Иммунологическая память. Иммунологическая толерантность

ИММУНОЛОГИЧЕСКАЯ ПАМЯТЬ ИММУНОЛОГИЧЕСКАЯ ПАМЯТЬ

способность иммунной системы организма после первого взаимодействия с антигеном специфически отвечать на его повторное введение. Наряду со специфичностью, И. п.- важнейшее свойство иммунного ответа. Позитивная И. п. проявляется как ускоренный и усиленный специфич. ответ на повторное введение антигена. При первичном гуморальном иммунном ответе после введения антигена проходит неск. дней (латентный период) до появления в крови антител. Затем наблюдается постепенное увеличение кол-ва антител до максимума с последующим снижением. При вторичном ответе на ту же дозу антигена латентный период сокращается, кривая увеличения антител становится круче и выше, а её снижение происходит медленнее. В клеточном иммунитете И. п. проявляется ускоренным отторжением вторичного трансплантата и более интенсивной воспалительно-нек-ротич. реакцией на повторное внутрикож-ное введение антигена. Позитивная И. п. к антигенным компонентам окружающей среды лежит в основе аллергич. заболеваний, а к резус-антигену (возникает при резус-несовместимой беременности)- в основе гемолитич. болезни новорождённых. Негативная И. п. - это естеств. и приобретённая иммунологич. толерантность, проявляющаяся ослабленным ответом или его полным отсутствием как на первое, так и на повторное введение антигена. Нарушение негативной И. п. к собств. антигенам организма является патогенетич. механизмом нек-рых аутоиммунных заболеваний. Выработка негативной И. п.- наиб, перспективный приём преодоления гистонесовместимости при трансплантации органов и тканей. И. п. при ответе на разные антигены различна. Она может быть краткосрочной (дни, недели), долговременной (месяцы, годы) и пожизненной. Напр., человек, иммунизированный столбнячным анатоксином или живой полиомиелитной вакциной, сохраняет И. п. св. 10 лет. И. п. представляет собой разновидность биол. памяти, принципиально отличающуюся от нейрологич. (мозговой) памяти по способу её введения, уровню хранения и объёму информации. Осн. носители И. п.- долгоживущие Т- и В-лимфоциты, к-рые образуются при первичном иммунном ответе и продолжают циркулировать с кровью и лимфой в качестве специфич. предшественников антиген-реактивных лимфоцитов. При вторичном ответе эти клетки размножаются, обеспечивая быстрое увеличение клона антителообразующих или антиген-реактивных лимфоцитов данной специфичности. Из др. механизмов И. п. (кроме клеток памяти) определ. значение имеют иммунные комплексы, цитоф ильные антитела, а также блокирующие и антиидиотипич. антитела. И. п. можно перенести от иммунного донора неиммунному реципиенту, переливая живые лимфоциты или вводя лимфоцитарный экстракт, содержащий «фактор переноса» или иммунную РНК. Ввод информации в И. п. осуществляется антигеном, хотя информация об антигене к этому моменту уже существует в генетич. памяти, возникшей в филогенезе и в т. н. онтогенетич. памяти, появившись в эмбриогенезе при дифференцировке лимфоидных клеток. Информац. ёмкость И. п.- до 106-107 бит на организм. У позвоночных включается более 100 бит в сутки. В филогенезе И. п. возникла одновременно с нейрологич. памятью. Полной ёмкости И. п. достигает у взрослых животных со зрелой иммунной системой (у новорождённых и старых особей она ослаблена).

.(Источник: «Биологический энциклопедический словарь.» Гл. ред. М. С. Гиляров; Редкол.: А. А. Бабаев, Г. Г. Винберг, Г. А. Заварзин и др. - 2-е изд., исправл. - М.: Сов. Энциклопедия, 1986.)


Смотреть что такое "ИММУНОЛОГИЧЕСКАЯ ПАМЯТЬ" в других словарях:

    иммунологическая память - Существование иммунной защиты против специфического возбудителя спустя много лет после перенесенного заболевания. [Англо русский глоссарий основных терминов по вакцинологии и иммунизации. Всемирная организация здравоохранения, 2009 г.] Тематики… … Справочник технического переводчика

    Immunological memory иммунологическая память. Cпособность иммунной системы к более быстрому иммунному ответу (позитивная И.п.) или к более слабому ответу (иммунологическая толерантность ) при … Молекулярная биология и генетика. Толковый словарь.

    Иммунологическая память - – способность иммунной системы организма отвечать специфическими реакциями на повторные вве дения антигена, проявляется ускорением или усилением ответа на антиген; выделяют кратковременную, долговременную и пожизненную; носителем являются… … Словарь терминов по физиологии сельскохозяйственных животных

    Способность иммунной системы быстрее и интенсивнее отвечать на повторную встречу с Аг. Обусловлена образованием при первичной встрече с Аг (примировании) долгоживущих, рециркулирующих Т и В клеток иммунол. памяти. (

основана на
наличии Т- и В-клеток памяти, которые
образуются при первичном введении антигена
(первичном иммунном ответе). Клетки памяти
быстро
пролиферируют
под
влиянием
специфического антигена: появляется большая
популяция эффекторных клеток, увеличивается
синтез антител и цитокинов. За счет клеток
памяти более быстро и эффективно удаляются
повторно введенные антигены (при вторичном
иммунном ответе).

При
вторичном
иммунном
ответе
значительно
возрастает
скорость
образования, количество и аффинность IgG.
Иммунологическая память при некоторых
инфекциях (оспа, корь и др.) может
сохраняться годами и пожизненно.

Феномен
иммунологической памяти широко
используется в практике вакцинации людей
для создания напряженного иммунитета и
поддержания его длительное время на
защитном уровне. Осуществляют это 2-3кратными
прививками
при
первичной
вакцинации и периодическими повторными
введениями
вакцинного
препарата
-
ревакцинациями.
Однако феномен иммунологической памяти
имеет и отрицательные стороны. Например,
повторная попытка трансплантировать уже
однажды
отторгнутую
ткань
вызывает
быструю и бурную реакцию - криз
отторжения.

Иммунологическая
толерантность -
отсутствие иммунного ответа при наличии в
организме
антигенов
(толерогенов),
досгупных
лимфоцитам.
Наиболее
толерогенными являются растворимые
антигены, так как не вызывают у
антигенпрезентирующих клеток экспрессию
соответствующих
костимулирующих
молекул для иммунного ответа.

В
отличие
от
иммуносупрессии
иммунологическая
толерантность
предполагает изначальную ареактивность
иммунокомпетентных
клеток
к
определенному антигену

Иммунологическую
толерантность
вызывают антигены, которые получили
название толерогены. Ими могут быть
практически
все
вещества,
однако
наибольшей толерогенностью обладают
полисахариды.

Иммунологическая
толерантность бывает
врожденной и приобретенной.
Примером
врожденной толерантности
является отсутствие реакции иммунной
системы на свои собственные антигены.

Приобретенную
толерантность можно создать,
вводя в организм вещества, подавляющие
иммунитет (иммунодепрессанты), или же путем
введения антигена в эмбриональном периоде
или в первые дни после рождения индивидуума.
Приобретенная толерантность может быть
активной и пассивной.
Активная
толерантность создается путем
введения в организм толерогена, который
формирует специфическую толерантность.
Пассивную
толерантность можно вызвать
веществами, тормозящими биосинтетическую
или
пролиферативную
активность
иммунокомпетентных
клеток
(антилимфоцитарная сыворотка, цитостатики и
пр.).

Иммунологическая
толерантность отличается
специфичностью - она направлена к строго
определенным
антигенам.
По
степени
распространенности
различают
поливалентную
и
расщепленную
толерантность.
Поливалентная
толерантность возникает
одновременно
на
все
антигенные
детерминанты, входящие в состав конкретного
антигена.
Для
расщепленной, или моновалентной,
толерантности характерна избирательная
невосприимчивость
каких-то
отдельных
антигенных детерминант.

Степень
проявления
иммунологической
толерантности существенно зависит от ряда
свойств макроорганизма и толерогена. Так, на
проявление толерантности влияет возраст и
состояние иммунореактивности организма.

Иммунологическую
толерантность легче
индуцировать в эмбриональном периоде
развития и в первые дни после рождения,
лучше всего она проявляется у животных со
сниженной
иммунореактивностью
и
с
определенным генотипом.

Иммунологическая
толерантность развивается
по следующим направлениям: делеция клона
лимфоцитов,
связавших
антиген
своими
рецепторами и (вместо активации) погибающих
в результате сигнала на апоптоз; анергия клона
лимфоцитов
из-за
отсутствия
активации
лимфоцитов, связавших антиген своими Т- или
В-клеточными рецепторами. Т-лимфоцит не
отвечает на антиген, если при его представлении
у антиген презентирующей клетки не
экспрессируются стимулирующие молекулы В7
(CD8O и CD86).

Важное значение в индукции иммунологической
толерантности
имеют
доза
антигена
и
продолжительность его воздействия.
Различают
высокодозовую и низкодозовую
толерантность.
Высокодозовую
толерантность
вызывают
введением
больших
количеств
высококонцентрированного антигена. При этом
наблюдается прямая зависимость между дозой
вещества и производимым им эффектом.
Низкодозовая
толерантность,
наоборот,
вызывается
очень
малым
количеством
высокогомогенного
молекулярного
антигена.
Соотношение «доза-эффект» в этом случае имеет
обратную зависимость.

Выделяют три наиболее вероятные причины
развития иммунологической толерантности:
Элиминация
из
организма
антигенспецифических клонов лимфоцитов.
Блокада
биологической
иммунокомпетентных клеток.
Быстрая
антителами.
нейтрализация
активности
антигена

Феномен
иммунологической толерантности
имеет большое практическое значение. Он
используется для решения многих важных
проблем медицины, таких как пересадка
органов
и
тканей,
подавление
аутоиммунных реакций, лечение аллергий и
других
патологических
состояний,
связанных с агрессивным поведением
иммунной системы.

Классификация аллергических реакций по патогенезу [по Джеллу и Кумбеу, 1968]

Тип реакции
Фактор
патогенеза
Механизм патогенеза
Клинический
пример
I,
IgE, lgG4
анафилактический (ГНТ)
Образование рецепторного Анафилаксия,
комплекса
IgE
(G4)-FcR анафилактический
тучных
клеток
и шок, поллинозы
базофилов→
Взаимодействие эпитопа
аллергена с рецепторным
комплексом→ Активация
тучных клеток и
базофилов→
Высвобождение медиаторов
воспаления и других
биологически активных
веществ
II,
IgM, IgG
цитотоксически
й (ГНТ)
Выработка цитотоксических
антител→
Активация
антителозависимого
цитолиза
Лекарственная
волчанка,
аутоиммунная
гемолитическая
болезнь,
аутоиммунная
тромбоцитопения

III,
IGM.IRG
иммунокомпле
ксный (ГНТ)
Образование избытка
иммунных комплексов→
Отложение иммунных
комплексов на базалъных
мембранах, эндотелии и в
соединительнотканной
строме→
Активация
антителозависимой
клеточно-опосредованной
цитотоксичности →
Запуск иммунного
воспаления
Сывороточная
болезнь, системные
заболевания
соединительной
ткани, феномен
Артюса, (легкое
фермера»
IV,
Т-лимфоциты
клеточно-опосредованный
(ГЗТ)
Сенсибилизация Тлимфоцитов→
Активация макрофага→
Запуск иммунного
воспаления
Кожноаллергическая
проба,
контактная
аллергия, белковая
аллергия
замедленного типа

На первичный контакт с антигеном организм
отвечает
образованием
антител
и
сенсибилизированных лимфоцитов.
При повторном контакте антиген вступает в
реакцию с антителами и сенсибилизированными
лимфоцитами. Эти реакции направлены на
устранение антигена, но при определенных
условиях могут привести к патологическим
последствиям.

Заболевание возникает лишь при значительном
отклонении иммунореактивности от нормы.
При
повышенном
уровне
индивидуальной
реактивности в отношении данных антигенов речь
идет об аллергии.

Разделение
аллергических реакций на
четыре типа весьма важно с клинической
точки зрения. Следует подчеркнуть, что
различные типы аллергических реакций
редко встречаются в чистом виде; как
правило, они сочетаются или же переходят
одна в другую в ходе заболевания.

. При первичном
контакте с антигеном образуются IgE, которые
прикрепляются Fc-фрагментом и тучный
клеткам и базофилам. Повторно введенный
антиген перекрестно связывается с IgE на
клетках, вызывая их дегрануляцию, выброс
гистамина и других медиаторов аллергии.

. Антиген,
расположенный на клетке «узнается»
антителами классов IgG, IgM. При
взаимодействии типа «клетка-антигенантитело»
происходит
активизация
комплемента и разрушение клетки по трем
направлениям:
комплементзависимый
цитолиз
(А);
фагоцитоз
(Б);
антителозависимая
клеточная
цитотоксичность (В).

Антитела
классов IgG, IgM образуют с растворимыми
антигенами иммунные комплексы, которые
активируют комплемент. При избытке
антигенов или недостатке комплемента
иммунные комплексы откладываются на
стенке сосудов, базальных мембранах, т.е.
структурах, имеющих Fc-рецепторы.

. Этот тип обусловлен
взаимодействием антигена с макрофагами и
Thl-лимфоцитами,
стимулирующими
клеточный иммунитет

Периоды образования специфических антител в ответ на введение вакцины (рис. 4):

Рис. 4 . Динамика образования антител при первичном (А-прайминг)
и вторичном (Б-бустерная иммунизация) введении антигена.
Периоды образования специфических антител (А. А. Воробьев и др., 2003):

а - латентный; б - логарифмического роста; в - стационарный; г - снижения

· латентный («лаг»-фаза) - макрофаги перерабатывают антиген, представляют его Т-лимфоцитам, Тh активируют В-лимфоциты, последние превращаются в плазматические антителообразующие клетки, параллельно образуются В-лимфоциты памяти. От введения вакцины до появления антител в сыворотке крови проходит от нескольких суток до 2 недель (время зависит от вида вакцины, способа введения и особенностей
иммунной системы);

· роста («лог»-фаза) - экспоненциальное увеличение количества антител в сыворотке крови продолжительностью от 4 дней до 4 недель;

· стационарный - количество антител поддерживается на постоянном уровне;

· снижения - после достижения максимального титра антител происходит его снижение, причем сначала относительно быстро, а затем медленно. Длительность фазы снижения зависит от соотношения скорости синтеза антител и их полураспада. Когда снижение уровня протективных антител достигает критического, защита падает, и становится возможным заболевание при контакте с источником инфекции. Поэтому для поддержания напряженного иммунитета часто необходимо вводить бустерные дозы вакцины.

Различают первичный и вторичный иммунный ответ организма. Первичный иммунный ответ наблюдается при первичном введении антигена. Вторичный иммунный ответ развивается после повторных контактов системы иммунитета с антигенами.

При первичном иммунном ответе на антиген в основном продуцируются IgM, при вторичном - плазматические клетки переключаются с продукции IgM на более зрелые изотипы и продуцируют антитела классов IgG, IgA или IgE с более высоким сродством к антигену. IgG наиболее полно проходят фазы созревания аффинитета. Они нейтрализуют экзотоксины, активируют комплемент и обладают высоким сродством к Fc-рецепторам всех типов. Нейтрализация и удаление свободных патогенов осуществляется путем их опсонизации и последующего фагоцитоза. IgG являются также важным фактором борьбы с внутриклеточными патогенами. Опсонизируя клетки, IgG делают их доступными для антителозависимого клеточного цитолиза.

Иммунологическая память - способность иммунной системы отвечать на повторный контакт с антигеном быстрее, сильнее и длительнее по сравнению с первичным ответом. Иммунологическая память обеспечивается клетками памяти - длительно живущими субпопуляциями антигенспецифических T- и B-клеток, быстрее реагирующими на повторное введение антигена. Они находятся на стадии G 1 клеточного цикла, т. е. вышли из стадии покоя G 0 и готовы к быстрому превращению в эффекторные клетки при очередном контакте с антигеном.

Иммунологическая память, особенно память Т-лимфоцитов, очень стойкая, благодаря чему удается искусственно формировать длительный противоинфекционный иммунитет. Преобладающее направление развития вторичного иммунного ответа закодировано в субпопуляционной принадлежности Т-клеток памяти и последующей их дифференцировке
в Th1 или Th2.

Вторичный иммунный ответ характеризуется следующими
признаками:

1. Более раннее развитие иммунных реакций по сравнению с первичным ответом.

2. Уменьшение дозы антигена, необходимой для достижения оптимального ответа.

3. Увеличение напряженности и длительности иммунного ответа.

4. Усиление гуморального иммунитета: увеличение количества
антителообразующих клеток и циркулирующих антител, активация Тh2
и усиление выработки ими цитокинов (ИЛ 3, 4, 5, 6, 9, 10, 13), сокращение периода образования IgM, преобладание IgG и IgA.

5. Повышение специфичности гуморального иммунитета в результате феномена «созревания аффинности».

6. Усиление клеточного иммунитета: увеличение числа антигенспецифических Т-лимфоцитов, активация Тh1 и усиление выработки ими цитокинов (γ-интерферона, ФНО, ИЛ2), повышение аффинности антигенспецифических рецепторов Т-лимфоцитов.

Эффективность вторичного иммунного ответа прежде всего зависит от полноценности (достаточной интенсивности) первичного антигенного стимула, длительности интервала между первичным и вторичным введением антигена.

Так как в процессе иммунного ответа основное значение имеют антитела, то в его развитии главная роль принадлежит В-системе лимфоцитов. Определенное значение имеет клеточный иммунитет, в развитии которого основная роль принадлежит Т-системе лимфоцитов.

ИММУНОЛОГИЧЕСКАЯ ПАМЯТЬ - способность организма отвечать ускоренной и усиленной, иммунной реакцией при повторном контакте с ранее введенным антигеном. Иммунологическая память сохраняется в течение многих месяцев, а при воздействии некоторых антигенов – годы. Клетками иммунологической памяти служат Т- и В-лимфоциты, стимулированные данным антигеном, при этом большое значение имеют Т-лимфоциты. Клетки иммунологической памяти представляют собой часть дочерних клеток, переходящих в покоящееся состояние после двух-трех делений, стимулированных антигеном Т- и В-лимфоцитов.

Лимфоциты образуют две популяции – Т- и В-лимфоцитов, которые различаются по набору рецепторов, находящихся на их поверхности, и выполняют различные функции.

Т-лимфоциты – проходят созревание в тимусе и выполняют функцию клеточного звена иммунитета. Т-лимфоциты распознают клетки, несущие чужеродные антигены, и уничтожают их после непосредственного контакта (атаки), а также выполняют функцию регуляции иммунного ответа.

В-лимфоциты – у млекопитающих созревание В-лимфоцитов происходит в костном мозге. В-лимфоциты ответственны за гуморальное звено иммунитета – продукцию антител. После антигенного стимула В-лимфоцит превращается в лимфобласт – клетку, способную к делению. Часть лимфобластов дифференцируется в В-лимфоциты памяти, другая часть превращается в плазматические клетки, которые осуществляют продукцию антител.

Иммунологическая толерантность - явле­ние, противоположное иммунному ответу и иммунологической памяти. Проявляется она отсутствием специфического продуктивного иммунного ответа организма на антиген в связи с неспособностью его распознавания. В отличие от иммуносупрессии имму­нологическая толерантность предполагает изначальную ареактивность иммунокомпе-тентных клеток к определенному антигену. Открытию иммунологической толеран­тности предшествовали работы Р. Оуэна (1945), который обследовал разнояйцовых те­лят-близнецов. Ученый установил, что такие животные в эмбриональном периоде обмени­ваются через плаценту кровяными ростками и после рождения обладают одновременно двумя типами эритроцитов - своими и чу­жими. Наличие чужеродных эритроцитов не вызывало иммунную реакцию и не приводило к внутрисосудистому гемолизу. Явление былоназвано эритроцитарной мозаикой. Однако Оуэн не смог дать ему объяснение. Собственно феномен иммунологической то­лерантности был открыт в 1953 г. независимо чешским ученым М. Гашеком и группой англий­ских исследователей во главе с П. Медаваром. Гашек в опытах на куриных эмбрионах, а Медавар - на новорожденных мышатах показа­ли, что организм становится нечувствительным к антигену при его введении в эмбриональном или раннем постнатальном периоде.
Иммунологическую толерантность вызы­вают антигены, которые получили название толерогены. Ими могут быть практически все вещества, однако наибольшей толерогеннос-тью обладают полисахариды.
Иммунологическая толерантность быва­ет врожденной и приобретенной. Примером врожденной толерантности является отсутс­твие реакции иммунной системы на свои собственные антигены. Приобретенную толе­рантность можно создать, вводя в организм вещества, подавляющие иммунитет (иммуно-депрессанты), или же путем введения антигена в эмбриональном периоде или в первые дни после рождения индивидуума. Приобретенная толерантность может быть активной и пассив­ной. Активная толерантность создается пу­тем введения в организм толерогена, который формирует специфическую толерантность. Пассивную толерантность можно вызвать ве­ществами, тормозящими биосинтетическую или пролиферативную активность иммуно-компетентных клеток (антилимфоцитарная сыворотка, цитостатики и пр.). Иммунологическая толерантность отличает­ся специфичностью - она направлена к строго определенным антигенам. По степени рас­пространенности различают поливалентную и расщепленную толерантность. Поливалентная толерантность возникает одновременно на все антигенные детерминанты, входящие в со­став конкретного антигена. Для расщепленной, или моновалентной, толерантности характер­на избирательная невосприимчивость каких-то отдельных антигенных детерминант. Степень проявления иммунологической толе­рантности существенно зависит от ряда свойств макроорганизма и толерогена. Так, на проявление толерантности влияет возраст и состояние иммунореактивности организма. Иммунологическую толерантность легче индуцировать в эмбрио­нальном периоде развития и в первые дни после рождения, лучше всего она проявляется у жи­вотных со сниженной иммунореактивностью и с определенным генотипом. Из особенностей антигена, которые опреде­ляют успешность индукции иммунологичес­кой толерантности, нужно отметить степень его чужеродности для организма и природу, дозу препарата и продолжительность воздейс­твия антигена на организм. Наибольшей толе-рогенностью обладают наименее чужеродные по отношению к организму антигены, имею­щие малую молекулярную массу и высокую гомогенность. Легче всего формируется то­лерантность на тимуснезависимые антигены, например, бактериальные полисахариды. Важное значение в индукции иммуноло­гической толерантности имеют доза анти­гена и продолжительность его воздействия. Различают высокодозовую и низкодозовую толерантность. Высокодозовую толерантность вызывают введением больших количеств вы­сококонцентрированного антигена. При этом наблюдается прямая зависимость между до­зой вещества и производимым им эффек­том. Низкодозовая толерантность, наоборот, вызывается очень малым количеством вы­сокогомогенного молекулярного антигена. Соотношение «доза-эффект» в этом случае имеет обратную зависимость.

Не все индуцированные антигеном В-лимфоциты подвергаются дифференцировке до конца. Часть из них после нескольких циклов деления перестает размножаться и образует субклон клеток памяти (из одной В-клетки образуется около 1000 клеток памяти, таким же образом образуются клетки памяти и из Т-лимфоцитов). Клетки памяти определяют продолжительность приобретенного иммунитета. При повторном контакте с данным антигеном они быстро превращаются в клетки-эффекторы. При этом В-клетки памяти обеспечивают синтез антител в более короткие сроки, в большем количестве и с более высоким сродством антител другого класса иммуноглобулинов - IgG вместо IgM.

При образовании клеток памяти происходит дальнейшая рекомбинация генов Н-цепи: тандем генов V х D х J переносится с Сц-гена к одному из СН-генов - у, а, е. Установлено, что существуют Т-хелперы, которые определяют направление переключения классов Ig.

В ходе антигензависимой дифференцировки В-лимфоцитов используется и механизм соматических мутаций в V-генах. Они происходят с частотой в 10000 раз большей частоты спонтанных мутаций и ограничиваются определенной стадией дифференцировки, а именно - периодом перехода от продук­ции IgM к продукции IgG. Благодаря этим мутациям обеспечивается максимальная подгонка структу­ры активного центра антитела к детерминанту антигена.

Таким образом, наиболее важными событиями дифференцировки В-лимфоцитов являются:

1)сборка гена иммуноглобулина из его фрагментов, содержащихся в ДНК эмбриональных клеток; 2)возникнове-ние новых вариантов генов Ig в ходе дифференцировки; 3)вспышка соматических мутаций в строго определенной стадии дифференцировки. В результате этих событий происходит образование множе­ства генетически стабильных клонов антителообразующих клеток (вероятно, не менее чем 108).

Общая схема происхождения и дифференцировки Т- и В-лимфоцитов и макрофагов из исходных стволовых клеток представлена на рис. 71.

Рис. 71. Схема происхождения и дифференцировки клеток-эффекторов иммунной системы (ВОЗ, 1978).

HSC - костно-мозговая стволовая кроветворная клетка; LSC - лимфоидная стволовая клетка; РТС - предшественник Т-клеток;

РВС - предшественник В-клеток; ТЕ - T-эффекторы; Тн - Т-помощники; Ts - T-супрессоры; CFUc - кроветворный предшественник макрофагов; PC - плазматическая клетка; ЕС - эпителиальная клетка; THF - тимусный гуморальный фактор.

В соответствии с этой схемой, исходная костномозговая клетка (HSC) генерирует два типа предшественников: лимфоидную стволовую клетку (LSC), от которой происходят клетки-предшествен­ники Т-лимфоцитов (РТС), клетки-предшественники В-лимфоцитов (РВС); и клетку, являющуюся предшественником клеток красной крови, от которой, в свою очередь, происходит предшественник лейкоцитов (CFUc) и берет начало система мононуклеарных макрофагов. Предшественники Т-лимфо­цитов под влиянием тимуса превращаются в Т-лимфоциты и их субклассы. Пути дифференцировки В-лимфоцитов описаны выше.

В целом система В-лимфоцитов обеспечивает синтез антител, отвечает за иммунитет против большинства бактериальных и вирусных инфекций, анафилаксию и другие реакции гиперчувствитель­ности немедленного типа, некоторые аутоиммунные болезни, за формирование клеток иммунной памяти и иммунологическую толерантность.

Система Т-лимфоцитов играет регуляторную роль по отношению к В-лимфоцитам, отвечает за все реакции гиперчувствительности замедленного типа, иммунитет против вирусных и некоторых бактериальных инфекций (туберкулез, бруцеллез, туляремия и др.), осуществляет иммунологичес­кий надзор, отвечает за противоопухолевый иммунитет, иммунологическую толерантность, некото­рые виды иммунопатологии.

Вместе с тем, Т- и В-клетки являются двумя частями единой иммунной системы организма. Поэтому деление иммунитета на гуморальный и клеточный носит весьма условный характер, так как антитела синтезируются В-клетками, а Т-лимфоциты и другие клетки осуществляют свою иммунокомпетентность через синтезируемые ими гуморальные факторы (цитокины, лимфокины, интерлейкины и т. п.).

Координированное взаимодействие макрофагов, Т- и В-лимфоцитов при встрече с антигеном обес­печивает выдачу адекватного иммунного ответа.

49.Гиперчувствительность: общий обзор

Определенные формы антигена при повторном контакте с организмом могут вызвать реакцию, специфическую в своей основе, но включающую неспецифические клеточные и молекулярные факторы острого воспалительного ответа. Это явление чрезмерного или неадекватного проявления реакций приобретенного иммунитета называют гиперчувствительностью.

Реакции гиперчувствительности могут провоцироваться многими антигенами, и причины их у разных людей различны.

Известны две формы повышенной реактивности: гиперчувствительность немедленного типа, включающая в себя три типа гиперчувствительности (типы I, II и III) и гиперчувствительность замедленного (IV-го) типа. На практике типы гиперчувствительности необязательно встречаются порознь.

Если гиперчувствительность немедленного типа обусловлена гуморальными иммунными механизмами, то гиперчувствительность замедленного типа -клеточными. Однако для некоторых реакций гиперчувствительности такая классификация не подходит, т.к. механизм их комплексный. При этом, как для гиперчувствительности, обусловленной IgE (тип I), так и для развития различных форм заболеваний, связанных с IgG (типы II и III), критическое значение имеют дозы и способ проникновения антигена в организм.

Гиперчувствительность немедленного типа (типы I, II и III) проявляется при участии антител, которые цитофильны по отношению к тучным клеткам и базофилам - продуцентам медиаторов воспаления. гиперчувствительность замедленного типа (четвертый тип) реализуется с помощью Т-клеток воспаления (ТН1) как основных эффекторов реакции, обеспечивающих накопление в зоне воспаления макрофагов.

Впервые гиперчувствительность замедленного типа наблюдал немецкий бактериолог Р.Кох в конце XIX века: введение туберкулезных бацилл в кожу зараженного туберкулезом животного вызывало через 1-2 суток сильное местное воспаление с образованием гранулем, тогда как у интактных животных такая инъекция приводила лишь к очень слабой кратковременной реакции.

В 1902 г. Шарль Рише и Поль Портье, изучая антитоксический иммунитет к яду морской анемоны, описали феномен анафилактического шока. Повторное внутривенное введение предварительно иммунизированным собакам яда в количестве, значительно меньшем летальной дозы, приводило к развитию острой системной реакции, проявляющейся в спазме сосудов, коллапсе и гибели животных. Введение яда в кожу иммунизированным животным провоцировало только местную реакцию воспаления.

В то же время Морис Артюс, работая с нетоксическими формами антигена, описал одну из форм местной аллергической реакции. Первая инъекция такого антигена в кожу либо не вызывала реакции, либо она была очень слаба. Повторное введение того же антигена в ряде случаев приводило к интенсивной инфильтрации места инъекции полиморфноядерными лейкоцитами, геморрагической реакции, некрозу сосудов.

Еще один феномен, связанный с аллергической реакцией, был обнаружен при широком применении лошадиных антидифтерийных и антистолбнячных сывороток для лечения соответствующих заболеваний. Введение значительного количества этих сывороток на поздних этапах лечения иногда приводило к системной реакции, сопровождающейся повышением температуры, высыпанием, крапивницей, а в ряде случаев поражением суставов и почек. Это явление получило название сывороточной болезни, так как связано с образованием антител к белкам вводимой сыворотки.

Способность развивать эти аллергические реакции в интактном организме можно инициировать с помощью переноса сыворотки от больных доноров. Причем сенсибилизированный подобным способом реципиент при введении разрешающей дозы аллергена разовьет столь же быстрый ответ повышенной чувствительности, что и донор сыворотки.

Если гиперчувствительность немедленного типа передается с помощью сыворотки, то гиперчувствительность замедленного типа в интактном организме можно вызвать только при адоптивном переносе жизнеспособных лимфоидных клеток от сенсибилизированного донора; при этом время развития реакции замедленного типа у пассивно сенсибилизированного рецепиента равняется, как и у донора, 1-2 суткам.

Эти первые результаты ясно указывали на то, что в основе двух форм повышенной чувствительности лежат разные механизмы.

При повторной встрече с антигеном организм формирует более активную и быструю иммунную реакцию - вторичный иммунный ответ. Этот феномен - иммунологической памяти. Иммунологическая память имеет высокую специфичность к конкретному АГ., распространяется на гуморальное и клеточное звено иммунитета и обусловлена В- и Т-лимфоцитами. Благодаря ей наш организм надежно защищен от повторных антигенных интервенций.

Механизм формирования. Один из них предполагает длительное сохранение АГ в организме. Этому имеется множество примеров: инкапсулированный возбудитель туберкулеза, персисгирующие вирусы кори, полиомиелита, ветряной оспы и некоторые другие патогены длительное время, иногда всю жизнь, сохраняются в организме, под-держивая в напряжении иммунную систему. Вероятно также наличие долгоживуших дендритных АПК, способных длительно сохранять и презентировать антиген. Другой в процессе развития в оргнизме продуктивного иммунного ответа часть антигенореактивных Т- или В-лимфопитов дифференцируется в малые покоящиеся клетки, или клетки иммунологической памяти. Эти клетки отличаются высокой спе-цифичностью к конкретной антигенной детерминанте и большой продолжительностью жизни (до 10 лет и более). Они активно рециркулируют в организме, распределяясь в тканях и органах, но постоянно возвращаются в места своего происхождения за счет хоминговых рецепторов. Это обеспечивает постоянную готовность иммунной системы реагировать на повторный контакт с антигеном по вторичному тиггу. Феномен иммунологической памяти используется в практике вакцинации для создания напряженного иммунитета и поддержания его длительное время гга защитном уровне. Осуществляют это 2-3-кратными прививками при первичной вакцинации и периодическими повторными введениями вакцинного препарата - ревакцинациями.

Однако феномен имеет и отрицательные стороны. Например, повторная попытка трансплантировать уже однажды отторгнутую ткань вызывает быструю и бурную реакцию - криз отторжения.

Иммунологическая толерантность- явление, противоположное иммунному ответу и иммунологической памяти. Проявляется отсутствием специфического продуктивного иммунного ответа организма на антиген в связи с неспособностью его распознавания. В отличие от иммуносупрессии иммунологическая толерантность предполагает изначальную ареактивность иммунокомпетентных клеток к определенному антигену. Открытию предшествовали работы Р. Оуэна (1945), который обследовал разнояйцовых телят-близнецов. Ученый установил, что такие животные в эмбриональном периоде обмениваются через плаценту кровяными ростками и после рождения обладают одновременно двумя типами эритроцитов - своими и чужими. Наличие чужеродных эритроцитов не вызывало иммунную реакцию и не приводило к внутрисосудистому гемолизу. Явление было названо эритроцитарной мозаикой. Однако Оуэн не смог дать ему объяснение.

Собственно феномен иммунологической толерантности был открыт в 1953 г. независимо чешским ученым М. Гашеком и группой английских исследователей во главе е П. Медаваром. Гашек в опытах на куриных эмбрионах, а Медавар - на новорожденных мышатах показали, что организм становится нечувствительным к антигену при его введении в эмбриональном или раннем иостнатальном ггериоде. Иммунологическую толерантность вызывают AI - толерогены. бывает врожденной - отсутствие реакции иммунной системы на свои собственные антигены. Приобретенную толерантность можно создать, вводя в организм вещества, подавляющие иммунитет (иммуно-депрессанты). или же путем введения антигена в эмбриональном периоде или в первые дни после рождения индивидуума. Приобретенная толерантность: Активная

толерантность создается путем введения в организм толерогена, который формирует специфическую толерантность. Пассивную толерантность можно вызвать веществами, тормозящими биосинтетическую или пролиферативную активность иммуно- компетентных клеток (антилимфоцитарная сыворотка, цитостатики и пр.). Иммунологическая толерантность отличается специфичностью - она направлена к строго определенным антигенам. По степени распространенности различают Поливалентная толерантность возникает одновременно на все антигенные детерминанты, входящие в состав конкретного антигена. Для расщепленной, или моновалентной, толерантности характерна избирательная невосприимчивость каких-то отдельных антигенных детерминант.

Степень проявления зависит от свойств макроорганизма и толерогена - возраст и состояние иммуннореактивности организма.легче индуцировать в эмбриональном периоде развития и в первые дни после рождения, со сниженной иммунореактивностью антигена- степень его чужеродности для организма и природу, дозу препарата и продолжительность воздействия антигена на организм. Наибольшей толерогенностью обладают наименее чужеродные по отношению к организму антигены, имеющие малую молекулярную массу и высокую гомогенность. Важное значение в индукции иммунологической толерантности имеют доза антигена и продолжительность его воздействия. Различают высокодозовую и низкодозовую толерантность. Высокодозовую толерантность вызывают введением больших количеств высококонцентрированного антигена. При этом наблюдается прямая зависимость между дозой вещества и производимым им эффектом. Низкодозовая толерантность, наоборот, вызывается очень малым количеством высокогомогенного молекулярного антигена. Соотношение «доза-эффект» в этом случае имеет обратную зависимость.

Выделяют три наиболее вероятные причины развития иммунологической толерантности: 1. Элиминация из организма антигенспецифических клонов лимфоцитов. 2. Блокада биологической активности иммунокомпетентных клеток.З. Быстрая нейтрализация АГ AT.

Элиминации, подвергаются клоны аутореактивных Т- и В-лимфоцитов на ранних стадиях их онтогенеза. Активация антигенспецифического рецептора (ТСК или ВСК.) незрелого лимфоцита индуцирует в нем апоптоз. Этот феномен, обеспечивающий в организме ареактивность к аутоантигенам, получил название центральной толерантности. Основная роль в блокаде биологической активности иммунокомпетентных клеток принадлежит иммуноцитокинам. Воздействуя на соответствующие рецепторы, они способны вызвать ряд «негативных» эффектов. Например, пролиферацию Т- и В-лимфоцитов активно тормозит (3-ТФР. Дифференцировку ТО-хелпера в Т1 можно заблокировать при помощи HJ1-4. -13, а в Т2-хелпер - у-ИФН. Биологическая активность макрофагов ингибируется продуктами Т2-хелпсров(ИЛ-4. -10, -13,.

Биосинтез в B-лимфоците и его превращение в плазмоцит подавляется YgG. Быстрая инактивация молекул антигена антителами предотвращает их связывание с рецепторами иммунокомпетентных клеток - элиминируется специфический активирующий фактор. Возможен адаптивный перенос иммунологической толерантности интактному животному путем введения ему иммунокомпетентных клеток, взятых от донора. Толерантность можно также искусственно отменить. Для этого необходимо активировать иммунную систему адъювантами. интерлейкинами или переключить направленность ее реакции иммунизацией модифицированными антигенами. Другой путь - удалить из организма толероген, сделав инъекцию специфических антител или проведя иммуносорбцию. Феномен иммунологической толерантности имеет большое практическое значение. Он используется для решения многих важных проблем медицины, таких как пересадка органов и тканей, подавление аутоиммунных реакций, лечение аллергий и других патологических состояний, связанных с агрессивным поведением иммунной системы.

Особенности противовирусного, противогрибкового, противоопухолевого, трансплантационного иммунитета.

Противовирусный иммунитет. Основой противовирусного иммунитета является клеточный иммунитет. Клетки-мишени, инфицированные вирусом, уничтожаются цитотоксическими лимфоцитами, а также NK-клетками и фагоцитами, взаимодействую-щими с Fc-фрагментами антител, прикрепленных к вирусспецифическим белкам инфицированной клетки. Противовирусные антитела способны нейтрализовать только внеклеточно расположенные вирусы, как и факторы неспецифического иммунитета - сывороточные противовирусные ингибиторы. Такие вирусы, окруженные и блокированные белками организма, поглощаются фагоцитами или выводятся с мочой, потом и др. (так называемый «выделительный иммунитет»). Интерфероны усиливают противовирусную резистентность, индуцируя в клетках синтез ферментов, подавляющих образование нуклеиновых кислот и белков вирусов. Кроме этого, интерфероны оказывают иммуномодулирующее действие, усиливают в клетках экспрессию антигенов главного комплекса гистосовместимости (МНС). Противовирусная защита слизистых оболочек обусловлена секреторными IgA, которые, взаимодействуя с вирусами, препятст-вуют их адгезии на эпителиоцитах.

Противогрибковый иммунитет. Антитела (IgM, IgG) при микозах выявляются в низких титрах. Основой противогрибкового иммунитета является клеточный иммунитет. В тканях происходит фагоцитоз, развивается эпителиоидная гранулематозная реакция, иногда тромбоз кровеносных сосудов. Микозы, особенно оппортунистические, часто развиваются после длительной антибактериальной терапии и при иммунодефицитах. Они сопровождаются развитием гиперчувствительности замедленного типа. Возможно развитие аллергических заболеваний после респираторной сенсибилизации фрагментами условно-патогенных грибов родов Aspergillus, Penicillium, Mucor, Fusarium и др. Антигены грибов имеют относительно низкую иммуногенность: они практически не индуцируют антителообразование (титры специфических антител остаются низкими), но стимулируют клеточное звено иммунитета - активированные макрофаги, которые осуществляют антителозависимую клеточноопосредованную цит о токсичность г рибов. Активированные макрофаги продуцируют перекисные и N0"-ион-радикалы и ферменты,

которьК поражают мембрану клетки на расстоянии или после фагоцитирования. Первичное распознавание чужеродных клеток происходит при помощи FcR по антителам, которые связались с поверхностными антигенами клеток-мишеней. При микозах наблюдается аллергизация макроорганизма. Кожные и глубокие микозы сопровождаются, как правило, ГЗТ. Грибковые поражения слизистых дыхательных и мочеполовых путей вызывают аллергизацию по типу ГНТ (реакция I типа). Напряженность противогрибкового иммунитета оценивается по результатам кожно-аллергических проб с грибковыми аллергенами.

Трансплантационным иммунитетом - иммунную реакцию макроорганизма, направленную против пересаженной в него чужеродной ткани (трансплантата). Иммунная реакция на чужеродные клетки и ткани обусловлена чем, что в их составе содержатся генетически чужеродные для организма антигены- гистосовместимости, наиболее полно представлены на ЦПМ клеток. Реакция отторжения не возникает лишь у однояйцовых близнецов. Выраженность реакции от степени чужеродности, объема трансплант ируемою материала и состояния иммунореактивност и реципиента. Основным фактором клеточного трансплантационного иммунитета являются Т-киллеры. После сенсибилизации антигенами донора мигрируют в ткани трансплантата и оказывают на них антителонезависимую клеточноопосредованную цитотоксичность.Специфические антитела, которые образуются на чужеродные антигены (гемагглютинины, гемолизины, лейкотоксины, цитогоксины), имеют важное значение в формировании трансплантационного иммунитета. Они запускают ан тителоопосредованный ци толиз трансплантата (комплемен-опосредованный и антителозависимая клеточноопосредован- ная цитотоксичность).

Механизм отторжения. В первой фазе вокруг трансплантата и сосудов наблюдается скопление иммунокомпетентных клеток (лимфоидная инфильтрация), в том числе Т- киллеров. Во второй фазе происходит деструкция клеток трансплантата Т-киллерами, активируются макрофагапьное звено, естественные киллеры, специфический антителогенез. Возникает иммунное воспатение, тромбоз кровеносных сосудов, нарушается питание трансплантата и происходит его гибель. Разрушенные ткани утилизируются фагоцитами.-В процессе реакции отторжения формируется клон Т- и B-клеток иммунной памяти. Повторная попытка пересадки тех же органов и тканей вызывает вторичный иммунный ответ, который протекае т очень бурно и быстро заканчивае тся отторжением трансплантата. С клинической точки зрения выделяют ос трое, сверхострое и отсроченное отторжение трансплантата. Различаются они по времени реализации реакции и отдельным механизмам. Острое отторжение - это «нормальная» реакция иммунной системы по механизму первичного ответа, которая развивается в течение первых недель или месяцев после трансплантации в отсутствие иммуносупрессивной терапии. В ее основе лежит комплекс всевозможных цитолитических реакций, как с участием антител, так и независимых от них.

Отсроченное отторжение имеет тот же механизм, что и острое. Возникает через несколько лет после операции у пациентов, получавших иммуносупрессивную терапию. Сверхострое отторжение, или криз отторжения, развивается в течение первых суток после трансплантации у пациентов, сенсибилизированных к антигенам донора, по механизму вторичного иммунного ответа. Основу составляет антительная реакция: специфические антитела связываются с антигенами эндотелия сосудов трансплантата и поражают клетки, активируя систему комплемента по классическому пути. Параллельно инициируется иммунное воспаление и свертывающая система крови. Быстрый тромбоз сосудов трансплан тата вызывает его острую ишемию и ускоряет некрогизацию пересаженных тканей.

Иммунитет противоопухолевый. Мутантиые клетки возникают в результате нелетального действия химических, физических и биологических канцерогенов Мутантные клетки отличаются от нормальных метаболическими процессами и антигенным составом, имеют измененные антигены гистосовместимости.Они активируют гуморальное и клеточное звенья иммунитета, осуществляющие надзорную функцию. Важную роль в этом процессе играют специфические антитела (запускают комплемент-опосредованную реакцию и антителозависимую клеточно-опос- редованную цитотоксичность) и Т-киллеры, осуществляющие антителонезависимую клеточноопосредованную цитотоксичность.

Противоопухолевый иммунитет имеет свои особенности, связанные с низкой иммуногенностью раковых клеток. Эти клетки практически не отличаются от нормальных, интактных морфологических элементов собственного организма. Специфический антигенный «репертуар» опухолевых клеток также скуден. В число опухольассоциированных антигенов входит группа раково- эмбриональных антигенов, продукты онкогенов, некоторые вирусные антигены и гиперэкспрессируемые нормальные белки. Слабому иммунологическому распознаванию опухолевых клеток способствует отсутствие воспалительной реакции в месте онкогенеза, а также их иммуносупрессивная активность - биосинтез ряда «негативных» цитокинов, а также экранирование раковых клеток противоопухолевыми антителами.

Механизм основную роль в нем играют активированные макрофаги; определенное значение имеют также естественные киллеры. Защитная функция гуморального иммунитета во многом спорная - специфические антитела могут экранировать антигены опухолевых клеток, не вызывая их цитолиза.

Вместе с тем, в последнее время получила распространение иммунодиагностика рака основана на определении раково-эмбриональных антигенов и опухоль-ассоциированных