Турбины с двумя отопительными отборами пара.

Может быть предложена следущая классификация паровых турбин:
А. В зависимости от характера теплового процесса паротурбинной установки.
1.Турбины конденсационные
а). турбины конденсационные без отборов пара
б). турбины конденсационные с промежуточными отборами пара
1.с нерегулируемыми отборами
2.с регулируемыми отборами
3.как с регулируемыми, так и нерегулируемыми отборами
в). турбины с промежуточным подводом пара
г). турбины мятого пара
2.Турбины с повышенным давлением на выхлопе
а). турбины с ухудшенным вакуумом
б). турбины с противодавлением
в). турбины предвключенные
Б. В зависимости от давления пара, поступающего в турбину: низкого, среднего, высокого и сверхкритического.
Турбины конденсационные без отборов пара
В этих турбинах всё количество подводимого свежего пэра, пройдя турбину и расширившись в ней до давления, меньшего, чем атмосферное (обычно 0,0035 – 0,005 МПа), направляется в кон-денсатор, где тепло отработавшего пара отдается охлаждающей воде и полезно не используется.
Турбины конденсационные с нерегулируемыми отборами
Нерегулируемые отборы пара, называемые также регенеративными, предназначены для по-догрева питательной воды, поступающей затем в парогенераторы. Количество регенеративных отборов зависит от начальных параметров пара в турбоустановке и составляет от 5 до 8 (рис.10). Свое название (нерегулируемые) они получили от того, что давление пара в них не остается постоянным, а изменяется самопроизвольно, в зависимости от расхода пара на турбоагрегат.
Турбины с регулируемыми отборами
Регулируемыми называются отборы, в которых давление отбираемого пара на всех режимах работы турбоагрегата автоматически поддерживается постоянным или же регулируется в заданных пределах с тем, чтобы потребитель получал пар определенного качества. Существует два вида тепловых потребителей: промышленные, где требуется пар с давлением до 1,3  1,5 МПа (производственный отбор) и отопительные, с потребным давлением 0,05  0,25 МПа (теплофикационный отбор) (Рис.11а). Если требуется пар как производственного, так и отопительного назначения, то в одной турбине могут быть осуществлены два регулируемых отбора: промышленный и теплофикационный (рис11б).
Турбины с регулируемыми и нерегулируемыми отборами
В таких турбинах предусмотрены как регенеративные, так и регулируемые. Отборы (рис.12, а). и б).). Как правило, из камеры регулируемого отбора часть пара направляется на подогрев питательной воды, а остальное количество (по потребности) – тепловым потребителям.

Турбины с промежуточным подводом пара (турбины двух давлений)
В этих турбинах в промежуточную ступень подводится пар, имеющий достаточный потенциал (давление), отработавший где-либо в технологических процессах, т.е., пар с производства, который по каким-то причинам не может быть рационально использован на самом производстве (рис.13).
Турбины мятого пара
Эти турбины применяются для использования пара низкого давления, отходящего с производства после технологических процессов, который по каким-либо причинам не может быть использован для отопительных или технологических нужд. Давление такого пара обычно несколько выше атмосферного, и он направляется в специальную конденсационную турбину, называемую турбиной мятого пара.
Турбины с ухудшенным вакуумом
Турбины с ухудшенным вакуумом имеют давление на выхлопе ниже атмосферного, но в 15 – 20 раз выше, чем обычные конденсационные, т.е., 0,05 -0,09 МПа. Отработавший пар, соответст-венно, имеет значительную температуру – до 90 °С. Вместо конденсатора здесь ставится бойлер, через который прокачивается сетевая вода, используемая далее для отопительных, бытовых или агрономических целей.
Турбины с противодавлением
У этих турбин отсутствует конденсатор. Отработавший пар, имеющий давление выше атмосферного, поступает в специальный сборный коллектор, откуда направляется к тепловым потребителям, отопительным или производственным.
Давление на выхлопе (и в коллекторе) поддерживается в соответствии с требованиями объекта теплоснабжения, (рис.14).
Предвключенные турбины
Предвключенными называются турбины с противодавлением, отработавший пар которых направляется далее в обычные конденсационные турбины для глубокого расширения. В таком варианте предусматриваются два электрогенератора (рис.15), т.е., турбоагрегат является единым по паровому потоку, но с раздельной выработкой электроэнергии.

72912 Класс 14 с, 17 СССР ОПИСАНИЕ ИЗО К АВТОРСКОМУ СВИ РЕТЕН ТЕЛ ЬСТВ Б, П. Тар ОМ ЕМЬ АРА РЕГУЛ И ВОДОМ ПАРОВАЯ ТУРБИН ИЛИЗаявлено 26 апреля 1945 г. за338319 в Комитет по изобретениям и открытиям при Совете Министров СССИзобретение направлено на устранение снижения к.п,д. турбины при изменениях давления отбора или подвода пара в широких пределах, Для этой цели отбор или подвод пара производится из нескольких выходов (входов) со специальным переключением одного выхода (входа) на другой.На чертеже изображена схема предлагаемой паровой турбины, у которой отбор состоит не из одного, а из нескольких, например 2, 3, 4, 5 и т. д., выходов за последовательно размещенными ступенями турбины, По мере снижения давления пара, необходимого потребителям, отбор переключается автоматически или вручную с выхода 2 на выходы 3, 4, 5 и т, д а при повышении этого давления производятся аналогичные переключения в обратном направлении. В результате таких переключений увеличивается или уменьшается число ступеней в предшествующей отбору части турбины и соответственно уменьшается или увеличивается их число в последующей части, благодаря чему, даже при весьма значительных изменениях давления регулируемого отбора, к.п.д, турбины не снижается, так как ступени ее всегда работают с устойчивыми, мало отклоняющимися от нормы теплоперепадами.Предлагается также ограничиться только одной регулирующей ступенью 1 и располагать ее в следующей за отоором или подводом пара части турбины. В этом случае отбор будет производиться не только из выхода 5, когда регулирующая ступень, как обычно, находится сразу за местом отбора, но при некоторых режимах также из выхода 4, 3 или 2, т, е. и в таких необычных условиях, когда последующая регулирующая ступень находится не в начале, а в середине следующей за отбором части турбины. В этих условиях регулируемость отбора также будет обеспечена.В турбине с несколькими регулируемьгми отборами могут быть выполнены переключаемыми как все отооры, так и некоторые из них и притом любые, Все сказанное выше применимо и к турбинам с регулируемыми промежуточными подводами пара, каждый из которых можно сделать переключаемым, применяя схему конструкции, анало72912гичную вышеописанной, Наряду со скачкообразными переключениями регулируемого отбора (подвода) с одного выхода на другой не исклю. чается возможность и более тонких изменений давления его в пределах работы на каждый из выходов путем обычной перестановки регулятора давления. Благодаря тому, что давления в соседних выходах различаются незначительно и отношения их близки к единице, при таких перестановках эффективность работы турбины почти не меняется.Осуществимо расширение границ изменения давления переключаемого регулируемого отбора (подвода) пара путем переключения его на соседние регулируемые отборы (подводы) или на выхлопной патрубок, причем давление в этих, последних также можно изменять перестановкой регулятора давления, а если они выполнены переключаемыми, то и путем переключений с одного выхода на другой,Предмет изобретения1. Паровая турбина с регулируемым отбором или подводом пара, отл и ч а ю щ а я с я тем, что, с целью устранения снижения к,п.д. турбины при изменениях давления отбора или подвода пара в широких пределах, отбор или подвод пара выполнен состоящим из нескольких выходов (входов) и переключается с одного выхода (входа) на другой таким образом, что при любом режиме отбор или подвод подключается к такому выходу (входу), при работе от которого теплоперепады предшествующих отбору или подводу пара и следующих за ним ступеней турбины остаются близкими к норме.2, Форма выполнения турбины по п. 1, о тл и ч а ю ща я с я тем, что в следующей за отбором или подводом пара части турбины располагается только одна регулирующая ступень, размещенная за последним выходом (входом) переключаемого отбора или подбора пара.Подп. к печ. 30/1 - 62 г, Формат бум. 70 Х 108/иЗак. 150/11 Тираж 200ЦБТИ при Комитете по делам изобретений и открытийпри Совете Министров СССРМосква, Центр, М, Черкасский пер., д. 2/6 Объем 0,26 изд. л. Цена 5 коп.

Заявка

Таранов Б. П

МПК / Метки

Код ссылки

Паровая турбина с регулируемым отбором или подводом пара

Похожие патенты

Познаку воздействия от регулятора 22к электроприводу 19 последний перемещает тягу и связанный с ней золотник 14 вверх, соединяя полость 8 подпоршнем 4 через трубопровод 9, окна10 и 11 со сливным трубопроводом 13,При необходимости быстрого закрытия клапана 1 подается управляющеевоздействие на электромагнит 31,Перемещение якоря электромагнита исвязанного с ним рычага 30 приводитк перемещению упора 28 и освобождению тарели 24 от усилия пружины 29,при этом воздействием усилий от давления рабочей жидкости в полости 8под поршнем 4 на выключающую тарель24 последняя перемещается, открываяслив рабочей жидкости иэ полости 8под поршнем 4. В результате под действием усилия пружины 3 поршень 4,шток 5, траверса 6 перемещаются вниз,закрывая...

И экономичностны. Лля этого измеряют величину расходапара к потребителю и изменение заданиярегулятору ведут при отклонении этой величины от заданного значения.Потребитель производственного парануждается, как правило, в стабилизациивеличины давления поступающего к немупара. Давление пара в линии (камере) отбора превышает эту величину на потеродавления в соединительных трубопроводах.Поэтому при изменении потери давления(из-за изменения расхода) следует менятьдавление, поддерживаемое регулятором навыходе из турбины.На чертеже приведена схема реализацииспособа,Паровая турбина имеет часть 1 высокого давления и часть 2 низкого давления,парораспределитсльные органы 8 и 4, управляемые регулятором 5 давления, линию6 отбора и...

Органов 12 и 13, установленных на трубопроводах подвода пара к остальным потребителям.Положение задатчика регулятора 5 давления определяется величиной расхода пара к потребителю 8 наибольшего расхода пара. Например, при увеличении расхода пара к732558 Формула изобретения Составитель А.Техред К. ШуфТираж 583И Государственногделам изобретениМосква, Ж - 35, РП Патент г. Ужг лашникч овКорректор Г ПодписноеСССР тий б., д. 4/5 Проектная,Редактор М. ВасильеваЗаказ691/25 Назаро ЦНИИП по 113035,илиал ППо комитет й и откраушская н о род, ул. потребителю 8 наибольшего расхода пара положение задатчика регулятора 5 давления изменится в направлении прибавить и регулятор 5 давления переместит парораспределительные органы 3 и 4 турбины таким...

В этой записи вы можете найти:

  • описание турбины ПТ-60-130;
  • схему ТЭЦ на базе этой турбины (формат MS Visio);
  • диаграммы режимов турбины ПТ-60-130 (режимы ПТ, Т и П).

Краткое описание и характеристики турбоустановки
ПТ-60-130/13

Паровая турбина ПТ-60/75-130/13 с конденсационной установкой и двумя регулируемыми отборами пара, представляет собой двухцилиндровый одновальный агрегат.

  • Номинальная мощность турбины 60000 кВт.
  • Число оборотов в минуту 3000.
  • Давление свежего пара перед стопорным клапаном
    12,75 (130) МПа (кгс/см 2).
  • Температура свежего пара перед стопорным клапаном 565 °С.
  • Давление в конденсаторе 0,0034 МПа.
  • Максимальный расход пара через турбину 107,5 (387) кг/с (т/ч).
  • Максимальный пропуск пара в конденсатор 44,4 (160) кг/с (т/ч).
  • Давление пара регулируемого промышленного отбора 0,686-1,666 (7-17) МПа (кгс/см 2).

Примечание : при работе с давлением промышленного отбора 0,686-0,784 (7-8) МПа (кгс/см 2) расход свежего пара на турбину снижается до 77,78-83,33 (280-300) кг/с (т/ч).

  • Давление пара регулируемого теплофикационного отбора 0,0294-0,147 МПа.
  • Расход охлаждающей воды 0,022 (8000) кг/с (м 3 /час).
  • Максимальная величина производственного отбора при теплофикационном отборе, равном нулю, составляет 69,44 (250) кг/с (т/ч). Максимальная величина теплофикационного отбора пара, когда величина производственного отбора равна нулю, составляет 44,44 (60) кг/с (т/ч).
  • Минимальный пропуск пара в часть низкого давления (за 27 ступенью), при закрытой поворотной диафрагме, с давлением в камере отбора 0,0196 (0,2) МПа (кгс/см 2), составляет 2,78 (10) кг/с (т/ч).

Турбина имеет

  • регулятор скорости, который поддерживает число оборотов турбины с неравномерностью 4%;
  • регулятор безопасности с двумя центробежными выключателями, которые срабатывают при достижении числа оборотов на 11-12% сверх номинальных (3000об/мин);
  • регулятор давления 0,686-1,666 (7-17) МПа (кгс/см);
  • регулятор давления от 0,02943 до 0,147 МПа;
  • ограничитель мощности;
  • реле для отключения турбины при аксиальном сдвиге ротора высокого давления и ротора низкого давления;
  • автоматическое устройство для включения электромасляного насоса смазки подшипников турбины при снижении давления масла;
  • регулятор уровня в конденсаторе, который также осуществляет рециркуляцию конденсата.

Цилиндр высокого давления (ЦВД) имеет одновенечную регулирующую ступень и 16 ступеней давления. Цилиндр низкого давления (ЦНД) состоит из двух частей: часть среднего давления (ЧСД) имеет регулирующую ступень и 8 ступеней давления, часть низкого давления (ЧНД) имеет регулирующую ступень и три ступени давления. Ротор высокого давления цельнокованый, а ротор низкого давления состоит из девяти цельнокованых дисков и четырех насадных.


Свежий пар от котла подается к отдельно стоящей паровой коробке, в которой расположен автоматический стопорный клапан (АСК) с условным диаметром d у 280 мм, откуда по перепускным трубам поступает к регулирующим клапанам ЦВД. ЦВД имеет сопловое парораспределение. Регулирующие клапаны (РК) с условным диаметром d у 125 мм расположены в паровых коробках, которые приварены к корпусам цилиндров. Два клапана установлены на верхней части цилиндра и два клапана по бокам в нижней части цилиндра.

Отработав в ЦВД, часть пара поступает в регулируемый производственный отбор, остальная часть направляется в ЦНД. Давление в камере производственного отбора поддерживается регулирующими клапанами ЦНД. Все диски ротора высокого давления откованы заодно с валом. По перепускным трубам пар из ЦВД поступает к паровым коробкам регулирующих клапанов ЦНД. Передняя часть ЦНД выполнена из литой углеродистой стали. Выхлопная часть ЦНД сварная. Ротор высокого давления (РВД) и ротор низкого давления (РНД) гибкие. РВД цельнокованый, на РНД первые 9 дисков откованы заодно с валом, 4 последние диски насадные. РВД и РНД соединены между собой гибкой пружинной муфтой. Ротор ЦНД и генератора соединены полугибкой муфтой.

Турбина имеет клапанное регулирование. Регулирование части высокого давления состоит из 4-х регулирующих клапанов, расположенных в паровых коробах передней части ЦВД, подающих пар к сегментам сопел и 5-го перегрузочного клапана, перепускающего пар из камеры регулирующего колеса в камеру за 4-ой ступенью. Регулирование промышленного отбора осуществляется 4-мя регулирующими клапанами, расположенными в передней части цилиндра низкого давления. Регулирование теплофикационного отбора осуществляется поворотной диафрагмой. Перестановка регулирующих клапанов впуска свежего пара, регулирующих клапанов ЦНД и поворотной диафрагмы перепуска пара производится поршневыми сервомоторами, золотниками которых управляют регуляторы скорости и давления отборов, включенные по принципу связанного регулирования.

Регулятор скорости снабжен механизмом управления, служащим для подрегулировки и используется для открытия автоматического затвора свежего пара, изменения числа оборотов турбины при холостом ходе во время синхронизации генератора, для поддержания заданной нагрузки генератора или нормальной частоты при параллельной работе генератора и поддержания частоты при одиночной работе генератора. Механизм управления может приводиться или от руки или дистанционно. Область изменения числа оборотов такова, что на холостом ходу возможно испытание регуляторов безопасности, настроенных на срабатывание при 10-12% от номинального числа оборотов. Фикс-пункт турбины расположен на задней фундаментной раме ЦНД, расширение турбины происходит в сторону переднего подшипника. Концевые и диафрагменные уплотнения ЦВД и ЦНД лабиринтового типа. Рядом стоящие обоймы концевых уплотнений, заключенных в корпусе цилиндра, образуют камеру отсоса.

Турбина снабжена валоповоротным устройством (ВПУ), вращающим ротор с частотой 3,4 об/мин. ВПУ отключается автоматически при повышении частоты вращения ротора более 3,4 об/мин. ВПУ может быть переведено на периодическое проворачивание ротора на 180° с помощью специального устройства. Турбина допускает возможность параллельной работы по обоим регулируемым отборам с аналогичной турбиной (по параметрам отборов) при условии:

  • паровой плотности стопорного клапана, регулирующих клапанов ЦВД и ЧСД и поворотной диафграмы отбора;
  • паровой плотности обратных клапанов на линиях нерегулируемых отборов пара;
  • регулярной проверки плотности органов парораспределения и обратных клапанов, а также надежного их закрытия.

Параллельная работа нерегулируемых отборов не допускается. Для сокращения времени прогрева и улучшения условий пусков предусмотрены паровой обогрев фланцев и шпилек.

Для обеспечения правильного режима работы и дистанционного управления системой дренажей при пусках и остановах турбины, предусмотрено групповое дренирование через расширитель дренажей в конденсатор. Корпусы турбины, корпус АСК и паропроводы покрываются тепловой изоляцией. Температура наружной поверхности изоляции не должна превышать 45 °С при работе турбины на номинальных параметрах и температуре охлаждающего воздуха 25 °С. ЦВД и передняя часть ЦНД закрываются тонкой металлической обшивкой.

Тепловая схема турбины ПТ-60-130

Хочу обратить ваше внимание, что схема была составлены в учебных целях и содержат неточности по сравнению с реальными схемами электростанций. Главной задачей этой схемы является показать принцип работы и основные потоки электростанции. Впрочем, вы можете дополнить ее по своему желанию и приблизить к реальности.

Паровая турбина — это машина, предназначенная для преобразования тепловой энергии пара в механическую энергию вращения.

В , как следует из названия, работу совершает нагретый пар. Пар в турбину поступает из или котла-утилизатора. Температура, с которой приходит в турбину пар, может быть разной. Но в основном, температура пара в районе 500-570 градусов Цельсия. Давление, также, разнообразное. Самое распространённое, это — 90 ата, 130 ата и 240 ата.

По типу паровые турбины делятся на: конденсационные, теплофикационные, теплофикационные с отбором пара на производство, противодавленческие.

В общем можно сказать, что тип турбины зависит от того, сколько и полностью ли пар совершает работу в турбине и куда он ещё идёт «на сторону».

Конденсационные турбины

Вероятно, этот тип турбин самый распространённый (маркировка — К). В комплекте с самой такой турбинной обязательно есть ещё устройство для сбора отработавшего пара — конденсатор. Весь отработавший пар в такой турбине поступает в конденсатор.

Конденсационные паровые турбины предназначены для выработки электричества. Т.е. такие турбины ставят на . На ставят, в основном, другого типа турбины. Весь пар с котла поступивший в такую турбину совершает работу для получения электроэнергии. Тепловую энергию с таких турбин не получают, за редкими исключениями.

В России такие турбины в советское время производил завод ЛМЗ — Ленинградский металлический завод. В настоящее время он переименован в ОАО «Силовые машины».

Теплофикационные турбины

Турбины типа — Т. Этот вид турбин устанавливают на ТЭЦ, т.е. там, где помимо выработки электричества, ещё нужно получать тепловую энергию — отопление и горячее водоснабжение.

У теплофикационных турбин существуют регулируемые теплофикационные отборы пара. Регулировка осуществляется поворотной диафрагмой. Пар с такого отбора поступает в сетевые подогреватели — теплообменники, где пар передаёт своё тепло сетевой воде.

Теплофикационные турбины, как правило, могут работать и в конденсационном режиме, например, в летнее время. В таком случае пар на сетевые подогреватели не поступает, а весь используется для выработки электричества.


Теплофикационные турбины в России производятся на УТЗ — Уральском турбинном заводе.

Теплофикационные турбины с промышленным отбором пара

Маркировка таких турбин — ПТ.

Промышленный отбор пара означает то, что часть пара с таких турбин уходит на какое-либо стороннее производство (завод, фабрику и т.д.). Пар может возвращаться обратно на электростанцию в виде конденсата, а может и полностью теряться.

Такие турбины в настоящее время практические не устанавливают. В советское время их устанавливали на ТЭЦ вблизи крупных промышленных предприятий — химических комбинатов, деревообрабатывающих заводах и т.д..

Противодавленческие турбины

Противодавленческие турбины имеют маркировку — Р. В составе таких турбин отсутствует конденсатор, а весь отработавший пар идёт с каким-либо небольшим давлением стороннему потребителю.

Этот тип турбин в настоящее время, как и турбины ПТ, не находит применение за редким исключением. После распада Советского Союза многие такие турбины «пылились» без дела, так как отсутствовал внешний потребитель отработавшего пара. Без потребителя пара невозможна и их эксплуатация, а значит и выработка электричества.

Паровая турбина Р-27-8,8/1,35 :

Но позже нашли оригинальное решение их модернизации. В пару к таким турбинам начали устанавливать небольшие турбины типа К (конденсационные), рассчитанные на работу с низким давлением пара. Т.е после того, как пар отработал в турбине Р, он не идёт стороннему потребителю, а поступает на вход дополнительно установленной турбины типа К, где завершает свою работу и конденсируется в конденсаторе.

Временное отключение регенеративных отборов пара—один из простых и эффективных способов быстрого получения дополнительной мощности . При этом пар, ранее поступавший в подогреватели, проходит в проточную часть последующих ступеней турбины, вырабатывая дополнительную мощность, что особо актуально для энергоблоков, работающих при скользящем начальном давлении, а также при необходимости использования регуляторов «до себя». Отключение пара регенеративных отборов помимо рассмотренного прямого увеличения мощности ведет к отсечению паровых объемов подогревателей и трубопроводов, инерция которых снижает скорость набора нагрузки при открытии регулирующих клапанов турбины.
Конечно, следует иметь в виду, что существуют определенные ограничения режимов, при которых допустимо отключение регенерации, обусловленные, в частности, надежностью работы лопаточного аппарата последней ступени и упорного подшипника. Для изыскания возможностей расширения диапазона режимов, допускающих отключение регенерации, ведутся многочисленные исследования. В частности, результаты работ ЦКТИ и Средазтехэнерго показывают возможность отключения ПВД при нагрузках, близких к номинальной.
Можно выделить два основных способа отключения регенеративных отборов. За рубежом нашли применение схемы, в которых питательную воду направляют в обвод подогревателей. Уменьшение теплообмена в подогревателе прекращает конденсацию пара и повышает давление, вследствие чего прекращается поступление пара в подогреватель и увеличивается мощность турбины. Такой способ отключения регенерации обладает значительной инерцией, обусловленной паровыми объемами, а также аккумуляцией теплоты в металле подогревателей и находящейся в них воде. При практической его проверке в опытах ЦКТИ на турбине ПТ-60-90/13 процесс изменения мощности начинался через 3 с после подачи команды и продолжался 30 с. Аналогичные результаты получены фирмой «Сименс» на конденсационном блоке 80 МВт.
Указанный способ отключения регенерации не устраняет вредного влияния паровых емкостей системы регенерации при открытии регулирующих клапанов турбины. Изменение температуры питательной воды происходит с большой скоростью (22 К/мин в опытах ЦКТИ), что ухудшает условия работы котельного экономайзера. Возможны также значительные скорости изменения температуры труб подогревателей, недопустимые по условиям прочности. t..
Отмеченные обстоятельства заставляют отдать предпочтение непосредственному прекращению подачи пара в подогреватели. Для его реализации могут быть использованы обратные клапаны регенеративных отборов . Практическая проверка этого способа была проведена ЦКТИ, Л ПИ и Средазтехэнерго на турбинах К-300-240, К-200-130, К-100-90 и ПТ-60-90/13. Проведению испытаний предшествовала работа по наладке автоматики обратных клапанов, что позволило повысить их быстродействие до 0,4— с. В программу испытаний входило исследование работы оборудования как на частичных нагрузках, так и в режимах, близких к номинальному. Регулирующие клапаны турбин поддерживались в неизменном положении ограничителями мощности. Опыты были повторены многократно.
При закрытии обратных клапанов для исследованных турбин мощность возрастала на 10— % (рис. 5.13). Продолжительность процесса набора мощности составляла соответственно 1 и 5 с для турбин К-100-90 и ПТ-60-90/13. Мощность турбины К-200-130 повышалась на 10—11 % за 8—10 с, в том числе на 3—4 % за первые 1—2 с. Аналогичные результаты дает отключение регенерации для турбины К-300-240 . Временное отключение регенерации, безусловно, не должно противопоставляться быстрому открытию регулирующих клапанов турбины. Напротив, наибольший эффект дает сочетание обоих способов.
При закрытии обратных клапанов снижение давления в подогревателях оказалось сравнительно небольшим. Это объясняется тем, что в существующей конструкции обратных клапанов усилия гидроприводов при больших положительных перепадах давлений на клапанах недостаточны для обеспечения плотного прилегания клапана к седлу. Поэтому клапаны по мере падения давления в подогревателе приоткрываются на некоторую величину. Это явление усиливается, особенно при больших нагрузках, вследствие повышения давления в камере отбора после закрытия обратных клапанов. На осциллограммах перемещения клапанов можно видеть, что после закрытия в первый момент времени
ДДПП — датчик давления промперегрева; ДМ — датчик вырабатываемой мощности; ПВД — подогреватель высокого давления; ПЗ — промежуточный золотник; ПП — промперегреватель; Р М — регулятор мощности; PC — регулятор скорости; С — сервомотор ЦВД; СО — сервомотор клапана регенеративного отбора; ЭГП — электрогидравлический преобразователь; £ — корректирующий импульс по положению клапанов регенеративных отборов клапаны приоткрываются на несколько миллиметров. Этим можно объяснить заниженное значение увеличения мощности при отключении регенерации по сравнению с ее возможным приростом согласно тепловому расчету. Изменение конструкции гидроприводов для обеспечения полного закрытия обратных клапанов или применение специальных отсечных клапанов может повысить величину и скорость набора мощности.
Наличие некоторого расхода пара в подогреватели, а также аккумуляция теплоты в металле трубок и корпусов подогревателей обусловили лишь незначительное изменение температуры питательной воды за ПВД и давления в деаэраторе при работе с отключенной регенерацией, вследствие чего не нарушается нормальный режим работы экономайзера и питательного насоса. гриль для шаурмы
Движение обратных клапанов в сторону открытия (см. рис. 2.7, 6) происходит с меньшей скоростью, чем в сторону закрытия, что обусловлено конструктивными особенностями системы управления и гидропривода обратных клапанов. Клапаны полностью открываются за 4—8 с. Давление в подогревателях при этом возрастает.
Проведенные испытания подтверждают возможность использования обратных клапанов регенеративных отборов для повышения приемистости блоков. Для практической реализации этого способа отключения регенеративных отборов необходима разработка специальной системы автоматического управления обратными клапанами, которая, обеспечивая повышение приемистости блока, сохранила бы защитные функции обратных клапанов. На рис. 5.14 представлена как возможный вариант предложенная ЦКТИ схема регулирования мощности, в которой импульс "ф противоаварийной автоматики энергосистемы действует на ЭГП системы управления клапанами ЧВД и на регулятор мощности, управляющий отборами пара на регенерацию.
Как правило, отключение регенеративных подогревателей с целью быстрого набора мощности необходимо на весьма короткое время, определяемое переходом парогенератора к новому режиму, после чего они снова будут включены. Обычно за столь короткий промежуток времени не возникает значительных температурных изменений в оборудовании блока.
Положительно оценивая возможность быстрого отключения подогревателей высокого давления как скрытый вращающийся резерв энергосистемы, следует вместе с тем иметь в виду, что все же оно сильно изменяет режимы как турбины, так и подогревателей. Поэтому не следует злоупотреблять этой возможностью повышения приемистости, используя ее только при возникновении действительно аварийных ситуаций в энергосистемах.