Измеряем длину молекулы. Kvant

Хотелось бы рассказать о важных вещах, которые редко разъясняются на сайтах компаний, реализующих очистительные системы, а ведь гораздо приятнее понимать, о чем идет речь, выбирая фильтр для своей семьи или на работу. В этом обзоре представлены некоторые важные аспекты, которые нужно учитывать при выборе фильтра.

Что такое микрон и нанометр?

Если Вы искали фильтр для воды, то скорее всего сталкивались с названием "микрон". Когда речь идет о механических картриджах, часто можно увидеть такие фразы, как "блок фильтрует грубые частички загрязнений размерами до 10 микрон и более". Но сколько же это - 10 микрон? Хотелось бы знать, какие загрязнения и примести картридж, рассчитанный на 10 микрон, пропустит. Касательно мембран (будь то проточный фильтр или обратный осмос) используется другой термин - нанометр, тоже сложный для представления размер. Один микрон - это 0,001 миллиметра, то есть если условно разделить один миллиметр на 1000 делений, то как раз получим 1 микрон. Нанометр - это 0,001 микрона, то есть по сути одна миллионная миллиметра. Названия «микрон» и «нанометр» придуманы для упрощения представления столь малых чисел.

Микроны чаще всего используются для представления глубины фильтрации, производимой полипропиленовыми или угольными картриджами, нанометры - для представления уровня фильтрации, производимой ультрафильтрационными или обратноосмотическими мембранами.

Чем отличаются фильтры для воды ?

Существует 3 основных типа фильтров: проточные, проточные с ультрафильтрационной мембраной (мембранные) и фильтры обратного осмоса. В чем главное различие этих систем? Проточный фильтр можно считать базовой очисткой, так как он редко очищает воду до состояния питьевой - то есть в отличие от двух других типов фильтров, после проточного воду нужно кипятить перед употреблением (исключением являются системы, содержащие материал Арагон, Аквален и Ecomix). Мембранные фильтры - фильтры с ультрафильтрационной мембраной очищают воду от всех типов загрязнений, однако оставляют нетронутым солевой баланс воды - то есть в воде остается естественный кальций, магний и другие минералы. Обратноосмотическая система очищает воду полностью, включая минералы, бактерии, соли - на выходе фильтра вода содержит, как ни странно, исключительно молекулы воды.

Хлор - самый хитрый из загрязнителей воды

Обычно, чтобы очистить воду от загрязнителя мембранной системой, поры мембраны должны быть меньше, чем размеры элемента. Однако это не работает с хлором, так как размеры его молекулы равны размерам молекулы воды и если сделать поры мембраны меньше, чем размеры хлора - то и вода тоже пройти не сможет. Вот такой парадокс. Поэтому все обратноосмотические системы в составе предфильтров и в качестве постфильтра имеют угольные картриджи, которые тщательно очищают хлор из воды. Причем заметьте, так как главная "головная боль" украинской воды - это именно хлор, если Вы хотите купить обратный осмос, стоит подбирать систему с двумя угольными картриджами в предфильтре - это говорит о качестве очистки.

Надеемся представленная информацию стала полезной для Вас. Больше информации можно найти на сайте

Кикоин А.К. Простой способ определения размеров молекул // Квант. - 1983. - № 9. - C.29-30.

По специальной договоренности с редколлегией и редакцией журнала "Квант"

В молекулярной физике главные «действующие лица» - это молекулы, невообразимо маленькие частицы, из которых состоят все на свете вещества. Ясно, что для изучения многих явлений важно знать, каковы они, молекулы. В частности каковы их размеры.

Когда говорят о молекулах, их обычно считают маленькими упругими твердыми шариками. Следовательно, знать размер молекул значит знать их радиус.

Несмотря на малость молекулярных размеров, физики сумели разработать множество способов их определения. В «Физике 9» рассказывается о двух из них. В одном используется свойство некоторых (очень немногих) жидкостей растекаться в виде пленки толщиной в одну молекулу. В другом размер частицы определяется с помощью сложного прибора - ионного проектора.

Существует, однако, очень простой, хотя и не самый точный, способ вычисления радиусов молекул (или атомов) Он основан на том, что молекулы вещества, когда оно находится в твердом или жидком состоянии, можно считать плотно прилегающими друг к другу. В таком случае для грубой оценки можно считать, что объем V некоторой массы m вещества просто равен сумме объемов содержащихся в нем молекул. Тогда объем одной молекулы мы получим, разделив объем V на число молекул N .

Число молекул в теле массой m равно, как известно, \(~N_a \frac{m}{M}\), где М - молярная масса вещества N A - число Авогадро. Отсюда объем V 0 одной молекулы определяется из равенства

\(~V_0 = \frac{V}{N} = \frac{V M}{m N_A}\) .

В это выражение входит отношение объема вещества к его массе. Обратное же отношение \(~\frac{m}{V} = \rho\) есть плотность вещества, так что

\(~V_0 = \frac{M}{\rho N_A}\) .

Плотность практически любого вещества можно найти в доступных всем таблицах. Молярную массу легко определить, если известна химическая формула вещества.

\(~\frac{4}{3} \pi r^3 = \frac{M}{\rho N_A}\) .

откуда мы и получаем выражение для радиуса молекулы:

\(~r = \sqrt {\frac{3M}{4 \pi \rho N_A}} = \sqrt {\frac{3}{4 \pi N_A}} \sqrt {\frac{M}{\rho}}\) .

Первый из этих двух корней - постоянная величина, равная ≈ 7,4 · 10 -9 моль 1/3 , поэтому формула для r ринимает вид

\(~r \approx 7,4 \cdot 10^{-9} \sqrt {\frac{M}{\rho}} (m)\) .

Например, радиус молекулы воды, вычисленный по этой формуле, равен r В ≈ 1,9 · 10 -10 м.

Описанный способ определения радиусов молекул не может быть точным уже потому, что шарики нельзя уложить так, чтобы между ними не было промежутков, даже если они соприкасаются друг с другом. Кроме того, при такой «упаковке» молекул- шариков были бы невозможны молекулярные движения. Тем не менее вычисления размеров молекул по формуле, приведенной выше, дают результаты, почти совпадающие с результатами других методов, несравненно более точных.

«Физика - 10 класс»

Какие физические объекты (системы) изучает молекулярная физика?
Как различить механические и тепловые явления?

В основе молекулярно-кинетической теории строения вещества лежат три утверждения:

1) вещество состоит из частиц;
2) эти частицы беспорядочно движутся;
3) частицы взаимодействуют друг с другом.

Каждое утверждение строго доказано с помощью опытов.

Свойства и поведение всех без исключения тел определяются движением взаимодействующих друг с другом частиц: молекул, атомов или ещё более малых образований - элементарных частиц.

Оценка размеров молекул. Для полной уверенности в существовании молекул надо определить их размеры. Проще всего это сделать, наблюдая расплывание капельки масла, например оливкового, по поверхности воды. Масло никогда не займёт всю поверхность, если мы возьмём достаточно широкий сосуд (рис. 8.1). Нельзя заставить капельку объёмом 1 мм 2 расплыться так, чтобы она заняла площадь поверхности более 0,6 м 2 . Предположим, что при растекании масла по максимальной площади оно образует слой толщиной всего лишь в одну молекулу - «мономолекулярный слой». Толщину этого слоя нетрудно определить и тем самым оценить размеры молекулы оливкового масла.

Объём V слоя масла равен произведению его площади поверхности S на толщину d слоя, т. е. V = Sd. Следовательно, линейный размер молекулы оливкового масла равен:

Современные приборы позволяют увидеть и даже измерить отдельные атомы и молекулы. На рисунке 8.2 показана микрофотография поверхности кремниевой пластины, где бугорки - это отдельные атомы кремния. Подобные изображения впервые научились получать в 1981 г. с помощью сложных туннельных микроскопов.

Размеры молекул, в том числе и оливкового масла, больше размеров атомов. Диаметр любого атома примерно равен 10 -8 см. Эти размеры так малы, что их трудно себе представить. В таких случаях прибегают к помощи сравнений.

Вот одно из них. Если пальцы сжать в кулак и увеличить его до размеров земного шара, то атом при том же увеличении станет размером с кулак.

Число молекул.


При очень малых размерах молекул число их в любом макроскопическом теле огромно. Подсчитаем примерное число молекул в капле воды массой 1 г и, следовательно, объёмом 1 см 3 .

Диаметр молекулы воды равен примерно 3 10 -8 см. Считая, что каждая молекула воды при плотной упаковке молекул занимает объём (3 10 -8 см) 3 , можно найти число молекул в капле, разделив объём капли (1 см 3) на объём, приходящийся на одну молекулу:


Масса молекул.


Массы отдельных молекул и атомов очень малы. Мы вычислили что в 1 г воды содержится 3,7 10 22 молекул. Следовательно, масса одной молекулы воды (Н 2 0) равна:

Массу такого же порядка имеют молекулы других веществ, исключая огромные молекулы органических веществ; например, белки имеют массу, в сотни тысяч раз большую, чем масса отдельных атомов. Но всё равно их массы в макроскопических масштабах (граммах и килограммах) чрезвычайно малы.


Относительная молекулярная масса.


Так как массы молекул очень малы, удобно использовать в расчётах не абсолютные значения масс, а относительные.

По международному соглашению массы всех атомов и молекул сравнивают с массы атома углерода (так называемая углеродная шкала атомных масс).

Относительной молекулярной (или атомной) массой М r вещества называют отношение массы m 0 молекулы (или атома) данного вещества к массы атома углерода:

Относительные атомные массы всех химических элементов точ- но измерены. Складывая относительные атомные массы элементов, входящих в состав молекулы вещества, можно вычислить относительную молекулярную массу вещества. Например, относительная молекулярная масса углекислого газа СO 2 приближённо равна 44, так как относительная атомная масса углерода практически равна 12, а кислорода примерно 16: 12 + 2 16 = 44.

Сравнение атомов и молекул с массы атома углерода было принято в 1961 г. Главная причина такого выбора состоит в том, что углерод входит в огромное число различных химических соединений. Множитель введён для того, чтобы относительные массы атомов были близки к целым числам.

И подраздела , в которой в общих чертах рассмотрели современные способы фильтрации, основанные на принципе сита. И намекнули, что мембранные очистители очищают воду с различным качеством, которое зависит от размера "ячеек", которые называются поры, в этих мембранах-ситах. Соответственно, микрофильтрация воды — это первая технология из мембранных систем очистки воды, которую мы рассмотрим.

Микрофильтрация воды — очистка воды на уровне крупных молекул (макромолекул), таких как частицы асбеста, краска, угольная пыль, цисты простейших, бактерии, ржавчина. Тогда как макрофильтрация ( воды) затрагивает песок, крупные частицы ила, крупные частицы ржавчины и т.д.

Можно ориентировочно сказать, что размеры частиц, которые отсеивает макрофильтрация — это частицы крупнее 1 микрометра (если используется специальный одномикронный картридж). Тогда как размер частиц, которые удаляет микрофильтрация — это частицы от 1 микрона до 0,1 микрона .

Вы можете задать вопрос: "Но если удаляются частицы до 0,1 микрона, то разве частицы размером в 100 микрон не смогут быть задержаны с помощью микрофильтрации? Зачем писать "от 1 микрона до 0,1 микрона" — это же противоречие?"

На самом деле особого противоречия нет. Действительно, микрофильтрация воды удалит как бактерий, так и огромные куски песка. Но цель микрофильтрации — это не удаление крупных кусков песка. Цель микрофильтрации — как "удалить частицы в указанном диапазоне размеров". Тогда как бо льшие частицы просто забьют очиститель и приведут к дополнительным затратам.

Итак, переходим к характеристике микрофильтрации воды.

Поскольку при микрофильтрации удаляются частицы размерами 0,1-1 микрон, то можно сказать, что микрофильтрация — это мембранная технология очистки воды, которая происходит на мембранах-ситах с диаметром ячеек-пор 0,1-1 микрон. То есть, на таких мембранах удаляются все вещества, которые больше 0,5-1 мкм:

То, насколько полно они удаляются, зависит от диаметра пор и действительного размера, скажем, бактерий. Так, если бактерия длинная, но тонкая, то она с лёгкостью пролезет через поры микрофильтрационной мембраны. А более толстая сферическая бактерия останется на поверхности "сита".

Чаще всего микрофильтрация применяется в пищевой промышленности (для обезжиривания молока, концентрирования соков) и в медицине (для первичной подготовки лекарственного сырья). Также микрофильтрация используется в промышленной очистке питьевой воды — преимущественно в западных странах (например, в Париже). Хотя ходят слухи, что одна из водоочистных станций в Москве также использует технологию микрофильтрации. Возможно, это правда 🙂

Но также существуют и бытовые фильтры на основе микрофильтрации.

Наиболее распространённый пример — трековые микрофильтрационные мембраны . Трековые от слова "трек", то есть след, и это название связано с тем, как мембраны данного типа изготавливаются. Процедура очень проста:

  1. Полимерная плёнка бомбардируется частицами, которые за счёт своей собственной большой энергии прожигают в плёнке следы — углубления примерно одинакового размера, поскольку частицы, которыми бомбардируется поверхность, имеют одинаковый размер.
  2. Затем эта полимерная плёнка протравливается в растворе, например, кислоты, чтобы следы от ударов частиц стали сквозными.
  3. Ну а потом простая процедура сушки и фиксации полимерной плёнки на подложке — и всё, трековая микрофильтрационная мембрана готова!

В результате эти мембраны отличаются фиксированным диаметром пор и незначительной пористостью по сравнению с другими мембранными системами очистки воды. И вывод: на данных мембранах будут удаляться частицы только под определённый размер.

Также существует более навороченый вариант микрофильтрационных бытовых мембран — микрофильтрационные мембраны с напылением из активированного угля . То есть, в перечисленные выше шаги входит ещё один шаг — нанесение тонкого слоя из . На этих мембранах удаляются не только бактерии и механические примеси, но и

  • запах,
  • органические вещества,
  • и т.д.

Нужно учитывать, что для микрофильтрационных мембран есть опасность . Так, бактерии, которые не прошли через мембрану, начинают жить на этой мембране и выдавать продукты своей жизнедеятельности в очищенную воду. То есть, возникает вторичное отравление воды . Для того, чтобы избежать этого, необходимо следовать инструкциям производителя по регулярной дезинфекции мембран.

Вторая опасность — это то, что бактерии начнут самостоятельно есть эти мембраны . И сделают в них огромные дырки, которые будут пропускать те вещества, которые мембрана должна задерживать. Чтобы этого не происходило, следует приобретать фильтры на основе устойчивого к бактериям вещества (например, керамические микрофильтрационные мембраны) или же быть готовым к частым заменам микрофильтрационных мембран.

Частая замена микрофильтрационных мембран подстёгивается так же тем, что они не оборудованы механизмом промывок . И поры мембраны попросту забиваются грязью. Мембраны выходят из строя.

В принципе, про микрофильтрацию всё. Микрофильтрация — достаточно качественный способ очистки воды. Однако,

Действительное назначение микрофильтрации — не подготовка воды для питья (в связи с опасностью бактериального загрязнения), а предварительная подготовка воды перед следующими стадиями.

Этап микрофильтрации снимает с последующих стадий водоочистки большую часть нагрузки.

По материалам Как выбрать фильтр для воды : http://voda.blox.ua/2008/07/Kak-vybrat-filtr-dlya-vody-22.html

Диаметр молекулы воды равен примерно 0 0000000 Зсм.
Диаметр молекулы воды, вычисленный с помощью числа Аво-гадро, равен трем ангстремам. Подобная определенность объективно присуща молекуле любого вещества. Значит, структура выступает как пространственное расположение частиц в молекуле.
Диаметр молекулы воды составляет 0 29нм (2 9 А), что сопоставимо с размерами пор и дефектов большинства неметаллических материалов. Это обусловливает ее достаточно высокую проникающую способность, особенно в пористые силикатные материалы и композиты.
Диаметр молекулы воды равен всего 2 5 10 - 10 м, и водяной пар проходит сквозь мельчайшие поры. Плотные, непористые материалы не пропускают водяные пары и негигроскопичны. К ним относятся ситаллы, малощелочное стекло, вакуумно-плотная керамика, эпоксидные пластмассы и неполярные полимеры.
Стеклопластик на эпоксиполиэфирном связующем после 9 ч кипячения в дистиллированной воде.| Структура химически стойкого стеклопластика на основе смолы ПН-16 после экспонирования в течение 1000 ч I в кипящей воде (7500 х. Если диаметр молекулы воды равен 0 276 нм, то диаметр ионной атмосферы, определяющий эффективный размер ионов в растворе 0 6 % - ного NaCl, составляет примерно 1 нм. Увеличение концентрации раствора электролита вызывает рост толщины ионной атмосферы.
Поперечник их в местах расширения превышает диаметр молекул воды. Плавление льда сопровождается разрывом связей между некоторыми молекулами и провалом их в каналы структуры льда. Повышение температуры сопровождается дальнейшим разрушением структуры.
На поверхности последних образуется тонкая пленка толщиной в два-три диаметра молекул воды. При своем возникновении выделяет теплоту смачивания.
При толщине слоя адсорбированной влаги, равной 10 - 30 диаметрам молекул воды, по Б. В. Дерягину, образуется сольватный слой практически без выделения тепла. Этот слой, как указывает Ф. Е. Колясев, также имеет аномальные физико-химические свойства по сравнению с жидкостью в объеме.
Это объясняется тем, что материалы обладают пористой структурой и размеры пор превышают диаметр молекул воды. Кроме того, вдоль выводов элементов на границе соприкосновения материалов с различными коэффициентами линейного расширения образуются капилляры.
Физически связанная вода удерживается на поверхности минеральных частиц силами молекулярного сцепления и имеет форму тончайших пленок толщиной до нескольких сотен диаметров молекулы воды.
Толшина пленки воды на поверхности колеблется в пределах 0 5 - 3 0 - Ю 6 см. Если учесть, что диаметр молекулы воды равняется ЗА, то, следовательно, на поверхности в среднем образуется слой воды, равный 100 молекулам. Для создания водоотталкивающего слоя на поверхности керамики необходимо образовавшийся слой воды выдержать при относительной влажности 60 - 90 % в течении 4 час.
Воды в породах. Связанные воды удерживаются на поверхности минеральных частиц породы силами молекулярного сцепления, образуя слой, толщина которого может достигать нескольких сот диаметров молекулы воды. Внешняя, большая, часть этого слоя представлена рыхло связанной (лиосорбиро-ванной) водой.

Как видно из таблицы, отношение R - г, т, е, расстояния между двумя сферами гидратного комплекса к диаметру молекулы воды 2га, во многих случаях равно единице, или R - r - 2ra; иными словами, в таких комплексах молекулы воды окружают центральный ион, будучи расположены вокруг оболочкой, толщиной в молекулу, в один слой.
Толщина пленки воды на поверхности колеблется в пределах 0 5 - 3 0 - 10 - 6 см. Если учесть, что диаметр молекулы воды равняется ЗА, то, следовательно, на поверхности в среднем образуется слой воды, равный 100 молекулам. Для создания водоотталкивающего слоя на поверхности керамики необходимо образовавшийся слой воды выдержать при относительной влажности 60 - 90 % в течении 4 час.
Кроме того, для экстраполяции к гг оо не может быть использована обратная функция только гг из-за влияния члена, определяемого радиусом или диаметром молекулы воды. Более полный расчет энтальпии гидратации, подобный предложенному Букингемом , в котором учтены члены, связанные с ион-дипольными, диполь-дипольными и ди-поль-квадрупольными взаимодействиями, и влияние индуцированных дипольных моментов, приводит к еще более сложному показателю степени функции обратной величины ионного радиуса. Холливел и Найбург провели также несколько более изящный расчет, основанный на учете возможности координационных чисел 6 или 4 в основной гидратной оболочке и моделях твердой сферы и мягкой сферы для контакта ион - растворитель.
Влагопоглощение таких гетерогенных систем, как стеклопластики, можно рассматривать как две стороны одного процесса - проникновение подвижной среды с малым диаметром молекул (диаметр молекул воды равен 2 7 А) внутрь органического материала вследствие существования в нем молекулярных дырок, а также микропор на поверхности раздела волокно - смола и других дефектов структуры. Если микроскопические и субмикроскопические поры, трещины и капилляры в основном зависят от технологических причин и носят случайный характер, то межмолекулярные дырки всегда присущи органическим материалам. Поэтому для полимеров с большим диаметром молекулярных образований проницаемость для водяных паров является по существу неизбежной. У полимеров с кристаллической структурой, у кристаллических предельных углеводородов и жестких малополярных полимеров количество поглощаемой влаги будет ничтожно.
Для многоатомных ионов (например, для МпО) ионный радиус полагается равным кристаллографическому радиусу, а для одноатомных ионов к кристаллографическому радиусу добавляется диаметр молекулы воды.
Толщина пленки связанной воды при максимальной молекулярной влагоемкости составляет не менее 0 005 - 0 01 мкм, что соответствует примерно 20 - 40 диаметрам молекул воды.
Гельмгольцем в 1853 г. Он полагал, что двойной электрический слой состоит из двух слоев зарядов противоположного знака, находящихся друг от друга на расстоянии порядка диаметра молекулы воды: слоя зарядов на металле и слоя притянутых к нему ионов. Одновременно предполагалось, что заряды в обоих этих слоях равномерно размазаны вдоль поверхности, так что можно провести полную аналогию между двойным слоем и обычным плоским конденсатором.
Если предположить, что диаметр иона гидроксония равен диаметру молекулы воды, то расстояние между двумя ионами нептуния получится равным 10 3 А при использовании для радиуса ионов нептуния и диаметра молекулы воды величин, приведенных в работе Коена, Сулливана, Амиса и Хиндмана.
Первая простейшая модель двойного электрического слоя была предложена Гельмгольцем в 1853 г. Согласно Гельмголь-цу, двойной слой на границе металлический электрод - раствор представляет собой два слоя зарядов, расположенных на расстоянии порядка диаметра молекулы воды. Один слой зарядов находится на металле, другой - в растворе и состоит из притянутых к электроду противоположно заряженных ионов. Следует сразу оговорить, что предположение о размазанном заряде справедливо только для металлической обкладки. Для ионной обкладки оно выполняется тем лучше, чем более концентрированным является раствор и чем больше плотность зарядов на обкладках.
Таким образом, теория Борна является хорошим первым приближением, конечно, если не считать, что в качестве эффективных радиусов ионов принимаются величины, которые, как указали Или и Эванс , превышают радиусы в кристалле на половину диаметра молекул воды или атома кислорода. Улучшение простой электростатической теории может заключаться в рассмотрении кварцеподобной структуры воды вместо однородного диэлектрика. При этом необходимо ввести дополнительные энергетические члены, учитывающие взаимодействие иона с диполями растворителя, и межмолекулярное отталкивание, возрастающее при изменении ориентации диполей растворителя вблизи иона.
В работах 82, 83 ] было показано, что основной вклад в свободную энергию системы полипептид - растворитель вносят взаимодействия с ближайшими молекулами растворителя. Грубо говоря, если d - диаметр молекулы воды, то при расстояниях между рассматриваемой парой атомов rd / o (/ о - сумма их ван-дер-ваальсовых радиусов) молекулы воды вытесняются и вклад в свободную энергию становится равным нулю. С другой стороны, если мы будем сближать один атом с другим, то он вытеснит определенное количество молекул растворителя, пропорциональное объему этого атома U, но если расстояние станет меньше d r0, то количество вытесняемого растворителя практически не увеличится. Такого рода рассуждения привели Гибсона и Шерага к поиску аналитических выражений для энергии гидратации.
Исходя из предположения, что частички твердой фазы покрываются мономолекулярным слоем воды, определяют количество адсорб-ционно связанной воды. Толщина мономолекулярного слоя должна быть равна диаметру молекулы воды (h 2 76 10 - 8 см), так как каждый атом кислорода окружен тетраэдрически четырьмя другими атомами кислорода на расстоянии 2 76 А.
У металлов с диаметром атомов 2 76 А водородное перенапряжение оказывается наименьшим, а кислородное перенапряжение - наибольшим. Величина 2 76 А совпадает с диаметром молекулы воды. Плотнейшее заполнение поверхности электрода диполями воды повышает градиент потенциала в приэлектродном слое.
Наиболее прочно с твердой фазой почвы связан молекулярный слой воды. Толщина слоя полимолекулярной адсорбции может достигать нескольких сотен диаметров молекул воды. По мере удаления от твердой фазы связь воды становится менее прочной. Первые ряды молекул образуют прочно связанную или гигроскопическую воду. Чем дисперснее почва, тем больше будет сорбирована вода. Гигроскопическая вода достигает плотности 1 4 г / см3, не содержит растворенных веществ, не способна проводить электрический ток и передвигаться в почве. Количество воды, которое почва или грунт могут удержать при данной температуре и влажности воздуха, определяет гигроскопическую влажность почвы.

Данные о зависимости интенсивности рассеяния [ рентгеновских лучей в воде от угла между рассеянным излучением и падающим пучком лучей позволили показать, что в ближайшем окружении каждой молекулы воды в жидкости находится в среднем 4 4 - 4 8 молекул воды, что в общем согласуется с высказанным еще Берналом и Фаулером представлением о тетраэдрической структуре воды на очень близких расстояниях, правда, несколько искаженной по сравнению с кристаллической структурой льда. Эта структура существует еще на расстоянии примерно 1 6 диаметра молекулы воды от молекулы, рассматриваемой в качестве центральной, но уже на расстоянии 0 8 нм упорядоченность структуры жидкости практически исчезает. Прочность водородных связей в жидкой воде меньше, чем в кристалле льда, и связи эти могут довольно значительно изгибаться и растягиваться без разрыва при вращении одной молекулы относительно другой, уч аст-вующей в водородной связи.
Данные о зависимости интенсивности рассеяния рентгеновских лучей в воде от угла между рассеянным излучением и падающим пучком лучей позволили показать, что в ближайшем окружении каждой молекулы воды в жидкости находится в среднем 4 4 - 4 8 молекул воды, что в общем согласуется с высказанным еще Берналом и Фаулером представлением о тетраэдрической структуре воды на очень близких расстояниях, правда, несколько искаженной по сравнению с кристаллической структурой льда. Эта структура существует еще на расстоянии примерно 1 6 диаметра молекулы воды от молекулы, рассматриваемой в качестве центральной, но уже на расстоянии 0 8 нм упорядоченность структуры жидкости практически исчезает. Прочность водородных связей в жидкой воде меньше, чем в кристалле льда, и связи эти могут довольно значительно изгибаться и растягиваться без разрыва при вращении одной молекулы относительно другой, участвующей в водородной связи.
Уравнение Борна (IV.25), не учитывающее донорно-акцепторного взаимодействия иона с растворителем, дает неточный результат при расчете полной энергии гидратации, но оно вполне пригодно для вычисления энергии вторичной гидратации. Для расчета ДО в уравнение (IV.25) следует подставить радиус гидратного комплекса, который сложится из радиуса иона и диаметра молекулы воды, Най.
Толщина слоя гигроскопической воды строго не установлена. Большинство исследователей считают этот слой полимолекулярным, так, по Б. В. Деряги-ну, толщина его составляет 23 - 27 диаметров молекул воды.
А; при его увеличении или уменьшении перенапряжение закономерно возрастает. Хомутов в своих последующих работах обратил внимание на то, что межатомное расстояние, при котором перенапряжение оказывается минимальным, близко к диаметру молекулы воды, и предложил модельный метод расчета коэффициента b в формуле Гафеля.
Изотерма адсорбции тетра - МИ9ПВОД9Ь С энергией, близкой метплоктаыбензолсульфоната натрия к кДж / моль. Величина из водных растворов при температу - последней превышает уменьше-ре 25е С на аэросиле. ние мольной свободной энергии. Длина углеводородного радикала этого иона равна 18 1 А, диаметр ополярной группы в водном растворе при С9 ККМХ - 8 88 А, а диаметр молекулы воды - 3 1 А.
Строение двойного электрического слоя на границе металл - раствор впервые было описано русским ученым Р. А. Колли в 1878 г. По его представлениям, двойной слой подобен плоскому конденсатору, обкладки которого расположены на расстоянии диаметра молекулы воды. Наружная обкладка образована слоем адсорбированных ионов. Они показали, что тепловое движение приводит к десорбции части ионов с поверхности металла (рис. 49) 1, которые образуют диффузный (рассеянный) слой. Последний сжат до определенной толщины электрическим полем заряженного металла. Его толщина уменьшается с повышением заряда металла и концентрации ионов в растворе и увеличивается с повышением температуры. Толщина адсорбционного слоя равна радиусу гидратированного иона. Диффузный слой отсутствует, если металл не несет избыточного электрического заряда, а также в концентрированных растворах электролитов.
Физические свойства гидрофильных волокон, таких как шерсть, волосы, найлон, искусственный шелк, сильно зависят от количества адсорбированной воды. Эти изменения свойств волокон обусловлены большой поляризуемостью воды (и, следовательно, большими значениями индуцированного дипольного момента), способностью молекулы воды образовывать относительно сильные водородные связи и ее сравнительно небольшим размером - диаметр молекулы воды составляет примерно 2 7 А.
Пластмассовый корпус. Кроме того, вода - химически активное вещество, которое способствует образованию растворов солей, кислот, щелочей, коллоидных растворов. Поскольку диаметр молекул воды равен 3 А, влага способна проникать через микропоры и микротрещины защитных материалов и пленок.
График функции распределения. Успехи современной науки в этой области позволяют утверждать, что как размеры, так и массы отдельных молекул твердо установлены. Если условно представлять себе молекулы в виде шариков, то их диаметры в большинстве случаев составят несколько ангстрем. Например, диаметр молекулы воды (Н2О) равен 2 6 - 10 - 10 м 2 6 А.
Главнейшими из сил, определяющих энергию адсорбции цемента, являются электростатические силы взаимодействия между ионами поверхности частиц и диполями воды. Эти силы имеют незначительный ра-диус действия, не превышающий нескольких ангстремов. На расстояниях от поверхности частиц более диаметра молекул воды силы взаимодействия дополняются поляризационными или дисперсионными ван-дер-ваальсо-выми силами, обусловленными мгновенными диполями, возникающими благодаря движению электронов в молекуле.
Если силы взаимодействия молекул воды с материалом больше сил взаимодействия молекул воды друг с другом, то вода будет хорошо смачивать такой материал. Если на поверхности материала имеются дефекты структуры, соизмеримые с диаметром молекулы воды (0 29 нм), то молекулы воды могут внедриться в объем материала и при наличии такой же по размеру пористости (дефектности) в объеме материала будут диффундировать по механизму активированной диффузии, аналогично диффузии газов. Силикатные стекла способны вполне свободно поглощать пары воды, так как размер дефектов в них находится в пределах от 0 7 до 1 7 нм.

Уравнение Борна (IV.25), не учитывающее донорно-акцепторного взаимодействия иона с растворителем, дает неточный результат при расчете полной энергии гидратации, но оно вполне пригодно для вычисления энергии вторичной гидратации. Для расчета ДО в уравнение (IV.25) следует подставить радиус гидратного комплекса, который сложится из радиуса иона и диаметра молекулы воды.
Схема относительного расположения плоскостей, соответствующих разрывам диэлектрической проницаемости (г 0 и г Aj, адсорбции ионов (г г0 и наибольшему приближению неадсорбированных ионов (г h. Вследствие этого центры всех адсорбированных ионов должны лежать в одной плоскости (часто именуемой внутренней плоскостью Гельмгольца) на расстоянии z0 от поверхности электрода. С другой стороны, ионы, которые не могут адсорбироваться или еще не адсорбировались, прочно удерживают по меньшей мере одну оболочку из молекул воды. Расстояние их наибольшего приближения к поверхности, которое обозначается hQ, должно приблизительно равняться сумме ионного радиуса и диаметра молекулы воды.
Кобозев (1947), а также Бокрис (1951) установили зависимость между работой выхода электрона и перенапряжением водорода. Хомутов (1950), сопоставляя величину перенапряжения водорода с минимальным расстоянием между атомами в металлах, нашел, что наименьшее перенапряжение наблюдается на металлах с межатомным расстоянием; около 2 7 А; при его увеличении или уменьшении перенапряжение закономерно возрастает. Хомутов в своих последующих работах обратил внимание на то, что межатомное расстояние, при котором перенапряжение оказывается минимальным, близко к диаметру молекулы воды, и предложил модельный метод расчета коэффициента Ь в формуле Тафеля.
Хомутов (1950), сопоставляя величину перенапряжения водорода с минимальным расстоянием между атомами в металлах, нашел, что наименьшее перенапряжение наблюдается на металлах с межатомным расстоянием, близким к 2 7 А; при его увеличении или уменьшении перенапряжение закономерно возрастает. В своих последующих работах он обратил внимание на то, что межатомное расстояние, при котором перенапряжение оказывается минимальным, близко к диаметру молекулы воды, и предложил модельный метод расчета коэффициента b в формуле Тафеля.
Окончательное выражение для функции / (t) не приводится из-за его громоздкого вида. Задавая различные значения ij, по уравнениям (23.14) и (23.15) можно определить соответствующие друг другу величины С и ф0 и, таким образом, построить С, ф0 - кривую. При расчете предполагалось, что КГ 20 мкф / см2, Кт 38 мкф / см., а средняя толщина плотного слоя d была принята равной диаметру молекулы воды.
Окончательное выражение для функции / (tyi) не приводится из-за его громоздкого вида. Задавая различные значения г, по уравнениям (23.14) и (23.15) можно определить соответствующие друг другу величины С и ф0 и, таким образом, построить С, ф0 - кривую. При расчете предполагалось, что Ki0 2Q Ф / м2, / Сг0 38 ф / м2, а средняя толщина плотного слоя d была принята равной диаметру молекулы воды.