Функции лейкоцитов. Моноциты и макрофаги

Макрофаги - это что за существа? Или формирования? За что они отвечают в нашем организме? На эти, а также на ряд подобных вопросов и будут даны ответы в рамках статьи.

Общая информация

Мононуклеарные фагоциты (или же макрофаги) - это группа долгоживущих клеток, которые способны к фагоцитозу. Они имеют довольно много общих функций, которые роднят их с нейтрофилами. Также макрофаги - это активные участники сложных воспалительных и иммунных реакций, где они выступают в роли секреторных клеток. Как же они функционируют? Макрофаги подобно нейтрофилам покидают путём диапедеза сосудистое русло и начинают идти по своему пути - циркулировать в крови. Но направляются они в ткани. После этого и происходит трансформация моноциты → макрофаги. И уже в месте прибытия они будут выполнять свои специфические функции, которые зависят от анатомической локализации. Относится это к печени, лёгким, костному мозгу и селезёнке. В них они будут заниматься удалением вредных частиц и микроорганизмов из крови. В что же они могут «превратиться»? Купферовские и микроглиевские клетки, альвеолярные макрофаги, макрофаги селезёнки, лимфоузлов, костного мозга - вот во что они трансформируются.

Функционал

На макрофаги организма возложены две основные функции, которые и выполняются разными типами:

  1. Устранение корпускулярных антигенов. Этим занимаются так называемые «профессиональные» макрофаги.
  2. Поглощение, процессинг и представление антигена для Т-клеток. Эти задачи выполняют уже АПК. Такое сокращение используется из-за длинного названия субъектов микроуровня - антигенпрезентирующих клеток.

Когда из промоноцитов костного мозга образуются взрослые формации, то особенно много из них попадают (и задерживаются там) в лимфоциты. Макрофаги длительное время выполняют свой функционал благодаря тому, что это долгоживущие клетки, у которых хорошо развиты митохондрии и шероховатый эндоплазматический ретикулум.

Подробнее о задачах

Но наибольшее внимание всё же следует уделить борьбе с простейшими, вирусами и бактериями, которые существуют внутри хозяйских клеток. Реализовывается это благодаря наличию бактерицидных механизмов, которыми обладают макрофаги. Это приводит к тому, что они являются одним из самых мощных инструментов врожденного иммунитета. Но и это не всё. Они вместе в Т- и В-лимфоцитами принимают участие в формировании иммунного ответа. Кроме этого, нельзя не отметить роль макрофагов в заживлении ран, ликвидации клеток, что уже отжили своё, и при образовании атеросклеротических бляшек. Они буквально пожирают вредоносные элементы в нашем организме. Об этом даже говорит их название. Так, в переводе на русский язык «макрофаг» - это «большой пожиратель». И следует отметить, что эти клетки действительно довольно большие.

Какие же бывают виды макрофагов?

Поскольку рассматриваемые нами образования являются тканевыми фагоцитами, то в разных частях тела можно встретить различные их «модификации». Если рассматривать абсолютно все, это займёт очень много времени, поэтому внимание будет уделено наиболее весомым представителям, таким как:

  1. Альвеолярные макрофаги. Находятся в лёгких и занимаются очищением вдыхаемого воздуха от различных вредоносных и загрязняющих частиц.
  2. Купферовские клетки. Они расположены в печени. В основном занимаются уничтожением старых клеток крови.
  3. Гистоциты. Обитают в соединительных тканях, поэтому можно встретить по всему организму. Но их довольно часто называют «ненастоящими» макрофагами из-за того, что они занимаются образованием каркаса для большинства структур тела, а не непосредственно уничтожением различных вредных элементов.
  4. Живут в эпителии и под слизистыми оболочками.
  5. Селезеночные макрофаги. Находятся в синусоидных сосудах этого органа и занимаются вылавливанием и уничтожением отживших своё клеток крови. Не зря селезенку называют кладбищем погибших эритроцитов.
  6. Перитонеальные макрофаги. Обитают в брюшине.
  7. Макрофаги лимфатических узлов. Где они обитают, очевидно из названия.

Заключение

Сложен наш организм. Его населяет множество полезных клеток, которые облегчают нашу жизнь. Не являются исключениеми макрофаги. К сожалению, иногда их опыта не хватает для того, чтобы иммунная система работала необходимым образом. И тогда человек заболевает. Но важным преимуществом нашей иммунной системы является именно то, что она умеет приспосабливаться.

Добрый день, дорогие читатели!
В прошлый раз я рассказала вам об очень важной группе клеток крови – которые являются настоящими бойцами передовой линии иммунной защиты. Но они не единственные участники операций по захвату и уничтожению «вражеских агентов» в нашем организме. У них есть помощники. И сегодня я хочу продолжить свой рассказ и изучить функции лейкоцитов - агранулоцитов. К этой группе относятся и лимфоциты, в цитоплазме которых отсутствует зернистость.
Моноцит является самым крупным представителем лейкоцитов. Диаметр его клетки составляет 10 – 15 мкм, цитоплазма заполнена крупным ядром в виде фасоли. В крови их немного, всего 2 – 6 %. Но в костном мозге они образуются в большом количестве и созревают в тех же микроколониях, что и нейтрофилы. Но при выходе в кровь, их пути расходятся. Нейтрофилы, путешествуют по сосудам и всегда находятся в готовности №1. А моноциты быстро расселяются по органам и там превращаются в макрофаги. Половина из них уходит в печень, а остальные расселяются в селезенку, кишечник, легкие и т.д.

Макрофаги – это оседлые, окончательно созревшие. Как и нейтрофилы, они способны к фагоцитозу, но, кроме того, имеют свою сферу влияния и другие конкретные задачи. Под микроскопом макрофаг – весьма видная клетка с внушительными размерами до 40 – 50 мкм в диаметре. Это настоящая передвижная фабрика по синтезу специальных белков для собственных нужд и для соседних клеток. Оказывается, макрофаг в сутки может синтезировать и выделять до 80! различных химических соединений. Вы спросите: какие активные вещества выделяют макрофаги? Это зависит от того, где живут макрофаги и какие функции выполняют.

Функции лейкоцитов:

Начнем с костного мозга. Существует два вида макрофагов, участвующих в процессе обновления костной ткани – остеокласты и остеобласты. Остеокласты постоянно циркулируют по костной ткани, отыскивают старые клетки и уничтожают их, оставляя за собой свободное пространство для будущего костного мозга, а остеобласты формируют новую ткань. Эту работу макрофаги выполняют, синтезируя и выделяя специальные стимулирующие белки, ферменты и гормоны. Например, для разрушения кости они синтезируют коллагеназу и фосфатазу, а для выращивания эритроцитов - эритропоэтин.
Есть еще клетки – «кормилицы» и клетки – «санитары», которые обеспечивают быстрое размножение и нормальное созревание клеток крови в костном мозге. Гемопоэз в костях идет островками – в середине такой колонии располагается макрофаг, а вокруг теснятся красные клетки разного возраста. Выполняя функцию кормящей матери, макрофаг снабжает растущие клетки питанием – аминокислотами, углеводами, жирными кислотами.

Особую роль играют в печени. Там они называются купферовыми клетками. Активно работая в печени, макрофаги поглощают различные вредные вещества и частицы, поступающие из кишечника. Вместе с клетками печени они участвуют в обработке жирных кислот, холестерина и липидов. Таким образом, они неожиданно оказываются причастными к формированию холестериновых бляшек на стенках сосудов и возникновению атеросклероза.

Пока еще не совсем ясно, с чего начинается атеросклеротический процесс. Возможно, здесь срабатывает ошибочная реакция на «свои» липопротеиды в крови, и макрофаги, как бдительные иммунные клетки, приступают к их захвату. Получается, что прожорливость макрофагов имеет как положительные, так и отрицательные стороны. Захват и разрушение микробов – это, конечно, хорошо. А вот избыточное поглощение макрофагами жировых веществ – плохо и, вероятно, ведет к патологии, опасной для здоровья и жизни человека.

Но разделять, что хорошо, что плохо макрофагам тяжело, поэтому наша задача облегчить участь макрофагов и самим заботится о своем здоровье и здоровье печени: следить за питанием, сокращать употребление продуктов, содержащих большое количество жиров и холестерина и два раза в год проводить от шлаков и токсинов.

Теперь поговорим о макрофагах, работающих в легких.

Вдыхаемый воздух и кровь в легочных сосудах разделены тончайшей границей. Вы понимаете, насколько важно в данных условиях обеспечить стерильность воздушных путей! Правильно, здесь эту функцию выполняют тоже макрофаги, блуждающие по соединительной ткани легких.
Они всегда наполнены остатками погибших легочных клеток и микробов, вдыхаемых из окружающего воздуха. Макрофаги легких размножаются тут же в зоне своей деятельности, и их число резко возрастает при хронических заболеваниях дыхательных путей.

К сведению курящих! Пылевые частицы и смолистые вещества табачного дыма сильно раздражают верхние дыхательные пути, повреждают слизистые клетки бронхов и альвеол. Легочные макрофаги, конечно, захватывают и обезвреживают эти вредные химические продукты. У курильщиков резко увеличивается активность, число и даже размеры макрофагов. Но спустя 15 – 20 лет предел их надежности истощается. Нежные клеточные барьеры, разделяющие воздух и кровь, нарушаются, инфекция прорывается в глубину легочной ткани и начинается воспаление. Макрофаги уже не в состоянии полноценно работать в качестве микробных фильтров и уступают свое место гранулоцитам. Так, многолетнее курение приводит к хроническим бронхитам и уменьшению дыхательной поверхности легких. Чересчур активные макрофаги разъедают эластичные волокна легочной ткани, что ведет к затруднению дыхания и гипоксии.

Самое печальное, что работая на износ, макрофаги перестают выполнять очень важные функции – это способность бороться со злокачественными клетками. Поэтому хронический гепатит чреват развитием опухолей печени, а хроническая пневмония – раком легких.

Макрофаги селезенки.

В селезенке макрофаги выполняют функцию «убийц», уничтожая стареющие эритроциты. На оболочках эритроцитов обнажаются предательские белки, которые являются сигналом к ликвидации. Кстати сказать, уничтожение старых эритроцитов идет и в печени, и в самом костном мозге – всюду, где есть макрофаги. В селезенке этот процесс наиболее нагляден.

Таким образом, макрофаги являются великими тружениками и самыми главными санитарами нашего организма, выполняя при этом сразу несколько ключевых ролей:

  1. участие в фагоцитозе,
  2. сохранение и переработка важных питательных веществ для нужд организма,
  3. выделение нескольких десятков белков и других биологически активных веществ, регулирующий рост клеток крови и других тканей.

Ну вот, мы знаем функции лейкоцитов - моноцитов и макрофагов. А на лимфоциты опять не осталось времени. О них, самых маленьких защитниках нашего организма, мы поговорим в следующий раз.
А пока давайте оздоровляться и укреплять иммунитет, слушая исцеляющую музыку Моцарта - Симфония сердца:


Желаю вам крепкого здоровья и благополучия!

Авторы

Сарбаева Н.Н., Пономарева Ю.В., Милякова М.Н.

В соответствии с «М1/М2» парадигмой выделяют два подтипа активированных макрофагов – классически активированные (М1) и альтернативно активированные (М2), которые экспрессируют различные рецепторы, цитокины, хемокины, факторы роста и эффекторные молекулы. Однако данные последних лет указывают на то, что в ответ на изменение сигналов микроокружения, макрофаги могут проявлять уникальные свойства, не позволяющие отнести их ни к одному из этих подтипов.

Макрофаги играют главную роль в реакции организма на имплантируемый материал – катетеры, стенты, эндопротезы, дентальные имплантаты. Макрофаги фагоцитируют частицы износа поверхности суставных протезов, инициируют воспаление в зоне протезирования и остеолиз, управляют процессами образования фиброзной капсулы вокруг инородных тел. Представлен краткий обзор факторов, вызывающих миграцию, адгезию и активацию макрофагов, анализ их функциональных характеристик на различных поверхностях, включая биодеградирующие и не деградирующие материалы in vivo и in vitro.

Введение

Современную медицину в настоящее время невозможно представить без применения имплантируемых изделий, устанавливаемых в организм на различные сроки с целью восстановления анатомии и функции утраченных или пораженных патологическим процессом органов и тканей. Биосовместимость синтетических материалов или тканеинженерных конструкций является основной проблемой, влияющей на результаты таких имплантаций. Реакция на протезирующий материал развивается в следующей последовательности: альтерация тканей, инфильтрация клетками острого, затем хронического воспаления с формированием грануляционной ткани и фиброзной капсулы. Степень выраженности этих реакций определяет биосовместимость имплантируемого изделия. Макрофаги играют главную роль в реакции организма на устанавливаемый материал – катетеры, стенты, эндопротезы, дентальные имплантаты и др.

Морфология макрофагов

Макрофаги – это гетерогенная клеточная популяция. Макрофаг имеет неправильную, звездчатую, многоотростчатую форму, складки и микроворсинки на поверхности клеток, обилие эндоцитозных микровезикул, первичных и вторичных лизосом. Округлое или эллипсовидное ядро расположено центрально, гетерохроматин локализован под ядерной оболочной. Структурные особенности клетки во многом зависят от ее органной и тканевой принадлежности, а также от функционального статуса. Так, для клеток Купфера характерен гликокаликс, альвеолярные макрофаги содержат ламеллярные (сурфактантные) тельца, хорошо развитый комплекс Гольджи, шероховатый эндоплазматический ретикулум и множество митохондрий, в то время как в клетках микроглии митохондрии немногочисленны. В цитоплазме перитонеальных и альвеолярных макрофагов присутствует большое количество липидных телец, содержащих субстраты и ферменты генерации простагландинов . Адгезирующиеся и движущиеся макрофаги формируют короткоживущие, содержащие актин структуры – подосомы – в виде плотной центральной части с радиально отходящими от них микрофиламентами. Подосомы могут сливаться, формируя структуры более высокого порядка – розетки, которые эффективно разрушают белки подлежащего внеклеточного матрикса .

Функции макрофагов

Макрофаги фагоцитируют чужеродный материал и клеточно-тканевый детрит, стимулируют и регулируют иммунный ответ, индуцируют воспалительную реакцию, участвуют в репаративных процессах и обмене компонентов внеклеточного матрикса. Многообразие осуществляемых функций объясняет экспрессию этими клетками большого числа рецепторов, связанных с плазматической мембраной, внутриклеточных и секретируемых. Рецепторы врожденного иммунитета РRR (pattern-recognition receptors, образ-распознающие рецепторы) активируются широким спектром лигандов (исключение – CD163), обеспечивая узнавание высоко консервативных структур большинства микроорганизмов, так называемых PAMP (pathogen-associated molecular patterns, патоген-ассоциированные образы) и схожих с ними эндогенных молекулярных структур DAMP (damage-associated molecular patterns), образующихся в результате повреждения и гибели клеток, модификации и денатурации белковых структур внеклеточного матрикса. Большинство из них опосредует эндоцитоз и элиминацию потенциально опасных эндогенных и экзогеннных агентов, однако вместе с тем, многие из них выполняют сигнальные функции, регулируя синтез провоспалительных медиаторов, способствуя адгезии и миграции макрофагов (табл.) .

На плазматической мембране моноцитов/макрофагов экспрессируются также специализированные рецепторы, связывающие один или несколько близких по строению лигандов: Fc-фрагмент иммуноглобулина G, факторы роста, кортикостероиды, хемокины и цитокины, анафилотоксины и костимулирующие молекулы. Функции многих из этих рецепторов опосредованы не только связыванием лигандов, но и взаимодействием с другими рецепторами (C5aR-TLR, MARCO-TLR, FcγR-TLR), что обеспечивает тонкую регуляцию синтеза прои противовоспалительных медиаторов . Особенностью макрофагальной рецепторной системы является наличие рецепторов-ловушек провоспалительных цитокинов и хемокинов (Il-1R2 на М2а макрофагах; CCR2 и CCR5 на М2с макрофагах), активация которых блокирует внутриклеточную передачу соответствующего провоспалительного сигнала. Экспрессия клеточных рецепторов видо-, органо- и тканеспецифична и зависит от функционального статуса макрофагов. Детально изученные клеточные рецепторы макрофага приведены в таблице.

Миграция моноцитов/макрофагов

Тканевые макрофаги происходят преимущественно из моноцитов крови, которые мигрируют в ткани и дифференцируются в различные популяции. Миграция макрофагов направляется хемокинами: ССL2 CCL3, CCL4, CCL5, CCL7, CCL8, CCL13, ССL15, ССL19, CXCL10, CXCL12; факторами роста VEGF, PDGF, TGF-b; фрагментами системы комплемента; гистамином; белками гранул полиморфноядерных лейкоцитов (ПМЯЛ); фосфолипидами и их производными.

На начальных этапах воспалительного ответа ПМЯЛ организуют и модифицируют сеть хемокинов путем секреции CCL3, CCL4 и CCL19 и выброса преформированных в гранулы азуросидина, белка LL37, катепсина G, дефензинов (НNP 1-3) и протеиназы 3, которые обеспечивают адгезию моноцитов к эндотелию, тем самым проявляя свойства хемоаттрактантов. Кроме того, белки гранул ПМЯЛ индуцируют секрецию хемокинов и другими клетками: азуросидин стимулирует продукцию CCL3 макрофагами, а протеиназа-3 и HNP-1 вызывают синтез ССL2 эндотелием. Протеиназы ПМЯЛ способны активировать многие хемокины белковой природы и их рецепторы. Так, протеолиз ССL15 катепсином G многократно усиливает его аттрактивные свойства. Апоптозные нейтрофилы привлекают моноциты через сигналы, предположительно, опосредованные лизофосфатидилхолином .

Любое повреждение тканей приводит к аккумуляции макрофагов. В зоне травмы сосудов кровяной сгусток и тромбоциты выделяют TGF-β, PDGF, CXCL4, лейкотриен B4 и IL-1, обладающие выраженными хемоаттрактивными свойствами в отношении моноцитов/макрофагов . Поврежденные ткани являются источником так называемых аларминов, к которым относятся компоненты разрушенного внеклеточного матрикса, белки теплового шока, амфотерин, АТФ, мочевая кислота, IL-1a, IL-33, митохондриальная ДНК клеточного детрита и др. Они стимулируют оставшиеся жизнеспособными клетки поврежденных тканей и эндотелий кровеносных сосудов к синтезу хемокинов, некоторые из них являются прямыми факторами хемотаксиса . Инфицирование тканей приводит к появлению так называемых патогенассоциированных молекул: липополисахаридов, углеводов клеточной стенки и нуклеиновых кислот бактерий. Связывание их мембранными и внутриклеточными рецепторами макрофагов запускает процесс экспрессии генов хемокинов, обеспечивающих дополнительное рекрутирование фагоцитов .

Активация макрофагов

Макрофаги активируются под действием множества сигнальных молекул, вызывающих их дифференцировку в различные функциональные типы (рис. 1). Классически активированные макрофаги (М1 фенотип) стимулируются IFNg, а также IFNg совместно с LPS и TNF. Их основные функции – уничтожение патогенных микроорганизмов и индукция воспалительной реакции. Поляризация в М1 направлении сопровождается секрецией провоспалительных медиаторов. Они экспрессируют рецепторы к IL-1 – IL-1R1, TLR и костимулирующие молекулы, активация которых обеспечивает амплификацию воспалительного ответа. Наряду с провоспалительными цитокинами макрофаги секретируют и антивоспалительный цитокин – IL-10, при характерном высоком соотношении IL-12/IL-10 . Бактерицидные свойства М1 макрофагов определяются продукцией свободных радикалов азота и кислорода, генерируемых iNOS и НАДФН-оксидазным комплексом . Являясь эффекторными клетками в реакции организма на бактериальную инфекцию, они, в то же время, подавляют адаптивный иммунный ответ за счет торможения пролиферации стимулированных Т-клеток. Секретируемый М1 макрофагами IL-12 играет ключевую роль в Тх1 поляризации, а IL-1b и IL-23 направляют иммунный ответ по Тх17 пути. . Исследования последних лет показали, что М1 макрофаги помимо провоспалительных проявляют репаративные свойства: секретируют VEGF, стимулирующий ангиогенез и образование грануляционной ткани .

Альтернативная активация макрофагов (М2 фенотип) наблюдается при стимуляции их интерлейкинами, глюкокортикоидами, иммунными комплексами, агонистами TLR и др. Они мигрируют в зоны инвазии гельминтами, скапливаются в локусах фиброза, в заживающих ранах кожи и неопластических образованиях. М2 макрофаги способны к активной пролиферации in situ. Они проявляют большую по сравнению с М1 макрофагами способность к фагоцитозу и экспрессируют большее количество связанных с ним рецепторов: СD36 – рецептор скавенджер апоптозных клеток; CD206 – маннозный рeцептор; CD301 – рецептор остатков галактозы и N-ацетилглюкозамина; СD163 – рецептор к гемоглобин-гаптоглобиновому комплексу. Для макрофагов этого типа характерно низкое отношение IL-12/IL-10 .

Альтернативно активированные макрофаги подразделяют на подтипы: М2а, М2b и М2с. Примером М2а фенотипа макрофагов являются клетки, скапливающиеся вокруг личинок гельминтов и простейших, аллергены которых индуцируют иммунный Тх2 ответ, сопровождающийся продукцией IL-4 и IL-13 . Они не секретируют значительные количества провоспалительных цитокинов, синтезируют особый спектр хемокинов и мембранных рецепторов . Считается, что для них характерен синтез IL-10 , однако in vitro макрофаги не всегда продуцируют этот цитокин и могут проявлять высокую транскрипционную активность генов IL-12 и IL-6 . Важной характеристикой этой популяции является синтез антагониста рецептора IL-1 (IL-1ra), который, связываясь с IL-1, блокирует его провоспалительное действие .

М2а макрофаги подавляют воспалительную реакцию, блокируя формирование М1 популяции через цитокины рекрутированных ими Тх2-лимфоцитов, либо за счет вырабатываемого хемокина ССL17, который совместно с IL-10 ингибирует дифференцировку макрофагов в М1 направлении . Клетки М2а фенотипа считают типичными репаративными макрофагами. Синтезируемый ими хемокин CCL2 является хемоаттрактантом предшественников миофибробластов – фиброцитов , они секретируют факторы, обеспечивающие ремоделирование соединительной ткани .

Поляризация в направлении М2b осуществляется стимуляцией рецептора к Fcg вместе с агонистами ТLR и лигандами к рецептору IL-1. Функционально они близки к М1 макрофагам, продуцируют провоспалительные медиаторы и монооксид азота (NO), но вместе с тем для них характерен высокий уровень синтеза IL-10 и сниженная продукция IL-12 . М2b макрофаги усиливают продукцию антител. Синтезируемый ими хемокин ССL1 способствует поляризации лимфоцитов в Тх2 направлении . М2с макрофаги обладают супрессивными свойствами – тормозят активацию и пролиферацию СD4+-лимфоцитов, вызванную антигенной стимуляцией и способствуют элиминации активированных Т-клеток . In vitro М2с подтип получают стимуляцией мононуклеарных фагоцитов глюкокортикоидами, IL-10, TGF-β, простагландином Е2 и др. Они не обладают бактерицидной активностью, продуцируют незначительное количество цитокинов, секретируют факторы роста и некоторые хемокины . М2с макрофаги экспрессируют рецепторы фагоцитоза и многих провоспалительных хемокинов, которые, предположительно, служат не для возбуждения соответствующих сигналов, а являются ловушками провоспалительных медиаторов, блокируя их функции .

Характер активации макрофагов не является жестко детерминированным и стабильным. Показана возможность трансформации М1 фенотипа в М2 при изменении спектра стимулирующих цитокинов и вследствие эффероцитоза. После поглощения апоптозных клеток макрофаги резко снижают синтез и секрецию медиаторов воспаления ССL2, ССL3, CXCL1, CXCL 2, TNF-a, MG-CSF, IL-1b, IL-8 и многократно усиливают продукцию TGF-b . Обратная трансформация М2 фенотипа в М1 предполагается при развитии ожирения.

Многие авторы ставят под сомнение существование в организме двух четко различимых популяций макрофагов М1 и М2. Сочетание признаков классической и альтернативной активации характерно для макрофагов кожных ран человека. Так, наряду с типичными для M1 макрофагов цитокинами TNF-a и IL-12, они демонстрируют синтез маркеров М2 макрофагов: IL-10, СD206, СD163, CD36 и рецепторов к IL-4 . Отличный от М1/М2 тип макрофагов с выраженной фибринолитической активностью обнаружен в печени мышей на модели обратимого фиброза и в ткани печени человека при циррозе. В них экспрессируются гены аргиназы 1, маннозных рецепторов и IGF, они секретируют ММП-9, ММП-12, проявляют выраженную способность к пролиферации и фагоцитозу, но не синтезируют IL-10, IL-1ra, TGF-b . Особая популяция макрофагов формируется в селезенке мыши при инфицировании микобактериями. Они тормозят пролиферацию Т-лимфоцитов и секрецию ими как Тх1, так и Тх2 цитокинов, стимулируя поляризацию в Тх17. направлении. Супрессивные макрофаги обладают уникальным фенотипом – экспрессируют гены активные в М1 макрофагах – IL-12, IL-1b, IL-6, TNF-a, iNOS и одновременно гены CD163, IL-10, маннозных рецепторов и других маркеров М2 макрофагов .

Эти исследования наглядно показывают, что формирующиеся в естественных условиях популяции макрофагов значительно отличаются от получаемых in vitro М1 и М2 популяций. Воспринимая множество активирующих сигналов, макрофаг отвечает «по запросу», секретируя медиаторы адекватно изменению окружающей среды, поэтому в каждом конкретном случае формируется свой фенотип, иногда, возможно, даже уникальный.

Реакция макрофагов на чужеродный материал

Контакт макрофагов с чужеродным материалом, как в виде мелких частиц, так и в виде обширных поверхностей, приводит к их активации. Одной из серьезных проблем в травматологии и ортопедии, связанной с реакцией на инородное тело, является развитие нестабильности сустава после эндопротезирования, которая выявляется, по некоторым данным, у 25–60% больных в первые годы после выполненной операции и не имеет тенденции к снижению .

Поверхность ортопедических протезов изнашивается с образованием частиц, инфильтрирующих мягкие ткани. Химические свойства материала определяют возможность опсонизации частиц белками плазмы крови и тип поверхностных рецепторов, инициирующих фагоцитоз. Так, полиэтилен, активирующий комплемент, подвергается опсонизации и «узнается» рецептором к комплементу СR3, в то время как частицы титана поглощаются клеткой через опсонин-независимый рецептор MARCO. Фагоцитоз макрофагами частиц металла, синтетических полимеров, керамики, гидроксиапатита запускает процесс синтеза провоспалительных медиаторов и индуктора остеокластогенеза RANKL. Секретируемый макрофагами ССL3 вызывает миграцию остеокластов, а IL-1b, TNF-a, ССL5 и PGE2 стимулируют их дифференцировку и активацию. Остеокласты резорбируют кость в зоне протезирования, но новообразование костной ткани подавлено, поскольку корпускулярный материал ингибирует синтез коллагена, тормозит пролиферацию и дифференцировку остеобластов и индуцирует их апоптоз . Вызванный частицами износа воспалительный ответ считается основной причиной остеолиза.

Контакт тканей с материалом, который не может быть фагоцитирован, инициирует каскад событий, известный под названием реакции организма на инородное тело, или тканевой реакции. Она заключается в адсорбции белков плазмы, развитии воспалительного ответа, первоначально острого, впоследствии хронического, пролиферации миофибробластов и фибробластов и формировании фиброзной капсулы, отграничивающей инородное тело от окружающих тканей. Основными клетками персистирующего воспаления на границе материал/ткань являются макрофаги, его выраженность определяет степень фиброза в зоне контакта. Интерес к исследованию тканевой реакции связан в первую очередь с широким применением синтетических материалов в различных областях медицины .

Адсорбция белков плазмы крови является первой стадией взаимодействия имплантируемых материалов с тканями организма. Химический состав, свободная энергия, полярность поверхностных функциональных групп, степень гидрофильности поверхности определяют количество, состав и конформационные изменения в связываемых белках, являющихся матриксом для последующей адгезии клеток, в том числе макрофагов. Наиболее значимыми в этом плане являются фибриноген, IgG, белки системы комплемента, витронектин, фибронектин и альбумин.

Слой фибриногена быстро образуется на практически всех чужеродных материалах. На гидрофобных поверхностях фибриноген образует монослой из прочно связанного, частично денатурированного белка, эпитопы которого открыты для взаимодействия с клеточными рецепторами. На гидрофильных материалах фибриноген чаще осаждается в виде рыхлого мультислойного покрытия, причем наружные слои слабо или практически не подвергаются денатурации, оставляя сайты связывания недоступными для клеточных рецепторов макрофагов и тромбоцитов .

Многие синтетические полимеры обладают способностью к сорбции компонентов системы комплемента и ее активации с формированием С3-конвертазного комплекса. Генерируемые им фрагменты С3а, С5а являются хемоаттрактантами и активаторами фагоцитов, iC3b выполняет роль лиганда рецептора клеточной адгезии. Запуск каскада активации возможен как по классическому (опосредованному адсорбированными молекулами JgG), так и по альтернативному путям . Последний инициируется связыванием компонента С3 поверхностями, несущими функциональные группы, например – ОН-, вызывающими его гидролиз. Альтернативный путь может включаться также после классического пути или вместе с ним за счет работы С3-конвертазы классического пути, генерирующей фиксирующиеся на поверхностях фрагменты С3b – пускового фактора амплификационной петли. Однако сорбция и даже начавшийся гидролиз С3 не всегда приводят к возникновению амплификационного сигнала. Например, С3 сильно сорбируется поливинилпирролидоном, однако протеолиз его на этой поверхности слабо выражен. Слабо активируют комплемент фторированные поверхности, силикон и полистирен. Для клеточных реакций на чужеродных поверхностях значение имеет не только активация системы комплемента, но опосредованное ее фрагментами связывание других белков.

Роль альбумина заключается в его способности связывать белки системы комплемента . Oн не способствует адгезии макрофагов и, в отличие от фибриногена, не индуцирует синтез ими TNF-a . На имплантированных материалах обычно обнаруживают фибронектин и витронектин – белки богатые RGD-последовательностями (участками из аминокислот ARG-GLY-ASP).

В отношении витронектина неизвестно, адсорбируется ли он непосредственно на поверхности материала или входит в состав фиксированного на нем инактивированного мебранноатакующего комплекса комплемента. Значимость его для развития тканевой реакции состоит в том, что он обеспечивает наиболее прочную и длительную адгезию макрофагов. Взаимодействие макрофагов с субстратом обеспечивают клеточные рецепторы к белкам-интегринам (avβ3, a5β1, CR3), богатым RGDпоследовательностями (табл.). Блокада адгезии макрофагов растворимыми RGD-миметиками, либо удаление с их поверхности рецептора CR3 снижает интенсивность тканевой реакции, уменьшая толщину формирующейся фиброзной капсулы .

Прикрепившиеся макрофаги сливаются, образуя многоядерные клетки (гигантские клетки инородных тел – ГКИТ). Индукторами этого процесса являются IFNg, IL-1, IL-2, IL-3, IL-4, IL-13 и GM-CSF, стимулирующие экспрессию маннозных рецепторов, которые играют важную роль в слиянии клеток . ГКИТ функционируют как макрофаги – обладают способностью к фагоцитозу, генерации радикалов кислорода и азота, синтезу цитокинов и факторов роста. Характер синтетической активности этих клеток зависит, по-видимому, от их «возраста»: на ранних этапах развития тканевой реакции экспрессируются IL-1a, TNF-a, а позднее происходит переключение на антивоспалительные и профиброгеннные медиаторы – IL-4, IL-10, IL-13, TGF-β .

Реакция макрофагов на чужеродные материалы исследуется в различных условиях in vitro и in vivo. В экспериментах in vitro принимается во внимание интенсивность их адгезии на изучаемой поверхности и образования ГКИТ, число «включающихся» генов, количество синтезируемых и секретируемых ферментов, цитокинов и хемокинов. В монокультурах мононуклеарных фагоцитов, адгезированных на различных поверхностях, происходит не поляризация их в М1 и М2 направлениях, а формирование макрофагов смешанного типа, секретирующих как про-, так и противовоспалительные медиаторы со сдвигом в сторону последних при длительном культивировании . Отсутствие «золотого стандарта» – стабильного контрольного материала, хорошо зарекомендовавшего себя при имплантации в живой организм, с которым можно было бы сравнивать тестируемые материалы, а также использование не стандартизированных клеточных линий макрофагов, разные способы их дифференцировки затрудняют сравнение результатов работ разных авторов. Тем не менее, исследования in vitro дают возможность судить о цитотоксичности материалов, определить реакцию макрофагов на их химическую модификацию. Ценные сведения были получены при изучении активации макрофагов на поверхности различных коллагенов – нативных и химически измененных. Нативные коллагены индуцируют in vitro синтез макрофагами сигнальных молекул, как стимулирующих воспалительный ответ (TNF-a, IL-6, IL-8, IL-1β, IL-12, CCL2), так и подавляющих его (IL-1ra, IL-10), а также матриксных металлопротеаз и их ингибиторов. . Провоспалительные свойства таких материалов зависят от способа децеллюляризации и стерилизации исходного сырья, в значительной степени изменяющих его характеристики. Полученные по разным технологиям коллагеновые эндопротезы из нативного коллагена по способности вызывать экспрессию провоспалительных цитокинов варьируют от практически инертных до высокоактивных . Прошивка коллагена различными химическими веществами изменяет характер реакции макрофагов. Обработка глутаральдегидом приводит к цитотоксичности, проявляющейся в повреждении цитоплазматической мембраны, нарушении адгезии, снижении жизнеспособности макрофагов. При этом продукция ими IL-6, TNF-a повышена, а синтез IL-1ra подавлен в сравнении с макрофагами, адгезированными нативным и прошитым карбодиимидом коллагеном. Обработка карбодиимидом обеспечивает оптимальные свойства коллагену, который не обладает цитотоксичностью, не вызывает существенного повышения секреции провоспалительных цитокинов и металлопротеаз и не подавляет синтез IL-10 и IL-1ra в сравнении с нативным .

С целью снижения тканевой реакции в коллагеновые материалы вводят компоненты межклеточного матрикса, нативные или модифицированные. J. Kajahn с соавт. (2012) создали in vitro имитацию провоспалительного микроокружения эндопротезов, что способствовало дифференцировке моноцитов в М1 направлении . В этих же условиях дополнительно сульфатированная гиалуроновая кислота, введенная в коллагеновый субстрат, снизила секрецию макрофагами провоспалительных цитокинов и повысила продукцию IL-10. По мнению авторов это свидетельствует о М2 поляризации макрофагов, способствующих регенерации и восстановлению функциональных свойств окружающих тканей. Реакция макрофагов на медленно деградируемые и стабильные материалы in vitro в целом однородна и аналогична реакции на биоматериалы, хотя некоторая специфичность ответа все же заметна. Титан, полиуретан, полиметилметакрилат, политетрафторэтилен являются слабыми индукторами медиаторов воспаления, хотя титан способствует более высокой секреции TNF-a и IL-10, чем полиуретан, а особенность полипропилена заключается в стимулировании продукции профиброгенного хемокина ССL18 . PEG, предлагаемый в качестве субстрата для переноса клеток, вызывает резкое, но быстро проходящее усиление экспрессии IL-1β, TNF-a, IL-12, однако его сополимеризация с олигопептидом клеточной адгезии улучшает биосовместимость материала, в значительной степени снижая экспрессию провоспалительных цитокинов .

Реакция макрофагов на различные материалы in vitro не в полной мере характеризует их поведение в организме. В монокультурах отсутствуют факторы взаимодействия с другими клеточными популяциями и не учитывается фенотипический полиморфизм – в естественных условиях к имплантату мигрируют не только моноцитарные предшественники, но и зрелые тканевые макрофаги, ответ которых может существенно отличаться от рекрутируемых из крови. Исследование секреторной активности макрофагов, окружающих инсталлированные в ткани животных и человека эндопротезы, представляет большую сложность. Основным методом, позволяющим характеризовать макрофаги на основании парадигмы М1-М2 in situ, стали данные иммуноцитохимии маркерных белков iNOS, CD206, CD163, CD80, CD86. Постулируется, что наличие этих маркеров у макрофагов in vivo определяет их поляризацию в М1 и М2 направлениях с синтезом соответствующих спектров цито- и хемокинов, но, учитывая возможность существования макрофагов смешанного типа , такая характеристика не вполне корректна.

Тем не менее, эксперименты in vivo дают возможность проследить судьбу имплантированного материала и динамику реакции макрофагов в течение длительного периода, что особенно важно для пожизненно установленных эндопротезов и устройств. Наиболее изученными в данном аспекте являются деградирующие биоматериалы на основе коллагена. Первыми клетками воспаления, мигрирующими к таким материалам, являются ПМЯЛ, однако этот эффект транзиторный и популяция второй волны представлена макрофагами . Их реакция зависит от физико-химических свойств коллагена. Чем жестче химическая обработка, тем больше отличается коллаген от нативного, тем более «чужим» он становится для макрофага и тем сильнее выражена тканевая реакция. Установленные между мышечными слоями брюшной стенки крысы фрагменты имплантатов из медленно деградирующего прошитого коллагена способствуют формированию ГКИТ и инкапсуляции материала. Мигрирующие макрофаги, судя по экспрессии рецепторов ССR7 и CD206, можно отнести в ряде случаев к М1 фенотипу, но во многих случаях определить их принадлежность к известным фенотипам не представляется возможным.

С течением времени вокруг имплантата появляются М2 макрофаги, которые располагаются преимущественно в фиброзной капсуле . Эндопротезы из непрошитого коллагена свиньи, человека и быка и прошитый диизоцианатом коллаген овцы , быстро разрушающиеся в организме крысы, стимулируют новообразование полноценной соединительной и мышечной тканей. Они не способствуют образованию ГКИТ и не инкапсулируются. Часть мононуклеарных фагоцитов, скапливающихся на границе ткань/материал, не имеет маркеров М1/М2 фенотипа, часть содержит оба маркера, а часть является М2 макрофагами. Субпопуляция М1 макрофагов на таких имплантатах отсутствует . Гистоморфометрический анализ показал положительную корреляцию между количеством макрофагов, несущих маркеры М2 фенотипа на ранних этапах развивающейся тканевой реакции, и показателями успешного ремоделирования тканей в зоне имплантации .

Тканевая реакция на недеградируемые материалы существует в течение всего времени присутствия их в организме . Ее интенсивность модулируется физико-химическими свойствами материалов: в ряду полиэстер, политетрафторэтилен, полипропилен – первый полимер вызывает максимально выраженное воспаление и слияние макрофагов, последний – минимальное, а выраженность фиброза для всех перечисленных материалов положительно коррелирует с количеством ГКИТ на поверхности синтетических полимеров . Несмотря на большое количество работ, в которых исследована воспалительная реакция на различные материалы, характеристики аккумулирующихся на них макрофагов изучены недостаточно. M.T. Wolf и соавт. (2014) показали, что на нитях и между узлами полипропиленовой сетки, имплантированной в брюшную стенку крысы, скапливаются преимущественно макрофаги с маркерами М1 фенотипа (СD86+CD206-) .

Нанесенный на полипропилен гель из межклеточного матрикса соединительной ткани снижает число М1 макрофагов и ГКИТ и одновременно тормозит рост микрососудов. Это явление хорошо согласуется с результатами работ, демонстрирующими экспрессию ангиогенных факторов М1 макрофагами ран и подавление васкулогенеза при их блокаде . О синтетической активности макрофагов, спектре их биологически активных молекул, обеспечивающих тканевую реакцию, известно мало. У мыши на периферии зоны имплантации нейлоновой сетки скапливаются макрофаги, секретирующие IL-6 и ССL2, IL-13 и TGF-β и в то же время в популяции клеток, в том числе и в ГКИТ, адгезированных на волокнах эндопротеза, экспрессируются IL-4, IL-10, IL-13 и TGF-β . IL-4 и IL-13 – мощные профиброгенные медиаторы, они не только поляризуют макрофаги в М2а направлении, способствуя продукции факторов роста, но и через индукцию экспрессии фибробластами TGF-β, стимулируют синтез ими коллагена. Профиброгенным эффектом обладают также IL-10 и CCL2, обеспечивающие хемотаксис предшественников миофибробластов – фиброцитов . Можно предположить, что именно макрофаги создают среду, способствующую развитию фиброза вокруг недеградирующих материалов.

Образование фиброзной ткани может оказывать как негативное, так и позитивное влияние на результаты лечения пациентов. В герниологической практике фиброзная трансформация тканей, связанная с имплантацией полипропиленового эндопротеза, является одной из основных проблем (рис. 2, собственные данные), которая на фоне нерациональной оперативной тактики в 15–20% случаев приводит к развитию рецидивов грыж различных локализаций .

В последние годы особенно интенсивно развиваются технологии дентальной имплантации, основанные на интеграции установленных конструкций за счет развития соединительной ткани (рис. 3, собственные данные). Несмотря на то, что фиброинтеграция имплантатов рядом специалистов признается как допустимый вариант, поиск новых материалов, способствующих процессам остеоинтеграции, продолжается .

В этой связи существенное значение приобретают изучение клеточных популяций в зоне протезирования, разработка методов и подходов к блокированию чрезмерной воспалительной реакции с исходом в фиброз и стимуляция репаративной регенерации в месте имплантации различных материалов.

Заключение

Макрофаги – полиморфная популяция клеток, фенотип которых определяется сигналами микроокружения. Они играют решающую роль в реакции организма на чужеродный материал, используемый для эндопротезирования, катетеризации, стентирования и др. видов лечения. Характер реакции и степень ее выраженности зависят как от размера имплантируемого материала, так и от его физикохимических свойств и могут иметь как положительное, так и отрицательное значения для организма пациента. Для деградируемых материалов на основе коллагена показана зависимость типа активации макрофагов и скорости регенерации соединительной ткани от способа обработки коллагенового сырья. Это открывает широкие возможности для специалистов, разрабатывающих новые методы децеллюляризации тканей, химической модификации и стерилизации коллагеновых материалов в целях получения имплантатов для регенеративной медицины.

Проблемы, связанные с активацией макрофагов недеградирующими материалами, по-видимому, должны решаться иначе. Макрофаги, фагоцитирующие микрочастицы износа поверхности суставных эндопротезов, и макрофаги, мигрирующие к обширным поверхностям синтетических имплантов, инициируют длительно персистирующее воспаление, остеолиз в первом случае и фиброз во втором. Нивелирование этого эффекта, скорее всего, будет достигнуто путем блокады направленной миграции, адгезии и активации моноцитов/макрофагов, что потребует более глубоких знаний об этих процессах, чем те, которыми мы располагаем в настоящее время.

Нейтрофилы (полиморфноядерныe лейкоциты, ПЯЛ)

Это подвижные фагоциты с сегментированным ядром. Нейтрофилы идентифицируют либо по структуре ядра, либо по поверхностному антигену CD66.

Основную роль в эффекторных функциях нейтрофилов играют компоненты гранул. Гранулы нейтрофилов классифицируют на первичные, вторичные, третичные и секреторные пузырьки. Различия между классами гранул могут быть определены после анализа белков-маркеров. В гранулах нейтрофилов сохраняется около 300 различных белков, которые могут быть освобождены в окружение клетки или оставаться присоединенными к мембране нейтрофилов.

Секреторные пузырьки
Считают, что секреторные пузырьки формируются только в зрелых сегментоядерных нейтрофилах при поступлении их в кровоток . Секреторные пузырьки по происхождению эндосомы , и представляют собой пул рецепторов, включаемых в плазматическую мембрану после слияния мембраны секреторных пузырьков с мембраной нейтрофила. В мембране секреторных пузырьков множество рецепторов - β2-интегрины, Cr1, рецепторы формил-пептида (fpr), CD14, CD16, а также ферменты металлопротеиназы и щелочная фосфатаза. В полости секреторных пузырьков содержится альбумин и белок, связывающий гепарин (HBP). Маркерный фермент пузырьков - щелочная фосфатаза.

Вторичные и третичные гранулы
Пероксидазонегативние гранулы нейтрофилов могут быть разделены на вторичные и третичные, которые отличаются содержанием белков и секреторными свойствами. Вторичные гранулы содержат больше антибактериальных соединений, чем третичные. Третичные гранулы легче, чем вторичные подвергаются экзоцитозу. Третичные гранулы – резерв матрикс-деградирующих ферментов и мембранных рецепторов, необходимых для экстравазации и диапедеза нейтрофила . Напротив, вторичные гранулы участвуют главным образом, в антибактериальных действиях нейтрофилов путем мобилизации в фагосомы или секрецию во внешнюю среду. В арсенале их антибактериальных пептидов - лактоферрин, NGAL, лизоцим и hCAP18, LL-37. Маркерный белок третичных гранул - фермент желатиназа, вторичных – лактоферрин .

Первичные гранулы
Первичные гранулы содержат кислые гидролазами, в том числе кислую фосфатазу и антибактериальные белки; их мембрана лишена рецепторов. У человека антибактериальные белки представлены нейтрофильными пептидами – α-дефензинами и сериновыми протеазами с антибактериальной активностью. При созревании нейтрофилов в костном мозге первыми еще на стадии миелобластов формируются азурофильные гранулы; дефензины (катионные белки) в азурофильных гранулах синтезируются на второй стадии дифференцировки нейтрофилов - стадии образования промиелоцитов.

Маркерный белок этих гранул фермент миелопероксидазы.

Моноциты/макрофаги

Моноциты – это фагоциты, которые циркулируют в крови. Когда моноциты мигрируют в ткани, они превращаются в макрофаги. Моноциты имеют характерную форму ядра в виде почки. Они могут быть определены морфологически или по CD14 – маркеру клеточной поверхности. В отличие от ПЯЛ они не содержат гранул, но имеют многочисленные лизосомы, содержимое которых похоже на содержимое гранул нейтрофилов. Специализированные виды макрофагов могут быть найдены во многих органах, включая легкие, почки, мозг и печень.

Макрофаги выполняют множество функций. Как мусорщики, они удаляют из организма изношенные клетки, иммунные комплексы. Макрофаги представляют чужеродный антиген для распознавания его лимфоцитами, в этом отношении макрофаги похожи на дендритные клетки. Макрофаги способны секретировать удивительное разнообразие мощных химических сигналов – монокинов, которые жизненно важны для иммунного ответа неспецифического иммунитета: ответ фагоцитов на инфекцию.

Циркулирующие в крови нейтрофилы и моноциты реагируют на сигналы опасности (SOS), образующиеся в месте локализации инфекции. SOS сигналы включают в себя N-формил-метионин, освобождаемый бактериями; пептиды, образующиеся при свертывании крови, растворимые пептиды – продукты активации системы комплемента и цитокины, секретируемые тканевыми макрофагами, которые столкнулись в тканях с бактериями. Некоторые из сигналов SOS стимулируют экспрессию молекул клеточной адгезии на эндотелиальных клетках неподалеку от места инфекции, такие как ICAM-1 и селектины. Молекулы адгезии связываются с комплементарными структурами на поверхности фагоцитирующих клеток. Как следствие нейтрофилы и моноциты прилипают к эндотелию. Вазодилататоры, освобождаемые в месте инфекции тучными клетками, способствуют диапедезу прилипших фагоцитов через эндотелиальный барьер " и миграции их к месту локализации инфекции. Перемещение в тканях по градиенту концентрации молекул SOS. Параллельно SOS сигналы активируют фагоциты, что приводит к усилению, как поглощения возбудителей, так и внутриклеточному уничтожению инвазивных организмов.

Инициирование фагоцитоза при неспецифическом иммунитете

Клетка- фагоциты имеет на своей мембране рецепторы, способствующие связыванию их с возбудителем-антигеном, и поглощать его. К важнейшим рецепторам относятся следующие структуры.

1. Fc-рецепторы - если с бактериями связываются антитела IgG , то на поверхности бактерий будут Fc-фрагменты, которые распознаются и связываются Fc- рецептором на фагоцитах. На поверхности одного нейтрофила содержится порядка 150 000 таких рецепторов! Связывание бактерий, покрытых IgG, инициирует фагоцитоз и активацию метаболической активности фагоцитов (респираторный взрыв).

2. Рецепторы комплемента - фагоциты имеют рецепторы для С3b компонента комплемента, При активации комплемента при взаимодействии со структурами поверхности бактерий, последняя покрывается гидрофобным фрагментом C3b. Связывание рецептора к C3b с С3b на приводит также к повышению фагоцитоза и стимулированию респираторного взрыва.

3. Рецепторы - мусорщики связывают широкий спектр полианионов на бактериальной поверхности, опосредуя фагоцитоз бактерий.

4. Toll-подобные рецепторы - фагоциты имеют различные Toll-подобные рецепторы, которые признают широкий спектр консервативных структур на поверхности инфекционных агентов. Связывание инфекционных агентов через Toll-подобных рецепторов приводит к фагоцитозу и высвобождению провоспалительных цитокинов (IL-1, TNF-альфа и IL-6) фагоцитами.

Фагоцитоз и неспецифический иммунитет

После прикрепления бактерий, мембрана фагоцитов образует псевдоподии, которые, в конце концов, окружают бактерию и поглощают её, бактерии оказывается заключенной в фагосому. Фагосомы сливаются с вторичными гранулами, образуя фаголизосому.

Респираторный взрыв и внутриклеточный киллинг при неспецифическом иммунитете

Во время фагоцитоза, фагоцитирующие клетки увеличивают потребление глюкозы и кислорода, этот процесс называют респираторный взрыв. Следствие респираторного взрыва – образование активных форм кислорода, которые способны убить бактерии в составе фаголизосомы. Этот процесс называют кислород-зависимый внутриклеточный киллинг. Кроме того, в составе фаголизосомы бактерии и могут быть уничтожены под действием уже имеющегося содержимого в гранулах. Комплекс этих реакций называют кислород независимый внутриклеточный киллинг.

  1. В процессе фагоцитоза включается механизм прямого окисления глюкозо-6-фосфата в пентозофосфатном пути с образованием НАДФН. Тотчас осуществляется сборка надмолекулярного комплекса активной молекулы НАДФН-оксидазы. Активированная НАДФН-оксидаза использует кислород для окисления НАДФН. В результате реакции образуется супероксид-анион. Под действием супероксиддисмутазы часть супероксид-анионов превращается в синглетный кислород и H 2 O 2 Другая часть супероксид-анионов взаимодействует с Н 2 О 2 с образованием гидроксильных радикалов и синглетного кислорода. В результате всех этих реакций образуются токсичные кислорода соединений супероксид-анион перекись водорода, синглетный кислород и гидроксильные радикалы (ОН ).

2. Кислород зависимый миелопероксидаза-зависимый внутриклеточный киллинг

Как только азурофильные гранулы сливаются с фагосомой, в состав фаголизосомы высвобождается миелопероксидаза. Миелопероксидаза катализирует реакцию образования гипохлорит иона из H2O2 и хлорид иона. Гипохлорит иона высокотоксичное соединение, мощный окислитель. Некоторая часть гипохлорита может самопроизвольно распадаться до синглетного кислорода. В результате этих реакций образуются токсичные гипохлорит (OCl -) и синглетный кислород (1 O2).

3. Реакции детоксикации (табл. 3)

Нейтрофилы и макрофаги располагают средствами защиты от действия активных форм кислорода. Эти реакции включают дисмутацию супероксид аниона в перекись водорода супероксиддисмутазой и конверсию перекиси водорода в воду каталазой.

4. Кислород-независимый внутриклеточный киллинг

Кислород-независмые механизмы внутриклеточного киллинга

5. Зависимый от оксида азота киллинг в реакциях неспецифического иммунитета

Связывание бактерий макрофагами, в частности, посредством Toll-подобных рецепторов, приводит к продукции ФНО-альфа, который аутокринно (стимулирует те же клетки, которые его секретировали) индуцирует экспрессию гена индуцибельной NO синтазы (iNOS), в результате чего макрофаги синтезируют оксида азота (NO). Если клетка подвергается действию гамма-интерферона (IFN-гамма) , синтез оксида азота усиливается. Концентрация оксид а азота, освобождаемого макрофагами, обладает выраженным токсическим действием на микроорганизмы в непосредственной близости от макрофагов.

Макрофаги

С вободные Резидентные


Перитонеальные Печеночные

Легочные


Активация – не только повышение активности и усиление метаболизма, цитотоксичности, но и увеличение числа вовлеченных в процесс клеток.


Макрофаги


Активированные 5% Интактные 95%


Активация


Специфическая Неспецифическая

(с помощью Тх1 и АТ) (разл. фарм. препараты, ЛПС, токсины)


Модель на перитонеальных МФ


Среда 199 (пит.в-ва,

а/б, T=37°)


Регистрация данных

    Прямой визуальный подсчет

    Оценка хемотаксиса методом Бойдена

    НТС-тест

    Хемилюминесценция

    Радиометрия

    Ферментативные методы

  1. Иммунологические методы

Цитотоксичность

БЦЖ, Циклофосфамид (Активация) ИЛ-1, ФНО, Ростовые факторы, PG E2



Атипичные

клетки не

чувствительны

к данным агентам



Опыт с хитозаном


Макрофаг Т-лимфоцит

Усиление контактного вза­имодействия тимоцитов с макрофагами ИЛ-2, ИФγ Активация МФ






Краткий экскурс в историю…………………………………………………………………………………………….. 2


Современное состояние учения о фагоцитозе……………………………………………………………..5


Макрофаги перитонеального экссудата как модель

фагоцитоза и нарушений фагоцитарной активности…………………………………………….13


Получение модели………………………………………………………………………………………………………….14

Методы регистрации результатов…………………………………………....................................................14

Некоторые моделируемые процессы


СНИЖЕНИЕ БАКТЕРИАЛЬНОЙ АКТИВНОСТИ ПЕРИТОНЕАЛЬНЫХ

МАКРОФАГОВ МЫШЕИ В УСЛОВИЯХ СОЧЕТАННОГО

ПРИ­МЕНЕНИЯ СТАФИЛОКОККОВОГО ЭНТЕРОТОКСИНА ТИПА А И ЭНДОТОКСИНА………………………………………………17


ОТМЕНА УСИЛИВАЮЩЕГО ФАГОЦИТОЗ ДЕЙСТВИЯ ОПСОНИНОВ

С ПОМОЩЬЮ ФРАГМЕНТОВ АНТИТЕЛ ПРОТИВ Fc-РЕЦЕПТОРОВ МАКРОФАГОВ……………………………...................................18


УСИЛЕНИЕ С ПОМОЩЬЮ ХИТОЗАНА РЕАКЦИИ

КОНТАКТНОГО ВЗАИМОДЕЙСТВИЯ МАКРОФАГА С ТИМОЦИТАМИ in vitro…………………………………………………………..19


АКТИВАЦИЯ ФАГОЦИТАРНЫХ КЛЕТОК И КЛЕТОЧНОГО

ИММУНИТЕТА СИНТЕТИЧЕСКИМИ ПОЛИЭЛЕКТРОЛИТАМИ………………………………………………………………………………20


АКТИВАЦИЯ МАКРОФАГОВ ПОД ВЛИЯНИ­ЕМ СИНТЕТИЧЕСКОГО АНТИОКСИДАНТА……………………………………………… 22


ФАГОЦИТАРНАЯ АКТИВНОСТЬ МАКРОФАГОВ

ПЕРИТОНЕАЛЬНОГО ЭКССУДАТА МЫШЕЙ ДЕЙСТВИИ ПРЕПАРАТОВ ПЛАТИНЫ……………………………………………………… 23


ИЗУЧЕНИЕ ФАГОЦИТАРНОЙ АКТИВНОСТИ ПЕРИТОНЕАЛЬНЫХ МАКРОФАГОВ В

ОТ­НОШЕНИИ YERSINIA PESTIS С ДЕФЕКТНЫ­МИ И ПОЛНОЦЕННЫМИ FRA-ГЕНАМИ…………………………………………………25


ВЛИЯНИЕ МОДИФИКАТОРОВ БИОЛОГИЧЕСКОГО ОТВЕТА ПРИРОДНОГО

ПРОИСХОЖДЕНИЯ НА ФУНКЦИОНАЛЬНУЮ АКТИВНОСТЬ МАКРОФАГОВ……………………………………………………………….26


ПЕРИТОНЕАЛЬНЫЕ МАКРОФАГИ КАК МОДЕЛЬ

ДЛЯ ИЗУЧЕНИЯ АТЕРОГЕННОГО ПОТЕНЦИАЛА СЫВОРОТКИ КРОВИ……………………………………………………………………...29


ВЛИЯНИЕ ГАМК, ГОМК И ГЛУТАМИНОВОИ

КИСЛОТЫ НА ФУНКЦИОНАЛЬНУЮ АКТИВНОСТЬ ФАГОЦИТОВ……………………………………………………………………………32

Заключение………………………………………………………………………. ……………………………………………………………33

Некоторые другие модели изучения фагоцитоза……………………………………………………………… 34

Литература…………………………………………………………………………………………………………………………………………36


Краткий экскурс в историю


Более 100 лет прошло с момента открытия фагоцитар­ной теории, созданной нашим великим натурали­стом, лауреатом Нобелевской премии И. И. Меч­никовым. Открытие, осмысление явления фагоци­тоза и формулирование в общих чертах основ фагоцитарной теории было сделано им в декабре 1882 г. В 1883 г. он изложил основы новой фаго­цитарной теории в докладе «О целебных силах организма» в Одессе на VII съезде естествоиспы­тателей и врачей и опубликовал их в печати. Были впервые высказаны основные по­ложения фагоцитарной теории, которые И. И. Мечников развивал в последующем на протяжении всей своей жизни. Хотя сам факт поглощения живыми клетками других частиц был описан многими натуралистами задолго до ученого, однако только он дал блестящее толкование огромной роли фагоцитов в защите организма от болезнетворных микробов.

Много позже к 70-летнему юбилею ученого коллега и друг И. И. Мечникова Эмиль Ру напи­шет: «Сегодня, мой друг, Вы наблюдаете доктри­ну фагоцитоза со спокойным удовлетворением отца, дитя которого сделало хорошую карьеру в мире, но сколько беспокойств оно Вам доста­вило! Его появление вызвало протесты и сопро­тивление и в течение двадцати лет Вам пришлось сражаться за него». Доктрина фагоцитоза «...одна из наиболее плодотворных в биологии: она связала явление иммунитета с внутриклеточ­ным пищеварением, она объяснила нам механизм воспаления и атрофии; она оживила патологи­ческую анатомию, которая, не будучи в состоя­нии дать приемлемое объяснение, оставалась чисто описательной... Ваша эрудиция такая об­ширная и верная, что она служит всему миру».

И. И. Мечников утверждал, что «...иммунитет в инфекционных болезнях должен быть приписан активной целлюлярной деятельности. Среди кле­точных элементов фагоциты должны занять пер­вое место. Чувствительность и подвижность, способность поглощать твердые тела и выраба­тывать вещества, могущие разрушать и перева­ривать микробов - вот главные факторы деятельности фагоцитов. Если эти свойства в достаточ­ной мере развиты и парализуют патогенное действие микробов, тогда животное от природы иммунно... когда фагоциты не обнаруживают наличия всех или одного из этих свойств в доста­точной степени, то животное восприимчиво к ин­фекции...». Вместе с тем, если бактериальные продукты вызывают у фагоцитов отрицательный хемотаксис или, если при положительном хемо­таксисе фагоциты не поглощают бактерий или поглощают, но не убивают их, - также развива­ется смертельная инфекция. Решение фундамен­тальных проблем сравнительной эмбриологии и биологии, приведшее к крупнейшим открытиям ученого, позволило И. И. Мечникову установить, что «фагоцитоз чрезвычайно распространен в жи­вотном мире... как на самой низшей ступени животной лестницы, например, у простейших, так и...у млекопитающих животных и человека... фа­гоциты представляют собой мезенхимальные клетки».

И. И. Меч­ников был в то же время первым, кто занялся сравнительным изучением явления фагоцитоза. Внимание ученого было обращено не только на традиционные лабораторные объекты, но и на таких представителей мира животных, как даф­нии, морские звезды, крокодилы, обезьяны. Сравнительное изучение фагоцитоза было необ­ходимо И. И. Мечникову для доказательства всеобщности явлений поглощения и разрушения чужеродного материала фагоцитирующими мононуклеарами, широкого распространения в при­роде изучаемой им формы иммунологической за­щиты.

Клеточная теорияМечникова сразу наткнуласьна сопротивление. Прежде всегоона была предложена в то время, когда большинство патологов видели в воспалительной реакции, а также в связанных с ней микрофагах и макрофагах не защитную, а вредоносную реакцию. В то время считали даже, что, хотя фагоцитирующие клетки действительно способны поглощать болезнетворные микроорганизмы, это приводит не к разрушению возбудителя, а к переносу его в другие части тела и распространению болезни. Также в тот период времени интенсивно развивалась гуморальная теория иммунитета, основы которой были заложены П.Эрлихом. Были открыты антитела и антигены, были выявлены механизмы гуморальной устойчивости организма против некоторых патогенных микроорганизмов и их токсинов (дифтерия, столбняк и др.). Как это ни странно, но два таких открытия не могли некоторое время ужиться вместе. Позднее в 1888 г. Наттолл нашел в сыворотке нормальных животных вещества, токсичные для некоторых микроорганизмов, и показал, что такие антибактериальные свойства значительно повышаются в результате иммунизации животного. В дальнейшем было обнаружено, что в сыворотке имеются два разных вещества, совместное действие которых приводит к лизису бактерий: термостабильный фактор, затем идентифицированный как сывороточные антитела, и термолабильный фактор, названный комплементом, или алексином (от греч. aleksein - защищать). Ученик самого Мечникова Борде описал лизис эритроцитов гуморальными антителами и комплементом, и большинство исследователей стали соглашаться с Кохом, что победу одержали гуморалисты. Мечников и его ученики отнюдьне собирались сдаваться. Были поставлены простые опыты, в которых микробы, помещенные в маленький мешочекиз фильтровальной бумаги, защищающийих от фагоцитов, сохраняли свою вирулентность, хотя буквально купались в тканевой жидкости, богатой антителами. В Англии сэр Элмрот Райт и С. Р. Дуглас попытались примирить различия между этими двумя школамив своих капитальных исследованиях процесса опсонизации (от греч. opsonein - делать съедобным). Эти ученые утверждали, что клеточный и гуморальный факторы являются одинаково важными и взаимозависимыми в том отношении, что гуморальные антитела, специфически реагируясо своей мишенью - микроорганизмом, подготавливают его к фагоцитозу макрофагами.

В 1908 г. Шведская академия удостоила Нобелевской премии по медицине совместно Мечникова - основателя клеточного направления и Эрлиха - олицетворявшего гуморалистские идеи тоговремени. Они были удостоены премии в качестве «признания их работ по иммунитету».

Заслуга Мечникова состоит не только в создании им гениальной теории. Еще ранее он начал изучать заразные болезни человека и домашних животных: вместе со своим учеником Н. Ф. Гамалеей он изучал туберкулез, чуму рогатого скота, искал способы борьбы с вредителями сельского хозяйства. К 1886 г. относится одно из важнейших событий в истории русской медицины. Летом этого года в Одессе начала работать созданная Мечниковым и его талантливым учеником Н. Ф. Гамалеей первая русская бактериологическая станция. Он создал в России крупнейшую научную школу микробиологов. Выдающиеся ученые Н. Ф. Гамалея, Д. К. Заболотный, Л. А. Тарасевич и многие другие были учениками И. И. Мечникова. Илья Ильич Мечников умер в 1916 году, до конца жизни занимаясь вопросами иммунологии и клеточного иммунитета. А наука об иммунитете быстро и стремительно развивалась. В этот период было необычайно много работ и ученых, изучавших факторы внутренней защиты организма.

Период с 1910 по 1940гг. был периодом серологии. В это время было сформулировано положение о специфичности и о том, что АТ являются естественными, высоковариабельными глобулинами. Большую роль здесь сыграли работы Ландштейнера, который пришел в выводу, что специфичность антител не является абсолютной.

С 1905 появились работы (Сarrel, Guthrie) по трансплантации органов. В 1930г. К.Ландштейнер открывает группы крови. Работами по фагоцитозу, бактериофагии, вирусам, патогенезу чумы занимается Амадей Боррель. Премия присуждена Ф. Макфарлейну Бернету (1899 - 1985) и Питеру Медавару (1915 - Англия) «за открытие приобретенной иммунолотической толерантности». Медавар показал, что отторжение чужеродного кожного трансплантата подчиняется всем правилам иммунологической специфичности, и в основе его лежат такие же механизмы, как и при защите от бактериальных и вирусных инфекций. Последующая работа, которую он провел вместе с рядом учеников, заложила прочную основу для развития трансплантационной иммунобиологии, которая стала важной научной дисциплиной и в дальнейшем обеспечила многие достижения в области клинической трансплантации органов. Бернет опубликовал книгу «Образование антител» (1941 г.). Со своим коллегой, Франком Феннером, Бернет утверждал, что способность к иммунологическим реакциям возникает на сравнительно поздних стадиям эмбрионального развития и при этом происходит запоминание существующих маркеров «своего» у антигенов, присутствующих в данный момент. Организм в последующем приобретает к ним толерантность и не способен отвечать на них иммунологической реакцией. Все антигены, которые не запомнились, будут восприниматься как «не свои» и смогут в дальнейшем вызывать иммунологический ответ. Было высказано предположение, что любой антиген, введенный в течение этого критического периода развития, будет затем восприниматься как свой и вызывать толерантность, в результате чего не сможет в дальнейшем активировать иммунную систему. Эти идеи были далее развиты Бернетом в его клонально-селекционной теории образования антител. Предположения Бернета и Феннера были подвергнуты экспериментальной проверке в исследованиях Медавара, который в 1953 г. на мышах чистых линий получили четкое подтверждение гипотезы Бернета - Феннера, описав феномен, которому Медавар дал название приобретенной иммунологической толерантности.

В 1969г. одновременно несколькими авторами (Р.Петров, М.Беренбаум, И.Ройт) была предложена трехклеточная схема кооперации иммуноцитов в иммунном ответе (Т-, В-лимфоцитов и макрофагов), определившая на многие годы изучение механизмов иммунного ответа, субпопуляционной организации клеток системы иммунитета.

Существенную роль в этих исследованиях сыграли кинематографические методы. Возможность непрерывного динамического изучения микробиологических объектов in vivo и in vitro в условиях, совместимых с их жизнедеятельностью, визуализация невидимых для человеческого глаза электромагнитных излучений, регистрация как быстрых, так и медленных процессов, управление масштабом времени и некоторые другие характерные особенности исследовательской кинематографии открыли большие и во многих отношениях уникальные возможности для изучения взаимодействия клеток.

Представление о фагоцитах за истекшее время подверглось существенной эволюции. В 1970 г. Van Furth и соавт. предложили новую классификацию, выделяющую МФ из РЭС в от­дельную систему мононуклеарных фагоцитов. Исследователи отдали дань уважения И. И. Меч­никову, пользовавшемуся термином «мононуклеарный фагоцит» еще в начале XX века. Фагоцитарная теория не стала, однако, неиз­меняемой догмой. Непрерывно накопляемые нау­кой факты изменили и усложнили понимание тех явлений, в которых фагоцитоз казался решаю­щим или единственным фактором.

Можно утверждать, что в наши дни созданное И. И. Мечниковым учение о фагоцитах пережива­ет свое второе рождение, новые факты значитель­но обогатили его, показав, как это и предсказы­вал Илья Ильич, огромное общебиологическое значение. Теория И. И. Мечникова явилась мощ­ным индуктором прогресса иммунологии во всем мире, большой вклад в него внесли советские ученые. Однако и сегодня основные положения теории остаются незыблемыми.

Первостепенное значение фагоцитарной систе­мы подтверждается созданием в США общества ученых, занимающихся изучением ретикулоэндотелиальной системы (РЭС), издается специальный «Journal of Reticulo-Endothelial Society».

В последующие годы развитие фагоцитарной теории связано с открытием цитокиновой регуляции иммунного ответа и, конечно, изучения влияния цитокинов на клеточный ответ в том числе и макрофагов. На заре этих открытий стоя ли работы таких ученых, как Н.Ерне,

Г. Келер, Ц. Милштейн.

В СССР бурный интерес к фагоцитам и связанным с ними процессами наблюдался в 80-е годы. Здесь необходимо отметить работы А.Н.Маянского, изучавшего влияния макрофагов не только в свете их иммунной функции. Он показал значение клеток РЭС на функционирование таких органов как печень, легкие, желудочно-кишечный тракт. Работы также проводили А.Д. Адо, В.М.Земсков, В.Г.Галактионов, эксперименты по изучению работы МФ в очаге хронического воспаления ставил Серов.

Следует сказать, что в 90-е годы интерес к неспецифическому звену иммунитета упал. Отчасти это можно объяснить тем, что все усилия ученых были в основном устремлены к лимфоцитам, но особенно – к цитокинам. Можно сказать, что сейчас продолжается «цитокиновый бум».

Однако это ни в коем случае не означает, что актуальность проблемы упала. Фагоцитоз составляет пример того процесса, интерес к которому не может пропасть. Будет открытие новых факторов стимулирующих его активность, будут обнаружены вещества угнетающие РЭС. Будут открытия, уточняющие тонкие механизмы взаимодействия МФ с лимфоцитами, с клетками интерстиция, с антигенными структурами. Особенно это может быть актуально сейчас в связи с проблемой опухолевого роста и СПИД’а. Остается надеяться, что в ряду открытий, начатых великим Мечниковым, будут стоять имена русских ученых.


СОВРЕМЕННОЕ СОСТОЯНИЕ УЧЕНИЯ О ФАГОЦИТОЗЕ


Основные положения о фагоцитах и систе­ме фагоцитоза, блестяще сформулированные И. И. Мечниковым и разработанные его учениками и последователями, надолго определи­ли развитие этого важнейшего направления био­логии и медицины. Идея о противоинфекционном иммунитете, которая так увлекла современников И. И. Мечникова, сыграла решающую роль в ста­новлении клеточной иммунологии, эволюции взглядов на воспаление, физиологию и патологию реактивности и резистентности организма. Па­радоксально и вместе с тем закономерно, что уче­ние о фагоцитозе началось с крупных обобщений и концепций, которые на протяжении многих лет дополнялись фактами частного характера, мало повлиявшими на развитие проблемы в целом. Волна современной иммунологической информа­ции, изобилие изящных методов и гипотез напра­вили интересы многих исследователей в сторону изучения лимфоцитарных механизмов клеточного и гуморального иммунитета. И если иммунологи быстро поняли, что без макрофага им не обой­тись, то судьба другого класса фагоцитирующих клеток - полинуклеарных (сегментоядерных) лейкоцитов - до недавнего времени оставалась неясной. Только теперь можно с уверенностью сказать, что и эта проблема, сделав за последние 5-10 лет качественный скачок, прочно утверди­лась и успешно развивается не только иммуноло­гами, но и представителями смежных профес­сий - физиологами, патологами, биохимиками, клиницистами. Изучение полинуклеарных фаго­цитов (нейтрофилов) - один из немногих при­меров в цитофизиологии, а тем более в иммуно­логии, когда число исследований на объекте «че­ловеческого происхождения» превосходит количе­ство работ, выполненных в эксперименте на жи­вотных.

Сегодня учение о фагоцитозе - это совокуп­ность представлений о свободных и фиксирован­ных клетках костномозгового происхождения, которые, обладая мощным цитотоксическим по­тенциалом, исключительной реактивностью и вы­сокой мобилизационной готовностью, выступают в первой линии эффекторных механизмов иммунологического гомеостаза. Противомикробная функция воспринимается как частный, хотя и важный, эпизод этой общей стратегии. Доказаны мощные цитотоксические потенции моно- и полинуклеарных фагоцитов, ко­торые, кроме бактерицидности, находят выраже­ние в уничтожении малигнизированных и иных форм патологически измененных клеток, альтерации тканей при неспецифическом воспалении в иммунопатологических процессах. Если нейтрофилы (доминирующий тип полинуклеаров) почти всегда нацелены на деструкцию, то функции мононуклеарных фагоцитов сложнее и глубже. Они участвуют не только в разрушении, но и в созидании, запуская фибробластические процессы и репаративные реакции, синтезируя комплекс био­логически активных субстанций (факторы комп­лемента, индукторы миелопоэза, иммунорегуляторные белки, фибронектини пр.). Сбы­вается стратегический прогноз И. И. Мечникова, который всегда смотрел на фагоцитарные реак­ции с общефизиологических позиций, утверждая значение фагоцитов не только в защите от «вред­ных деятелей», но и в общей борьбе за гомеостаз, которая сводится к поддержанию относительного постоянства внутренней среды организма. «При иммунитете, атрофии, воспалении и излечении, во всех явлениях, имеющих величайшее значение в патологии, участвуют фагоциты».

Мононуклеарные фагоциты, которые ранее относили к ретикулоэндотелиальной системе, выделе­ны в самостоятельное семейство клеток - систе­му мононуклеарных фагоцитов, которая объеди­няет моноциты костного мозга и крови, свобод­ные, и фиксированные тканевые макрофаги. Доказано, что, выходя из крови, моноцит ме­няется, адаптируясь к условиям той среды, в ко­торую попадает. Это обеспечивает специализа­цию клетки, т. е. максимальное соответствие тем условиям, в которых ей предстоит «работать». Не исключена и другая альтернатива. Подобие мо­ноцитов может быть чисто внешним (как это слу­чилось с лимфоцитами), и часть из них предетерминирована к трансформации в различнее вари­анты макрофагов. Гетерогенность зрелых нейтрофилов хотя и существует, но выражена гораздо слабее. Они почти не меняются морфологически, попадая в ткани, в отличие от макрофагов жи­вут там недолго (не более 2-5 сут) и явно не обладают пластичностью, присущей моноцитам. Это высокодифференцированные клетки, кото­рые практически заканчивают свое развитие в костном мозге. Не случайно, известные в прошлом попытки отыскать корреляцию между сегментацией ядра и способностью лейкоцитов к фагоцитозу не увенчались успехом. Тем не менее идея о функциональной неоднородности морфологически зрелых нейтрофилов продолжа­ет получать подтверждения. Известны различия между нейтрофилами костного мозга и перифе­рической крови, нейтрофилами крови, тка­ней и экссудатов. Причины и физиоло­гический смысл этих особенностей неизвестны. По-видимому, изменчивость полинуклеаров в от­личие от моноцитов-макрофагов носит тактиче­ский характер.

Изучение фагоцитоза ведется согласно классическим постулатам И. И. Мечникова о фазах фагоцитарной реакции - хемотаксису, аттракции (связывании) и поглощении, уничтожении (переваривании). К характеристике каждого из этих процессов в настоящее время приковано внимание, им посвящают монографии, обзоры. Результаты многочисленных исследований позво­лили углубиться в суть этих реакций, конкретизи­ровать молекулярные факторы, лежащие в их ос­нове, нащупать общие узлы и вскрыть частные механизмы клеточной реактивности. Фагоцитоз служит прекрасной моделью для изучения мигра­ционной функции, пространственной ориентации клеток и их органелл, слияния и новообразова­ния мембран, регуляции клеточного гомеостаза и других процессов. Иногда фагоцитоз нередко отождествляют с поглощени­ем. Это явно неудачно, ибо нарушает исторически сложившееся представление о фагоцитозе как об интегральном процессе, который объединяет сумму клеточных реакций, начиная с распознавания объекта и кончая его разрушением или стремлением к разрушению. С функциональной точки зрения фагоциты могут пребывать в двух состояниях - покоящемся и активирован­ном. В наиболее общем виде активация - есть результат преобразования внешнего стимула в реакцию эффекторных органелл. Больше пишут об активированном макрофаге, хотя в прин­ципе то же самое можно сделать и для полинук­леаров. Надо выбрать лишь точку отсчета - к примеру, функциональный статус в сосудистом русле нормального организма. Активация разли­чается не только степенью возбуждения индиви­дуальных клеток, но и масштабом охвата клеточ­ной популяции в целом. В норме активировано небольшое количество фагоцитов. Появление раз­дражителя резко меняет этот показатель, отра­жая подключение фагоцитов к реакциям, корри­гирующим внутреннюю среду организма. Стремление проактивировать фагоцитарную систему, усилив тем самым ее эффекторные возможности, неоднократно звучало в работах И. И. Мечнико­ва. Современные исследования по адъювантам, биологическим и фармакологическим модулято­рам мононуклеарных и полинуклеарных фагоци­тов по существу развивают эту мысль с позиций межклеточной кооперации, общей и частной па­тологии. В этом видится перспектива рациональ­ного воздействия на воспаление, репаративные и регенеративные процессы, иммунопатологию, резистентность к острому и хроническому стрессу, устойчивость к инфекциям, опухолям и пр.

Многие признаки активации стереотипны, повторяясь у всех фагоцитирующих клеток. К ним относятся изменение активности лизосомальных и мембранных ферментов, усиление энергетиче­ского и окислительного метаболизма, синтетических и секреторных процессов, изменение адгезивных свойств и рецепторной функции плазматической мембраны, способности к случайной ми­грации и хемотаксису, поглощению и цитотоксичности. Если учесть, что каждая из этих реакций по своей природе интегративна, то количество ча­стных признаков, по которым можно судить о возбуждении клеток, будет огромным.

Один и тот же раздражитель способен индуцировать все или большинство признаков актива­ции. Однако это, скорее, исключение, чем прави­ло. Сегодня многое известно о конкретных меха­низмах, реализующих эффекторные свойства моно и полинуклеарных фагоцитов. Расшифрована структурная основа двигательных реакций, открыты органеллы, обес­печивающие векторную ориентацию в простран­стве, изучены закономерности и кинетика образо­вания фаголизосом, установлена природа цитотоксичности и бактерицидности, определены син­тетические и секреторные потенции, обнаружены рецепторные и каталитические процессы в плаз­матической мембране и пр. Становится все более очевидным, что дискретные проявления клеточ­ной реактивности обеспечиваются или по крайней мере инициируются обособленными механиз­мами и могут возникать независимо друг от дру­га. Удается подавить или усилить хемотаксис, не изменив способности к поглощению и цитоток­сичности, секреция не связана с поглощением, повышение адгезивности не зависит от потребле­ния кислорода и т. д. Известны генетические дефекты, когда выпадает одна или несколько из перечисленных функций, причем многие из них стереотипны по клинической симптоматике. Если к этому присовокупить патологию медиаторных систем, генерирующих хемоаттрактанты и опсонины, станет понятно, насколько сложным и одно­временно конкретным должен быть сегодня диа­гноз, констатирующий нарушение фагоцитоза.

Крупным событием явилось утверждение моле­кулярных основ цитотоксичности (в том числе бактерицидности) и ее отношения к реактивно­сти клеток. Стремление понять сущность реакций, приводящих