нашим мозгом.

Характеризуя звукововосприятие и звукоощущение, оперируют такими понятиями, как громкость звука и тембр звука и порог слышимости. Именно эти параметры определяют в результате, как мы слышим звуки. Оказывается, что все они субъективны, то есть зависят непосредственно от индивидуального восприятия, привычек, вкусов, среды воспитания. Для кого-то музыка может показать невыносимо громкой и раздражающей, другой человек будет воспринимать ее только лишь как приятный звуковой фон. При этом орган слуха у этих людей функционирует абсолютно одинаково. Фактически все перечисленные параметры являются психологическими характеристиками, и то, как мы воспринимаем и слышим звуки, в большей степени зависит от психических процессов и эмоционального фона. Люди с ухудшенным слухом не могут полноценно воспринимать окружающую реальность, поэтому им рекомендовано пройти или записаться на ряд лечебных процедур. При каждом отдельном случае специалисты подбирают для пациентов индивидуальные методы восстановления слуха.

Как оценить слух?

Все методы исследования и оценки слуха делят на две большие группы:

  • Субъективные
  • Объективные

Субъективные методы оценки слуха

К субъективным методам исследования относят аудиометрию, позволяющую оценить минимальный порог звука разных частот, который способно воспринять ухо обследуемого человека. Собственно, показатели аудиометрии и определяют, как мы слышим, а критерии оценки определены на уровне субъективного восприятия: понятно или не понятно, громко или тихо, высоко или низко, слышно или не слышно.

Аудиометрия

Для оценки слуха методом аудиометрии используют акуметрию, когда в качестве звукового раздражителя выступает камертон или человеческая речь, или тональную пороговую аудиометрию, которую выполняют при помощи электронно-акустических приборов - аудиометров.

Данный метод позволяет определить, связаны ли причины тугоухости с нарушением звукопроведения или звуковосприятия. Приведем пример, как это происходит при снижении слуха, связанном с заболеваниями наружного и среднего отделов уха, которые проводят звук. В этом случае мы хуже слышим низкие (басовые) тона, и врачи говорят о кондуктивной тугоухости.

При нарушении восприятия высоких тонов предполагают, что они связаны с проблемами звуковосприятия, и говорят о перцептивной тугоухости.

Кроме того, аудиометрия позволяет определить резерв органа внутреннего уха - улитки, который позволяет оценить степень возможности восстановления слуха.

Объективные методы оценки слуха

Объективно оценить слух можно путем регистрации электрических импульсов, возникающих в различных отделах слухового аппарата при воздействии на него звуковым раздражителем. Из объективных методов сегодня активно используются отоакустическая эмиссия и электрокохлеография, которые основаны на регистрации слуховых вызванных потенциалов, а также импедансометрия.

Как улучшить слух при различных заболеваниях без слухового аппарата?

Природа как нельзя лучше позаботилась о человеке, предусмотрев множество вариантов компенсации при потере функциональности органов чувств. По этой причине полное отсутствие слуха встречается крайне редко.

Два уха существуют не только для определения направления звука, но для страховки от полной потери слуха. Вероятность полного выхода из строя одновременно обоих органов мала. Как правило, хотя бы минимально одно ухо будет принимать и обрабатывать звук.
Если не функционирует звукопроводящий аппарат, принимающий звук по воздуху, подключается к работе так называемый костный путь передачи, когда эту функцию берут на себя кости черепа и доставляют звуки непосредственно в улитку. Как известно, именно благодаря этому механизму мы слышим под водой.

Шанс улучшить слух всегда есть, даже при полной глухоте, работая над психической составляющей психологических характеристик, эмоциональным фоном и чувствительностью в целом. Узнать подробно, что делать, как работать в этом направлении, приобрести практические навыки и получить первые положительные результаты можно, став слушателем уникального курса М.С. Норбекова «Восстановление слуха». помогут Вам нормализовать функцию слухового аппарата, решить проблемы, связанные с психологическим и эмоциональным фоном, наладить общение, улучшить качество жизни и восприятие окружающего мира. Уже после первого занятия Вы почувствуете изменения, возвращающие Вас в увлекательный мир звуков.

Слух является одним из важных органов чувств для всех обитателей планеты, с его помощью многие животные определяют местонахождение своего врага. Все стихийные бедствия также...

Слух является одним из важных органов чувств для всех обитателей планеты, с его помощью многие животные определяют местонахождение своего врага. Все стихийные бедствия также сопровождаются определенными звуками, которые не всегда доступы человеческому уху, но на которые безошибочно реагируют животные. Человек находится в постоянном окружении звуков, многие из них проходят мимо сознания. Слух настроен таким образом, что четко воспринимаются мозгом только жизненно важные сигналы, не очень важные игнорируются. Звуки могут по-разному воздействовать на восприятие, одни нравятся, другие раздражают, многие из них способствуют созданию в воображении тех или иных визуальных образов.

Особенности восприятия звуков

Человеческий организм отличается сложным устройством, ухо не является исключением. Строение органов слуха позволяет преобразовывать и передавать звуки для распознавания в мозг, все эти процессы происходят преимущественно в височных долях. В мозгу определяется громкость, высота, направление происхождения и другие характеристики звука. Оценка ситуации производится на основе информации, полученной из обоих ушей одновременно. Внутри уха хранятся определенные шаблоны уже распознанных звуков, за счет них обеспечивается правильная сортировка информации и определение ее первоисточника.

Известно, что скорость распознавания знакомых звуков (голосов близких людей, сигналов опасности) намного выше, по сравнению с незнакомыми звуками. При ухудшении слуха мозг начинает получать недостоверные данные, что приводит к ошибкам в распознавании информации. За слух отвечают не только соответствующие органы, но и мозг, правильное распознавание звуков достигается только за счет слаженной работы этих органов.

Строение органов слуха

Слуховой анализатор состоит из четырех частей:

  1. Наружное ухо, в данную категорию относятся следующие органы: барабанная перепонка, ушная раковина, слуховой проход. Барабанная перепонка выполняет функцию изоляции слухового прохода от окружающей среды. Длина слухового прохода составляет 2,5 см, он имеет изогнутую форму, его поверхность покрыта железами, выделяющими ушную серу и небольшими волосками. Слуховой проход выполняет функцию поддержания необходимого уровня температуры и влажности внутри уха.
  2. Среднее ухо – в это понятие входит компонент слухового анализатора, орган расположен за барабанной перепонкой и наполнена воздухом, с носоглоткой соединяется евстахиевой трубой. Евстахиева труба — это закрытый в обычном состоянии узкий хрящевой канал, который открывается при совершении глотательных движений, после чего пространство заполняется воздухом. Внутри среднего уха находятся три небольшие слуховые косточки: молоточек, наковальня и стремя. Молоточек соединяется со стременем, которое соединяется уже с улиткой во внутреннем ухе. Барабанная перепонка находится в постоянном движении под воздействием звуков, ее колебания передаются на слуховые косточки.
  3. Внутреннее ухо представляет собой несколько структур, за слух отвечает только улитка. Улитка получила свое название из-за спиральной формы, орган оснащен тремя каналами, заполненными лимфатическими жидкостями. Состав жидкости в среднем канале существенно отличается от остальных. Непосредственно за слух отвечает расположенный в среднем ухе Кортиев орган, он состоит из тысяч мельчайших волосков, улавливающих колебания, создаваемые движущейся по каналу жидкостью. В этом же месте генерируются электрические импульсы, передаваемые в кору мозга. Каждая волосовая клетка реагирует на определенный звук, при ее гибели человек перестает воспринимать звук, за который она отвечала.

Слуховые проводящие пути

Слуховые пути представляют собой совокупность волокон, проводящих нервные импульсы от улитки дослуховых центров, за счет них происходит восприятие звука мозгом. Расположены эти слуховые центры в височных долях головного мозга, время, за которое звук поступает через внешнее ухо к мозгу, составляет 10 миллисекунд.

Как мы слышим

Звуковые волны перед тем как быть распознанными мозгом, проделывают долгий путь. Колебания воздуха заставляют вибрировать барабанную перепонку, после чего звук передается на протянутые через все среднее ухо слуховые косточки, соединяющие улитку и барабанную перепонку. На следующем этапе колебания передаются на заполняющую улитку жидкость, в результате чего раздражаются клетки внутреннего уха. Мозг улавливает эти раздражения и распознает речь, шумы, музыку и т.д. За направление, откуда идет звук, отвечают полукружные каналы, расположенные в лабиринте в трех перпендикулярных друг другу областях. Эти каналы называют еще вестибулярным аппаратом или органом равновесия.

При изменении положения тела полукружные каналы также перемещаются, заполняющая их инерционная жидкость вследствие инерционности не успевает за движениями и смещается относительно стенок канала. Специальные рецепторы следят за всеми перемещениями жидкости, информация о всех наблюдениях поступает в мозг.

Рецепторные клетки вестибулярного аппарата погружены в заполняющую внутреннее ухожидкость, информация о всех движениях поступает в мозжечок, в котором осуществляется сбор и сопоставление всех данных. После этого во все системы организма направляются команды, позволяющие поддерживать равновесие. Информация о результатах поступает в головной мозг.

Индивидуальные факторы

Человек обладает удивительной способностью воспринимать не только звуки, но и интонацию. Выводы о том или ином звуки формируются на основании собственных ощущений, на восприятие оказывают влияние следующие факторы:

  • чувствительность;
  • восприимчивость;
  • особенности центральной нервной системы.

Маленькие дети распознают незнакомого человека именно по интонации, это происходит за счет того, что у малышей доминирует эмоционально-образное мышление, любая речь воспринимается в первую очередь эмоционально. Интонация позволяет определить настроение человека, насколько он грустный или веселый. Механизм распознавания интонации базируется на подсознании, человек даже не задумывается об этом.

Многие женщины больше значения придают именно интонации речи, а не ее содержанию. В первую очередь внимание уделяется не тому, что сказал собеседник, а как он сказал, так как смысл по-разному произнесенного предложения отличается. Стоит отметить, что способностью правильно распознавать информацию обладают не все люди, иногда собеседнику могут приписываться собственные эмоции. Мужчины менее чувствительны и эмоциональны, для них большую важность имеет содержание фразы, а не интонация.

Клетки, воспринимающие звуки, находятся в перепончатой капсуле — улитке, спрятанной в глубине черепа. Улитка — это спирально закрученная трубка, заполненная жидкостью. Вместе с органом равновесия — тремя полукружными каналами — улитка образует так называемый лабиринт. Овальное окно соединяет улитку со средним ухом, костной полостью, лежащей в преддверии улитки. Это окно затянуто тонкой кожистой пленкой. Она реагирует на любые колебания воздуха, уловленные ушной раковиной и попавшие в наружный слуховой проход. Расскажем подробнее о том, как это происходит.

Сначала колебания воздуха заставляют вибрировать барабанную перепонку — тончайшую пластинку, перегораживающую наружный слуховой проход. Далее вибрация передается по крохотным слуховым косточкам: молоточку, наковальне и стремечку. Эти косточки, словно мостик, протянулись по всему среднему уху, соединяя барабанную перепонку с улиткой. Вот и получается, что пленка, закрывающая овальное окно, реагирует на любые колебания воздуха. Далее вибрации передаются жидкости, заполняющей улитку. Перекатывающиеся по ней волны раздражают слуховые клетки внутреннего уха. Головной мозг улавливает эти раздражения и распознает в них звуки. К сказанному добавим то же, что мы говорили и о зрении. Природа снабдила нас двумя ушами, поэтому мы можем определить, откуда до нас долетел звук. Итак, у нас есть не только пространственное зрение, но и объемный слух. Там же, в лабиринте, рядом с улиткой, протянулись три полукружных канала: горизонтальный и два вертикальных, причем один из них выгнут вперед, а другой — вбок. Таким образом, каналы расположены в трех взаимно перпендикулярных плоскостях. Это и есть вестибулярный аппарат, или орган равновесия.

Звуковые волны, распространяющиеся в воздухе, проделают сложный путь, прежде чем мы воспримем их. Сначала они проникают в ушную раковину и заставляют вибрировать барабанную перепонку, замыкающую наружный слуховой проход. Слуховые косточки доносят эти колебания до овального окна внутреннего уха. Пленка, которая закрывает окно, передает вибрации заполняющей улитку жидкости. Наконец колебания достигают слуховых клеток внутреннего уха. Головной мозг воспринимает зги сигналы и распознает в них шумы, звуки, музыку, речь.

Когда человек меняет положение тела, полукружные каналы — дугообразные трубочки тоже движутся вместе с ним, тогда как жидкость, заполняющая их, инерционна, она не поспевает за нашими движениями и, следовательно, смещается относительно стенок канала. Специальные клетки —рецепторы следят за перемещениями жидкости в полукружных каналах. Обо всем замеченном они сообщают головному мозгу, и тот обрабатывает поступившую информацию. Рецепторные клетки органа равновесия погружены в жидкость, заполняющую внутреннее ухо. Они фиксируют любые ее движения и извещают о них мозжечок, который собирает и сопоставляет все эти сообщения. После этого все органы тела получают нужную информацию и различные приказы, что и помогает человеку поддерживать равновесие. О результатах тут же сообщается в большой мозг.

Во внутреннем ухе вплотную друг к другу располагаются орган слуха (улитка) и орган равновесия (лабиринт). В улитке тонкая пленка — мембрана преобразует звуковые волны в волновые движения жидкости. Волны жидкости посредством сложного механизме возбуждают слуховые клетки. Лабиринт, расположенный позади улитки, фиксирует любое движение человека.

К наружному уху относятся ушная раковина, слуховой проход и барабанная перепонка, которая закрывает внутренний конец слухового прохода. Слуховой проход имеет неправильную изогнутую форму. У взрослого человека длина его составляет около 2,5 см, а диаметр около 8 мм. Поверхность слухового прохода покрыта волосками и содержит железы, выделяющие ушную серу, которая необходима для поддержания влажности кожи. Слуховой проход обеспечивает также постоянную температуру и влажность барабанной перепонки.

  • Среднее ухо

Среднее ухо – это заполненная воздухом полость за барабанной перепонкой. Эта полость соединяется с носоглоткой посредством евстахиевой трубы – узкого хрящевого канала, который обычно находится в закрытом состоянии. Глотательные движения открывают евстахиеву трубу, что обеспечивает поступление воздуха в полость и выравнивание давления по обе стороны барабанной перепонки для ее оптимальной подвижности. В полости среднего уха находятся три миниатюрные слуховые косточки: молоточек, наковальня и стремя. Одним концом молоточек соединен с барабанной перепонкой, другой его конец связан с наковальней, которая, в свою очередь соединена со стременем, а стремя с улиткой внутреннего уха. Барабанная перепонка постоянно колеблется под действием улавливаемых ухом звуков, а слуховые косточки передают ее колебания во внутреннее ухо.

  • Внутреннее ухо

Во внутреннем ухе содержится несколько структур, но к слуху отношение имеет только улитка, получившая свое название из-за спиральной формы. Улитка разделена на три канала, заполненные лимфатическими жидкостями. Жидкость в среднем канале отличается по составу от жидкости в двух других каналах. Орган, непосредственно ответственный за слух (Кортиев орган), находится в среднем канале. Кортиев орган содержит около 30000 волосковых клеток, которые улавливают колебания жидкости в канале, вызванные движением стремени, и генерируют электрические импульсы, которые по слуховому нерву передаются к слуховой зоне коры головного мозга. Каждая волосковая клетка реагирует на определенную звуковую частоту, причем высокие частоты улавливаются клетками нижней части улитки, а клетки, настроенные на низкие частоты, располагаются в верхней части улитки. Если волосковые клетки по каким-либо причинам гибнут, человек перестает воспринимать звуки соответствующих частот.

  • Слуховые проводящие пути

Слуховые проводящие пути – это совокупность нервных волокон, проводящих нервные импульсы от улитки к слуховым центрам коры головного мозга, в результате чего возникает слуховое ощущение. Слуховые центры расположены в височных долях головного мозга. Время, потраченное на прохождение слухового сигнала от внешнего уха к слуховым центрам мозга, составляет около 10 миллисекунд.

Как устроено ухо человека (рисунок предоставлен фирмой Siemens)

Восприятие звука

Ухо последовательно преобразует звуки в механические колебания барабанной перепонки и слуховых косточек, затем в колебания жидкости в улитке и, наконец, в электрические импульсы, которые по проводящим путям центральной слуховой системы передаются в височные доли мозга для распознавания и обработки.
Мозг и промежуточные узлы слуховых проводящих путей извлекают не только информацию о высоте и громкости звука, но и другие характеристики звука, например, интервал времени между моментами улавливания звука правым и левым ухом – на этом основана способность человека определять направление, по которому приходит звук. При этом мозг оценивает как информацию, полученную от каждого уха в отдельности, так и объединяет всю полученную информацию в единое ощущение.

В нашем мозгу хранятся «шаблоны» окружающих нас звуков – знакомых голосов, музыки, опасных звуков и т.д. Это помогает мозгу в процессе обработки информации о звуке быстрее отличить знакомые звуки от незнакомых. При снижении слуха мозг начинает получать искаженную информацию (звуки становятся более тихими), что приводит к ошибкам в интерпретации звуков. С другой стороны, нарушения в работе мозга в результате старения, травмы головы или неврологических болезней и расстройств могут сопровождаться симптомами, похожими на симптомы снижения слуха, например, невнимательность, отрешенность от окружения, неадекватная реакция. Для того чтобы правильно слышать и понимать звуки, необходима согласованная работа слухового анализатора и мозга. Таким образом, без преувеличения можно сказать, что человек слышит не ушами, а мозгом!

Прежде чем перейти к ознакомлению с устройством радиоприемников, усилителей и других приборов, применяемых при радиовещании и радиосвязи, необходимо уяснить, что такое звук, как он возникает и распространяется, как устроены и работают микрофоны, познакомиться с устройством и работой громкоговорителей.

Звуковые колебания и волны. Если ударить по струне какого-либо музыкального инструмента (например, гитары, балалайки), то она начнет колебаться, т. е. совершать движения то в одну, то в другую сторону от своего начального положения (положения покоя). Такие механические колебания, вызывающие ощущение звука, называются звуковыми.

Наибольшее расстояние, на которое струна отклоняется в процессе колебаний от своего положения покоя, носит название амплитуды колебаний.

Передача звука от колеблющейся струны до нашего уха происходит следующим образом. В то время, когда средняя часть струны перемещается в сторону, где мы находимся, она «теснит» «находящиеся около нее с этой стороны частицы воздуха и этим создает «сгущение» этих частиц, т. е. около струны возникает область повышенного воздушного давления. Это увеличенное в некотором объеме воздуха давление передается соседним его слоям; в результате область «сгущенного» воздуха распространяется в окружающем пространстве. В следующий момент времени, когда средняя часть струны перемещается в обратную сторону, около нее возникает некоторое «разрежение» воздуха (область пониженного давления), которое распространяется вслед за областью «сгущенного» воздуха.

За «разрежением» воздуха следует опять «сгущение» (так как средняя часть струны опять будет двигаться в нашу сторону) и т. д. Таким образом, при каждом колебании (движении вперед и назад) струны в воздухе возникнут область повышенного давления и область пониженного давления, которые удаляются от струны.

Подобным же образом звуковые волны создаются при работе громкоговорителя.

Звуковые волны несут в себе энергию, полученную от колеблющейся струны или диффузора (бумажного конуса) громкоговорителя, и распространяются в воздухе со скоростью около 340 м/сек. Когда звуковые волны достигают уха, они приводят в колебание его барабанную перепонку. В тот момент, когда уха достигает область «сгущения» звуковой волны, барабанная перепонка несколько прогибается внутрь. Когда же до нее доходит область «разрежения» звуковой волны, барабанная перепонка выгибается несколько наружу. Так как сгущения и разрежения в звуковых волнах следуют все время друг за другом, то и барабанная перепонка то прогибается внутрь, то выгибается наружу, т. е. совершает колебания. Эти колебания передаются через сложную систему среднего и внутреннего уха по слуховому нерву в мозг, и в результате мы ощущаем звук.

Чем больше амплитуда колебаний струны и ближе к ней находится ухо, тем более громким воспринимается звук.

Динамический диапазон. При очень больших давлениях на барабанную перепонку, т. е. при очень громких звуках (например, при пушечном выстреле), ощущается боль в ушах. На средних звуковых частотах (см. ниже) болевое ощущение возникает, когда звуковое давление достигает величины примерно 1 г/см2, или 1 000 бар *. Увеличение ощущения громкости при дальнейшем усилении звукового давления уже не чувствуется.

*Бар — единица, применяемая для измерения величины звукового давления.

Очень слабое звуковое давление на барабанную перепонку не вызывает ощущения звука. Наименьшее звуковое давление, ‘при котором наше ухо начинает слышать, называется порогом чувствительности уха. На средних частотах (см. ниже) порог чувствительности уха составляет примерно 0,0002 бара.

Таким образом, область нормального ощущения звука лежит между двумя границами: нижней — порогом чувствительности и верхней, при которой возникает болевое ощущение в ушах. Эта область носит название динамического диапазона слуха.

Отметим, что увеличение звукового давления не дает пропорционального увеличения громкости звука. Ощущение громкости возрастает гораздо медленнее, чем звуковое давление.

Децибелы. В пределах динамического диапазона ухо может почувствовать увеличение «или уменьшение громкости простого однотонного звука (при слушании его в полной тишине), если звуковое давление на средних частотах соответственно увеличивается или уменьшается примерно на 12%, т. е. в 1,12 раза. Исходя из этого, весь динамический диапазон слуха разбит на 120 уровней громкости, подобно тому, как шкала термометра между точками таяния льда и кипения воды разделена на 100 градусов. Уровни громкости по этой шкале измеряются в особых единицах— децибелах (сокращенно пишут дб).

В любой части этой шкалы изменение уровня громкости на 1 дб соответствует изменению звукового давления в 1,12 раза. Нуль децибел («нулевой» уровень громкости) соответствует порогу чувствительности уха, т. е. звуковому давлению 0,0002 бара. При уровне свыше 120 дб возникает болевое ощущение в ушах.

Для примера укажем, что при тихом разговоре на расстояни 1 м от говорящего получается уровень громкости около 40—50 дб, что соответствует эффективному звуковому давлению 0,02—0,06 бара; наибольший уровень громкости звучания симфонического оркестра составляет 90— 95 дб (звуковое давление 7—12 бар).

При пользовании радиоприемниками радиослушатели, применяясь к размерам своих комнат, звучание громкоговорителя регулируют так, что при самых громких звуках на расстоянии 1 м от громкоговорителя получается уровень громкости 75—85 дб (соответственно звуковые давления примерно 1—3,5 бара). В условиях сельских местностей вполне достаточно иметь максимальный уровень громкости звучания радиопередачи не свыше 80 дб (звуковое давление 2 бара).
Шкалой децибел в радиотехнике широко пользуются также для сравнения уровней громкости. Чтобы узнать, во сколько раз одно звуковое давление больше другого, когда известна разница между соответствующими им уровнями громкости в децибелах, нужно число 1,12 умножить само на себя столько раз, сколько мы имеем децибел. Так, изменение уровня громкости на 2 (56 соответствует изменению звукового давления в 1,12 . 1,12, т. е. примерно в 1,25 раза; изменение уровня на 3 дб имеет место при изменении звукового давления в 1,12- 1,12 . 1,12, т. е. приблизительно в 1,4 раза. Подобным же образом можно определить, что 6 дб соответствуют изменению звукового давления примерно в 2 раза, 10 дб—приблизительно <в 3 раза, 20 дб — в 10 раз, 40 дб — в 100 раз и т. д.

Период и частота колебаний. Звуковые колебания характеризуются не только амплитудой, но также периодом и частотой. Периодом колебания называется время, в течение которого струна (или любое другое тело, создающее звук, например диффузор громкоговорителя) перемещается из одного крайнего положения в другое и обратно, т. е. совершает одно полное колебание.

Частотой звуковых колебаний называется число колебаний звучащего тела, совершаемых в течение 1 сек. Она измеряется в герцах (сокращенно пишут гц).

Если например, за 1 сек. (происходит 440 периодов колебаний струны (эта частота соответствует музыкальной ноте ля), то говорят, что она колеблется с частотой 440 гц. Частота и период колебаний являются величинами, обратными друг другу, например при частоте колебаний 440 гц период колебаний равен 1/440 сек.; если период колебания равен 1/1 000 сек., то частота этих колебаний 1000 гц.

Полоса звуковых частот. От частоты колебаний зависит высота звука или тона. Чем больше частота колебаний, тем выше звук (тон), а чем меньше частота колебаний, тем он ниже. Самый низкий звук, который может услышать человек, имеет частоту около 20 гц, а самый высокий—около 16 000—20 000 гц. В этих пределах или, как говорят, в этой полосе частот находятся создаваемые человеческими голосами и музыкальными инструментами звуковые колебания.

Заметим, что речь и музыка, а также разного рода шумы представляют собой звуковые колебания с очень сложней комбинацией различных частот (тонов различной высоты), непрерывно изменяющейся в процессе разговора или музыкального исполнения.

Гармоники. Звук, воспринимаемый ухом как тон одной определенной высоты (например, звук струны музыкального инструмента, свисток паровоза), на самом деле состоит из многих разных тонов, частоты которых относятся друг к другу как целые числа (один -к двум, один к трем и т. д.). Так, например, тон с частотой 440 гц (нота ля) одновременно сопровождается дополнительными тонами с частотами 440 . 2 = 880 гц, 440 -3=1 320 гц и т. д. Эти дополнительные частоты называются гармониками (или обертонами). Число показывающее, во сколько- раз частота данной гармоники больше основной частоты называется номером гармоники. Например, для основной частоты 440 гц частота 880 гц будет второй гармоникой, частота 1 320 гц — третьей и т. д. Гармоники всегда звучат слабее основного тона.

Наличием гармоник и соотношением амплитуд различных гармоник обусловливается тембр звука, т. е. его «окраска», отличающая данный звук от другого звука с той же основной частотой. Так, если наиболее сильной будет третья гармоника, звук приобретает один тембр. Если же наиболее сильной будет какая-либо другая гармоника, звук будет иметь другой тембр. Изменение силы звучания различных гармоник приводит к изменению или искажению тембра звука.

В. Н. ДОГАДИН и Р. М. МАЛИНИН
КНИГА СЕЛЬСКОГО РАДИОЛЮБИТЕЛЯ