Полное доказательство великой теоремы ферма. Доказательство теоремы Ферма — элементарное, простое, понятное Теорема ферма формулировка и доказательство

Что премию Абеля в 2016 году получит Эндрю Уайлз за доказательство гипотезы Таниямы-Шимуры для полустабильных эллиптических кривых и следующее из этой гипотезы доказательство великой теоремы Ферма. В настоящее время премия составляет 6 миллионов норвежских крон, то есть примерно 50 миллионов рублей. По словам Уайлса, присуждение премии стало для него «полной неожиданностью».

Теорема Ферма, доказанная более 20 лет назад, до сих пор привлекает внимание математиков. Отчасти, это связано с ее формулировкой, которая понятна даже школьнику: доказать, что для натуральных n>2 не существует таких троек целых ненулевых чисел, что a n + b n = c n . Это выражение Пьер Ферма записал на полях «Арифметики» Диофанта, снабдив замечательной подписью «Я нашёл этому поистине чудесное доказательство [этого утверждения], но поля книги слишком узки для него». В отличие от большинства математических баек, эта - настоящая.

Вручение премии - прекрасный повод вспомнить десять занимательных историй, связанных с теоремой Ферма.

1.

До того, как Эндрю Уайлз доказал теорему Ферма, ее правильнее было называть гипотезой, то есть гипотезой Ферма. Дело в том, что теорема - это по определению уже доказанное утверждение. Однако, почему-то к этому утверждению приклеилось именно такое название.

2.

Если в теореме Ферма положить n = 2, то у такого уравнения существует бесконечно много решений. Эти решения называются «пифагоровы тройки». Такое название они получили потому, что им соответствуют прямоугольные треугольники, стороны которых выражаются именно такими наборами чисел. Генерировать пифагоровы тройки можно с помощью таких вот трех формул (m 2 - n 2 , 2mn, m 2 + n 2). В эти формулы надо подставлять разные значения m и n, и в результате будут получаться нужные нам тройки. Главное тут, впрочем, убедиться, что полученные числа будут больше нуля - длины не могут выражаться отрицательными числами.

Кстати, легко заметить, что если все числа в пифагоровой тройке умножить на некоторое ненулевое, получится новая пифагорова тройка. Поэтому разумно изучать тройки, в которых у трех чисел в совокупности нет общего делителя. Схема, которую мы описали, позволяет получить все такие тройки - это уже совсем не простой результат.

3.

1 марта на 1847 года заседании Парижской академии наук сразу два математика - Габриэль Ламе и Огюстен Коши - объявили, что находятся на пороге доказательства замечательной теоремы. Они устроили гонку, публикуя кусочки доказательства. Большинство академиков болело за Ламе, поскольку Коши был самодовольным, нетерпимым к чужому мнению религиозным фанатиком (и, разумеется, совершенно блестящим математиком по совместительству). Однако, матчу не суждено было завершиться - через своего друга Жозефа Лиувилля немецкий математик Эрнст Куммер сообщил академикам, что в доказательствах Коши и Ламе есть одна и та же ошибка.

В школе доказывается, что разложение числа на простые множители единственно. Оба математика полагали, что если смотреть на разложение целых чисел уже в комплексном случае, то это свойство - единственность - сохранится. Однако это не так.

Примечательно, что если рассматривать только m + i n, то разложение единственно. Такие числа называются гауссовыми. Но для работы Ламе и Коши потребовалось разложение на множители в циклотомических полях . Это, например, числа, в которых m и n - рациональные, а i удовлетворяет свойству i^k = 1.

4.

Теорема Ферма для n = 3 имеет понятный геометрический смысл. Представим себе, что у нас есть много маленьких кубиков. Пусть мы собрали из них два больших куба. В этом случае, понятное дело, стороны будут целыми числами. Можно ли найти два таких больших куба, что, разобрав их на составляющие мелкие кубы, мы бы могли собрать из них один большой куб? Теорема Ферма говорит, что так сделать никогда нельзя. Забавно, что если задать тот же вопрос для трех кубов, то ответ утвердительный. Например, есть вот такая четверка чисел, открытая замечательным математиком Шринивасом Рамануджаном:

3 3 + 4 3 + 5 3 = 6 3

5.

В истории с теоремой Ферма отметился Леонард Эйлер. Доказать утверждение (или даже подступиться к доказательству) у него толком не получилось, однако он сформулировал гипотезу о том, что уравнение

x 4 + y 4 + z 4 = u 4

не имеет решения в целых числах. Все попытки найти решение такого уравнения в лоб оказались безрезультатны. Только в 1988 году Науму Элкиесу из Гарварда удалось найти контрпример. Он выглядит вот так:

2 682 440 4 + 15 365 639 4 + 18 796 760 4 = 20 615 673 4 .

Обычно эту формулу вспоминают в контексте численного эксперимента. Как правило, в математике это выглядит так: есть некоторая формула. Математик проверяет эту формулу в простых случаях, убеждается в истинности и формулирует некоторую гипотезу. Затем он (хотя чаще какой-нибудь его аспирант или студент) пишет программу для того, чтобы проверить, что формула верна для достаточно больших чисел, которые руками не посчитать (про один такой эксперимент с простыми числами мы ). Это не доказательство, конечно, но отличный повод заявить о гипотезе. Все эти построения базируются на разумном предположении, что, если к некоторой разумной формуле есть контрпример, то мы найдем его достаточно быстро.

Гипотеза Эйлера напоминает, что жизнь гораздо разнообразнее наших фантазий: первый контрпример может быть сколь угодно большим.

6.

На самом деле, конечно, Эндрю Уайлз не пытался доказать теорему Ферма - он решал более сложную задачу под названием гипотеза Таниямы-Шимуры. В математике есть два замечательных класса объектов. Первый называется модулярными формами и представляет собой по сути функции на пространстве Лобачевского. Эти функции не меняются при движениях этой самой плоскости. Второй называется «эллиптическими кривыми и представляет собой кривые, задаваемые уравнением третьей степени на комплексной плоскости. Оба объекта очень популярны в теории чисел.

В 50-х годах прошлого века два талантливых математика Ютака Танияма и Горо Шимура познакомились в библиотеке Токийского университета. В то время особой математики в университете не было: она просто не успела восстановиться после войны. В результате ученые занимались по старым учебникам и разбирали на семинарах задачи, которые в Европе и США считались решенными и не особенно актуальными. Именно Танияма и Шимура обнаружили, что между модулярными формами и эллиптическими функциями есть некое соответствие.

Свою гипотезу они проверили на некоторых простых классах кривых. Оказалось, что она работает. Вот они и предположили, что эта связь есть всегда. Так появилась гипотеза Таниямы-Шимуры, а спустя три года Танияма покончил с собой. В 1984 году немецкий математик Герхард Фрей показал, что если теорема Ферма неверна, то, следовательно, неверна гипотеза Таниямы-Шимуры. Из этого вытекало, что доказавший эту гипотезу, докажет и теорему. Именно это и сделал - правда не совсем в общем виде - Уайлз.

7.

На доказательство гипотезы Уайлз потратил восемь лет. И во время проверки рецензенты нашли в ней ошибку, которая «убивала» большую часть доказательства, сводя на нет все годы работы. Один из рецензентов по имени Ричард Тейлор взялся заделать вместе с Уайлзом эту дырку. Пока они работали, появилось сообщение, что Элкиес, тот самый, который нашел контрпример к гипотезе Эйлера, нашел и контрпример и к теореме Ферма (позже оказалось, что это была первоапрельская шутка). Уайлз впал в депрессию и не хотел продолжать - дырка в доказательстве никак не закрывалась. Тейлор уговорил Уайлза побороться еще месяц.

Случилось чудо и к концу лета математикам удалось сделать прорыв - так на свет появились работы «Модулярные эллиптические кривые и великая теорема Ферма» Эндрю Уайлза (pdf) и «Теоретико-кольцевые свойства некоторых алгебр Гекке» Ричарда Тейлора и Эндрю Уайлза. Это было уже правильное доказательство. Опубликовано оно было в 1995 году.

8.

В 1908 году в Дармштадте скончался математик Пауль Вольфскель. После себя он оставил завещание, в котором давал математическому сообществу 99 лет, чтобы найти доказательство великой теоремы Ферма. Автор доказательства должен был получить 100 тысяч марок (автор контрпримера, кстати, не получил бы ничего). Согласно распространенной легенде, сделать такой подарок математикам Вольфскеля побудила любовь. Вот как описывает легенду Саймон Сингх в своей книге «Великая теорема Ферма »:

История начинается с того, что Вольфскель увлекся красивой женщиной, личность которой так никогда и не была установлена. К великому сожалению для Вольфскеля, загадочная женщина отвергла его. Он впал в такое глубокое отчаяние, что решил совершить самоубийство. Вольфскель был человеком страстным, но не импульсивным, и поэтому принялся во всех подробностях разрабатывать свою смерть. Он назначил дату своего самоубийства и решил выстрелить себе в голову с первым ударом часов ровно в полночь. За оставшиеся дни Вольфскель решил привести в порядок свои дела, которые шли великолепно, а в последний день составил завещание и написал письма близким друзьям и родственникам.

Вольфскель трудился с таким усердием, что закончил все свои дела до полуночи и, чтобы как-нибудь заполнить оставшиеся часы, отправился в библиотеку, где стал просматривать математические журналы. Вскоре ему на глаза попалась классическая статья Куммера, в которой тот объяснял, почему потерпели неудачу Коши и Ламе. Работа Куммера принадлежала к числу самых значительных математических публикаций своего века и как нельзя лучше подходила для чтения математику, задумавшему совершить самоубийство. Вольфскель внимательно, строка за строкой, проследил за выкладками Куммера. Неожиданно Вольфскелю показалось, что он обнаружил пробел: автор сделал некое предположение и не обосновал этот шаг в своих рассуждениях. Вольфскель заинтересовался, действительно ли ему удалось обнаружить серьезный пробел, или сделанное Куммером предположение было обоснованным. Если был обнаружен пробел, то имелся шанс, что Великую теорему Ферма удастся доказать гораздо проще, чем полагали многие.

Вольфскель сел за стол, тщательно проанализировал «ущербную» часть рассуждений Куммера и принялся набрасывать минидоказательство, которое должно было либо подкрепить работу Куммера, либо продемонстрировать ошибочность принятого им предположения и, как следствие, опровергнуть все его доводы. К рассвету Вольфскель закончил свои вычисления. Плохие (с точки зрения математики) новости состояли в том, что доказательство Куммера удалось исцелить, и Великая теорема Ферма по-прежнему осталась недоступной. Но были и хорошие новости: время, назначенное для самоубийства, миновало, а Вольфскель был так горд тем, что ему удалось обнаружить и восполнить пробел в работе великого Эрнеста Куммера, что его отчаяние и печаль развеялись сами собой. Математика вернула ему жажду жизни.

Впрочем, есть и альтернативная версия. Согласно ей, Вольфскель занялся математикой (и, собственно, теоремой Ферма) из-за прогрессирующего рассеянного склероза, который помешал заниматься ему любимым делом - быть врачом. А деньги математикам он оставил, чтобы не оставлять своей жене, которую к концу жизни просто ненавидел.

9.

Попытки доказать теорему Ферма элементарными методами привели к появлению целого класса странных людей под названием «ферматисты». Они занимались тем, что производили огромное количество доказательств и совершенно не отчаивались, когда в этих доказательствах находили ошибку.

На мехмате МГУ был легендарный персонаж по фамилии Добрецов. Он собирал справки из разных ведомств и, пользуясь ими, проникал на мехмат. Делалось это исключительно для того, чтобы найти жертву. Как-то ему попался молодой аспирант (будущий академик Новиков). Он, по наивности своей, принялся внимательно изучать стопку бумаг, которую Добрецов подсунул ему со словами, мол, вот доказательство. После очередного «вот ошибка...» Добрецов забрал стопку, запихнул ее в портфель. Из второго портфеля (да, он ходил по мехмату с двумя портфелями) он достал вторую стопку, вздохнул и сказал: «Ну тогда посмотрим вариант 7 Б».

Кстати, большинство таких доказательств начинается с фразы «Перенесем одно из слагаемых в правую часть равенства и разложим на множители».

10.


Рассказ о теореме будет неполон без замечательного фильма «Математик и черт».

Поправка

В разделе 7 этой статьи первоначально говорилось, что Наум Элкиес нашел контрпример к теореме Ферма, который впоследствии оказался ошибочным. Это неверно: сообщение о контрпримере было первоапрельской шуткой. Приносим извинения за неточность.


Андрей Коняев

n > 2 {\displaystyle n>2} уравнение:

не имеет решений в целых ненулевых числах .

Встречается более узкий вариант формулировки, утверждающий, что это уравнение не имеет натуральных решений. Однако очевидно, что если существует решение для целых чисел, то существует и решение в натуральных числах. В самом деле, пусть a , b , c {\displaystyle a,b,c} - целые числа, дающие решение уравнения Ферма. Если n {\displaystyle n} чётно, то | a | , | b | , | c | {\displaystyle |a|,|b|,|c|} тоже будут решением, а если нечётно, то перенесём все степени отрицательных значений в другую часть уравнения, изменив знак. Например, если бы существовало решение уравнения a 3 + b 3 = c 3 {\displaystyle a^{3}+b^{3}=c^{3}} и при этом a {\displaystyle a} отрицательно, а прочие положительны, то b 3 = c 3 + | a | 3 {\displaystyle b^{3}=c^{3}+|a|^{3}} , и получаем натуральные решения c , | a | , b . {\displaystyle c,|a|,b.} Поэтому обе формулировки эквивалентны.

Обобщениями утверждения теоремы Ферма являются опровергнутая гипотеза Эйлера и открытая гипотеза Ландера - Паркина - Селфриджа .

История

Для случая эту теорему в X веке пытался доказать ал-Ходжанди , но его доказательство не сохранилось.

В общем виде теорема была сформулирована Пьером Ферма в 1637 году на полях «Арифметики » Диофанта . Дело в том, что Ферма делал свои пометки на полях читаемых математических трактатов и там же формулировал пришедшие на ум задачи и теоремы. Теорему, о которой ведётся речь, он записал с припиской, что найденное им остроумное доказательство этой теоремы слишком длинно, чтобы его можно было поместить на полях книги:

Наоборот, невозможно разложить куб на два куба, биквадрат на два биквадрата и вообще никакую степень, большую квадрата, на две степени с тем же показателем. Я нашёл этому поистине чудесное доказательство, но поля книги слишком узки для него.

Оригинальный текст (лат.)

Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos & generaliter nullam in infinitum ultra quadratum potestatem in duas eiusdem nominis fas est dividere cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.

Ферма приводит только доказательство, как решение задачи, сводимой к четвёртой степени теоремы n = 4 {\displaystyle n=4} , в 45-м комментарии к «Арифметике» Диофанта и в письме к Каркави (август 1659 года) . Кроме этого, Ферма включил случай n = 3 {\displaystyle n=3} в список задач, решаемых методом бесконечного спуска .

Над полным доказательством Великой теоремы работало немало выдающихся математиков и множество дилетантов-любителей; считается, что теорема стоит на первом месте по количеству некорректных «доказательств». Тем не менее эти усилия привели к получению многих важных результатов современной теории чисел . Давид Гильберт в своём докладе «Математические проблемы» на II Международном конгрессе математиков (1900) отметил, что поиск доказательства для этой, казалось бы, малозначимой теоремы привёл к глубоким результатам в теории чисел . В 1908 году немецкий любитель математики Вольфскель завещал 100 тыс. немецких марок тому, кто докажет теорему Ферма. Однако после Первой мировой войны премия обесценилась .

В 1980-х годах появился новый подход к решению проблемы. Из гипотезы Морделла , доказанной Фальтингсом в 1983 году , следует, что уравнение a n + b n = c n {\displaystyle a^{n}+b^{n}=c^{n}} при n > 3 {\displaystyle n>3} может иметь лишь конечное число взаимно простых решений.

Немецкий математик Герхард Фрай предположил, что Великая теорема Ферма является следствием гипотезы Таниямы - Симуры . Это предположение было доказано Кеном Рибетом .

Последний важный шаг в доказательстве теоремы был сделан Уайлсом в сентябре 1994 года . Его 130-страничное доказательство было опубликовано в журнале «Annals of Mathematics » .

Первый вариант своего доказательства Уайлс опубликовал в 1993 году (после семи лет работы), но в нём вскоре был обнаружен серьёзный [какой? ] пробел, который с помощью Ричарда Лоуренса Тейлора удалось достаточно быстро устранить . В 1995 году был опубликован завершающий вариант . В 2016 году за доказательство Великой теоремы Ферма Эндрю Уайлс получил Абелевскую премию .

Колин Мак-Ларти отметил, что, возможно, доказательство Уайлса удастся упростить, чтобы не предполагать существования так называемых «больших кардиналов » .

Теорема Ферма также тривиально следует из abc-гипотезы , о доказательстве которой заявил японский математик Синъити Мотидзуки ; его доказательство отличается исключительной сложностью. В настоящее время в математическом сообществе нет ясного консенсуса в отношении его работ .

Некоторые вариации и обобщения

2682440 4 + 15365639 4 + 18796760 4 = 20615673 4 . {\displaystyle 2682440^{4}+15365639^{4}+18796760^{4}=20615673^{4}.}

Позднее были найдены и другие решения; простейшее из них:

95800 4 + 217519 4 + 414560 4 = 422481 4 . {\displaystyle 95800^{4}+217519^{4}+414560^{4}=422481^{4}.}

Ещё одним популярным обобщением теоремы Ферма является гипотеза Била , сформулированная в 1993 году американским математиком-любителем, пообещавшим за её доказательство или опровержение 1 млн долларов США.

«Ферматисты»

Простота формулировки теоремы Ферма (доступная в понимании даже школьнику), а также сложность единственного известного доказательства (или неведение о его существовании), вдохновляют многих на попытки найти другое, более простое, доказательство. Людей, пытающихся доказать теорему Ферма элементарными методами, называют «ферматистами » или «ферматиками». Ферматисты зачастую не являются профессионалами и допускают ошибки в арифметических действиях или логических выводах , хотя некоторые представляют весьма изощрённые «доказательства», в которых трудно найти ошибку.

Доказывать теорему Ферма в среде любителей математики было настолько популярно, что в 1972 году журнал «Квант» , публикуя статью о теореме Ферма, сопроводил её следующей припиской : «Редакция „Кванта“ со своей стороны считает необходимым известить читателей, что письма с проектами доказательств теоремы Ферма рассматриваться (и возвращаться) не будут».

Немецкому математику Эдмунду Ландау очень докучали «ферматисты». Чтобы не отвлекаться от основной работы, он заказал несколько сот бланков с шаблонным текстом, сообщающим, что на определённой строке на некоторой странице находится ошибка, при этом находить ошибку и заполнять пробелы в бланке он поручал своим аспирантам.

Примечательно, что отдельные ферматисты добиваются публикации своих (неверных) «доказательств» в ненаучной прессе, которая раздувает их значение до научной сенсации . Впрочем, иногда такие публикации появляются и в уважаемых научных изданиях , как правило, с последующими опровержениями . Среди других примеров:

Теорема Ферма в культуре и искусстве

Великая теорема Ферма стала символом труднейшей научной проблемы и в этом качестве часто упоминается в беллетристике. Далее перечислены некоторые произведения, в которых теорема не просто упомянута, но является существенной частью сюжета или идеологии произведения.

  • В рассказе Артура Порджеса «Саймон Флэгг и дьявол» профессор Саймон Флегг обращается за доказательством теоремы к дьяволу. По этому рассказу снят игровой научно-популярный фильм «Математик и чёрт» (СССР, , производство Центрнаучфильм, творческое объединение «Радуга», режиссёр Райтбурт).
  • А. П. Казанцев в романе «Острее шпаги» в 1983 году предложил оригинальную версию отсутствия доказательства самого Пьера Ферма.
  • В телесериале «Звёздный Путь » капитан космического корабля Жан-Люк Пикар был озадачен разгадкой Великой теоремы Ферма во второй половине XXIV века . Таким образом, создатели фильма предполагали, что решения у Великой теоремы Ферма не будет в ближайшие 400 лет. Серия «Рояль » с этим эпизодом была снята в 1989 году , когда Эндрю Уайлс был в самом начале своих работ. В действительности решение было найдено всего спустя пять лет.
  • В посвящённой Хэллоуину 1995 года серии «Симпсонов » двумерный Гомер Симпсон случайно попадает в третье измерение. Во время его путешествия в этом странном мире в воздухе парят геометрические тела и математические формулы, включая неверное равенство 1782 12 + 1841 12 = 1922 12 {\displaystyle 1782^{12}+1841^{12}=1922^{12}} . Калькулятор с точностью не более 10 значащих цифр подтверждает это равенство: 1782 12 + 1841 12 = 2 541 210 258 614 589 176 288 669 958 142 428 526 657 ≈ 2,541 210 259 ⋅ 10 39 , 1922 12 = 2 541 210 259 314 801 410 819 278 649 643 651 567 616 ≈ 2,541 210 259 ⋅ 10 39 . {\displaystyle {\begin{array}{cl}1782^{12}+1841^{12}&=2\,541\,210\,258\,614\,589\,176\,288\,669\,958\,142\,428\,526\,657\approx 2{,}541\,210\,259\cdot 10^{39},\\1922^{12}&=2\,541\,210\,259\,314\,801\,410\,819\,278\,649\,643\,651\,567\,616\approx 2{,}541\,210\,259\cdot 10^{39}.\end{array}}}
Тем не менее, даже без вычисления точных значений легко видеть, что равенство неверно: левая часть - нечётное число , а правая часть - чётное.
  • В первом издании «Искусства программирования » Дональда Кнута теорема Ферма приведена в качестве упражнения с математическим уклоном в самом начале книги и оценена максимальным числом (50) баллов, как «исследовательская проблема, которая (насколько это было известно автору в момент написания) ещё не получила удовлетворительного решения. Если читатель найдет решение этой задачи, его настоятельно просят опубликовать его; кроме того, автор данной книги будет очень признателен, если ему сообщат решение как можно быстрее (при условии, что оно правильно)». В третьем издании книги это упражнение уже требует знаний высшей математики и оценивается лишь в 45 баллов.
  • В книге Стига Ларссона «Девушка, которая играла с огнём » главная героиня Лисбет Саландер, обладающая редкими способностями к аналитике и фотографической памятью, в качестве хобби занята доказательством Великой теоремы Ферма, на которую она наткнулась, читая фундаментальный труд «Измерения в математике», в котором приводится и доказательство Эндрю Уайлса. Лисбет не хочет изучать готовое доказательство, а главным интересом становится поиск собственного решения. Поэтому всё своё свободное время она посвящает самостоятельному поиску «замечательного доказательства» теоремы великого француза, но раз за разом заходит в тупик. В конце книги Лисбет находит доказательство, которое не только совершенно отлично от предложенного Уайлсом, но и является настолько простым, что сам Ферма мог бы его найти. Однако после ранения в голову она его забывает, и Ларссон не приводит никаких подробностей этого доказательства.
  • Мюзикл «Последнее танго Ферма», изданный , создан в 2000 году Джошуа Розенблюмом (англ. Joshua Rosenblum ) и Джоан Лесснер по мотивам реальной истории Эндрю Уайлса. Главный герой по имени Дэниел Кин завершает доказательство теоремы, а дух самого Ферма старается ему помешать .
  • За несколько дней до своей смерти Артур Кларк успел отрецензировать рукопись романа «Последняя Теорема », над которой он трудился в соавторстве с Фредериком Полом . Книга вышла уже после смерти Кларка.

Примечания

  1. Ферма теорема // Математическая энциклопедия (в 5 томах) . - М. : Советская Энциклопедия , 1985. - Т. 5.
  2. Diophantus of Alexandria. Arithmeticorum libri sex, et de numeris multangulis liber unus. Cum commentariis C.G. Bacheti V.C. & observationibus D.P. de Fermat senatoris Tolosani. Toulouse, 1670, pp. 338-339.
  3. Fermat a Carcavi. Aout 1659. Oeuvres de Fermat. Tome II. Paris: Tannery & Henry, 1904, pp. 431-436.
  4. Ю. Ю. Мачис. О предполагаемом доказательстве Эйлера // Математические заметки. - 2007. - Т. 82 , № 3 . - С. 395-400 . Английский перевод: J. J. Mačys. On Euler’s hypothetical proof (англ.) // Mathematical Notes : journal. - 2007. - Vol. 82 , no. 3-4 . - P. 352-356 . - DOI :10.1134/S0001434607090088 .
  5. Давид Гильберт. Математические проблемы :

    Проблема доказательства этой неразрешимости являет разительный пример того, какое побуждающее влияние на науку может оказать специальная и на первый взгляд малозначительная проблема. Ибо, побуждённый задачей Ферма, Куммер пришёл к введению идеальных чисел и к открытию теоремы об однозначном разложении чисел в круговых полях на идеальные простые множители - теоремы, которая теперь, благодаря обобщениям на любую алгебраическую числовую область, полученным Дедекиндом и Кронекером , является центральной в современной теории чисел и значение которой выходит далеко за пределы теории чисел в область алгебры и теории функций.

  6. Соловьев Ю.П. Гипотеза Таниямы и последняя теорема Ферма // Соросовский образовательный журнал . - ISSEP, 1998. - Т. 4 , № 2 . - С. 135-138 .
  7. Wiles, Andrew. Modular elliptic curves and Fermat’s last theorem (англ.) // Annals of Mathematics : journal. - 1995. - Vol. 141 , no. 3 . - P. 443-551 . (англ.)
August 5th, 2013

В мире можно найти не так уж много людей, ни разу не слы-шавших о Великой теореме Ферма — пожалуй, это единственная математическая задача, получившая столь широкую известность и ставшая настоящей легендой. О ней упоминается во множестве книг и фильмов, при этом главный контекст почти всех упоми-наний — невозможность доказать теорему.

Да, эта теорема очень известна и в некотором смысле стала «идолом», которому поклоняются математики-любители и про-фессионалы, но мало кому известно о том, что ее доказательство найдено, а произошло это в уже далеком 1995 году. Но обо всем по порядку.

Итак, Великая теорема Ферма (нередко называемая послед-ней теоремой Ферма), сформулированная в 1637 году блестя-щим французским математиком Пьером Ферма, очень проста по своей сути и понятна любому человеку со средним образова-нием. Она гласит, что формула а в степени n + b в степени n = c в степени n не имеет натуральных (то есть не дробных) решений для n > 2. Вроде все просто и понятно, но лучшие ученые-математики и простые любители бились над поиском решения более трех с половиной веков.

Почему она так знаменита? Сейчас узнаем...

Мало ли доказанных, недоказанных и пока не доказанных теорем? Тут все дело в том, что Великая теорема Ферма являет собой самый большой контраст между простотой формулировки и сложностью доказательства. Великая теорема Ферма - задача невероятно трудная, и тем не менее ее формулировку может понять каждый с 5-ю классами средней школы, а вот доказательство - даже далеко не всякий математик-профессионал. Ни в физике, ни в химии, ни в биологии, ни в той же математике нет ни одной проблемы, которая формулировалась бы так просто, но оставалась нерешенной так долго. 2. В чем же она состоит?

Начнем с пифагоровых штанов Формулировка действительно проста - на первый взгляд. Как известно нам с детства, «пифагоровы штаны на все стороны равны». Проблема выглядит столь простой потому, что в основе ее лежало математическое утверждение, которое всем известно, - теорема Пифагора: в любом прямоугольном треугольнике квадрат, построенный на гипотенузе, равен сумме квадратов, построенных на катетах.

В V веке до н.э. Пифагор основал пифагорейское братство. Пифагорейцы, помимо прочего, изучали целочисленные тройки, удовлетворяющие равенству x²+y²=z². Они доказали, что пифагоровых троек бесконечно много, и получили общие формулы для их нахождения. Наверное, они пробовали искать тройки и более высоких степеней. Убедившись, что это не получается, пифагорейцы оставили бесполезные попытки. Члены братства были больше философами и эстетами, чем математиками.

То есть легко подобрать множество чисел, которые прекрасно удовлетворяют равенству x²+y²=z²

Начиная с 3, 4, 5 - действительно, младшекласснику понятно, что 9+16=25.

Или 5, 12, 13: 25 + 144 = 169. Замечательно.

Так вот, оказывается, что их НЕТ. Вот тут начинается подвох. Простота - кажущаяся, потому что трудно доказать не наличие чего-то, а наоборот, отсутствие. Когда надо доказать, что решение есть, можно и нужно просто привести это решение.

Доказать отсутствие сложнее: например, некто говорит: такое-то уравнение не имеет решений. Посадить его в лужу? легко: бац - а вот оно, решение! (приведите решение). И все, оппонент сражен. А как доказать отсутствие?

Сказать: «Я не нашел таких решений»? А может, ты плохо искал? А вдруг они есть, только очень большие, ну очень, такие, что даже у сверхмощного компьютера пока не хватает силенок? Вот это-то и сложно.

В наглядном виде это можно показать так: если взять два квадратика подходящих размеров и разобрать на единичные квадратики, то из этой кучки единичных квадратиков получается третий квадратик (рис. 2):


А проделаем то же с третьим измерением (рис. 3) - не получается. Не хватает кубиков, или остаются лишние:


А вот математик XVII века француз Пьер де Ферма с увлечением исследовал общее уравнение x n +y n =z n . И, наконец, сделал вывод: при n>2 целочисленных решений не существует. Доказательство Ферма безвозвратно утеряно. Рукописи горят! Осталось лишь его замечание в «Арифметике» Диофанта: «Я нашел поистине удивительное доказательство этого предложения, но поля здесь слишком узки для того, чтобы вместить его».

Вообще-то, теорема без доказательства называется гипотезой. Но за Ферма закрепилась слава, что он никогда не ошибается. Даже если он не оставлял доказательства какого-нибудь утверждения, впоследствии оно подтверждалось. К тому же, Ферма доказал свой тезис для n=4. Так гипотеза французского математика вошла в историю как Великая теорема Ферма.



После Ферма над поиском доказательства работали такие ве-ликие умы, как Леонард Эйлер (в 1770 году им было предложено решение для n = 3),


Адриен Лежандр и Иоганн Дирихле (эти ученые в 1825 году совместно нашли доказательство для n = 5), Габриель Ламе (нашедший доказательство для n = 7) и многие другие. К середине 80-х годов прошлого века стало понятно, что ученый мир находится на пути к окончательному решению Великой теоремы Ферма, однако только в 1993 году математики увидели и поверили, что трехвековая эпопея по поиску доказа-тельства последней теоремы Ферма практически закончилась.

Легко показывается, что теорему Ферма достаточно доказать только для простых n: 3, 5, 7, 11, 13, 17, … При составных n доказательство остаётся в силе. Но и простых чисел бесконечно много…

В 1825 году, применив метод Софи Жермен, женщины-математика, Дирихле и Лежандр независимо друг от друга доказали теорему для n=5. В 1839 году тем же методом француз Габриель Ламе показал истинность теоремы для n=7. Постепенно теорему доказали почти для всех n, меньших ста.

Наконец, немецкий математик Эрнст Куммер в блестящем исследовании показал, что методами математики XIX века теорему в общем виде доказать нельзя. Премия Французской Академии Наук, учреждённая в 1847 году за доказательство теоремы Ферма, осталась невручённой.

В 1907 году богатый немецкий промышленник Пауль Вольфскель из-за неразделённой любви решил свести счёты с жизнью. Как истинный немец он назначил дату и время самоубийства: ровно в полночь. В последний день он составил завещание и написал письма друзьям и родственникам. Дела закончились раньше полночи. Надо сказать, что Пауль интересовался математикой. От нечего делать он пошёл в библиотеку и принялся читать знаменитую статью Куммера. Неожиданно ему показалось, что Куммер в ходе рассуждений совершил ошибку. Вольфскель стал с карандашом в руках разбирать это место статьи. Полночь миновала, наступило утро. Пробел в доказательстве был восполнен. Да и сам повод для самоубийства теперь выглядел совершенно нелепым. Пауль разорвал прощальные письма и переписал завещание.

Вскоре он умер естественной смертью. Наследники были изрядно удивлены: 100 000 марок (более 1 000 000 нынешних фунтов стерлингов) передавались на счёт Королевского научного общества Гёттингена, которое в том же году объявило о проведении конкурса на соискание премии Вольфскеля. 100 000 марок полагались доказавшему теорему Ферма. За опровержение теоремы не полагалось ни пфеннига…

Большинство профессиональных математиков считали поиск доказательства Великой теоремы Ферма безнадёжным делом и решительно отказывались тратить время на такое бесполезное занятие. Зато любители порезвились на славу. Через несколько недель после объявления на Гёттингенский университет обрушилась лавина «доказательств». Профессор Э. М. Ландау, в обязанность которого входил разбор присланных доказательств, раздал своим студентам карточки:

Уважаемый(ая) . . . . . . . .

Благодарю Вас за присланную Вами рукопись с доказательством Великой теоремы Ферма. Первая ошибка находится на стр. ... в строке... . Из-за неё всё доказательство утрачивает силу.
Профессор Э. М. Ландау

В 1963 году Пауль Коэн, опираясь на выводы Гёделя, доказал неразрешимость одной из двадцати трех проблем Гильберта — гипотезы континуума. А что, если Великая теорема Ферма тоже неразрешима?! Но истинных фанатиков Великой теоремы это ничуть не разочаровало. Появление компьютеров неожиданно дало математикам новый метод доказательства. После Второй мировой войны группы программистов и математиков доказали Великую теорему Ферма при всех значениях n до 500, затем до 1 000, а позже до 10 000.

В 80-е годы Сэмюэль Вагстафф поднял предел до 25 000, а в 90-ых математики заявили, что Великая теорема Ферма верна при всех значениях n до 4 миллионов. Но если от бесконечности отнять даже триллион триллионов, она не станет меньше. Математиков не убеждает статистика. Доказать Великую теорему значило доказать её для ВСЕХ n, уходящих в бесконечность.

В 1954 году два молодых японских друга-математика занялись исследованием модулярных форм. Эти формы порождают ряды чисел, каждая - свой ряд. Случайно Танияма сравнил эти ряды с рядами, порождаемыми эллиптическими уравнениями. Они совпадали! Но модулярные формы - геометрические объекты, а эллиптические уравнения - алгебраические. Между столь разными объектами никогда не находили связи.

Тем не менее, друзья после тщательной проверки выдвинули гипотезу: у каждого эллиптического уравнения существует двойник - модулярная форма, и наоборот. Именно эта гипотеза стала фундаментом целого направления в математике, но до тех пор, пока гипотеза Таниямы-Симуры не была доказана, всё здание могло рухнуть в любой момент.

В 1984 году Герхард Фрей показал, что решение уравнения Ферма, если оно существует, можно включить в некоторое эллиптическое уравнение. Двумя годами позже профессор Кен Рибет доказал, что это гипотетическое уравнение не может иметь двойника в модулярном мире. Отныне Великая теорема Ферма была нерасторжимо связана с гипотезой Таниямы-Симуры. Доказав, что любая эллиптическая кривая модулярна, мы делаем вывод, что эллиптического уравнения с решением уравнения Ферма не существует, и Великая теорема Ферма была бы тотчас же доказана. Но в течение тридцати лет доказать гипотезу Таниямы-Симуры не удавалось, и надежд на успех оставалось всё меньше.

В 1963 году, когда ему было всего десять лет, Эндрю Уайлс уже был очарован математикой. Когда он узнал о Великой теореме, то понял, что не сможет отступиться от неё. Школьником, студентом, аспирантом он готовил себя к этой задаче.

Узнав о выводах Кена Рибета, Уайлс с головой ушёл в доказательство гипотезы Таниямы-Симуры. Он решил работать в полной изоляции и секретности. «Я понимал, что всё, что имеет какое-то отношение к Великой теореме Ферма, вызывает слишком большой интерес… Слишком много зрителей заведомо мешают достижению цели». Семь лет упорной работы принесли плоды, Уайлс наконец завершил доказательство гипотезы Таниямы-Симуры.

В 1993 году английский математик Эндрю Уайлс представил миру свое доказательство Великой теоремы Ферма (Уайльс прочитал свой сенсационный доклад на конференции в Институте сэра Исаака Ньютона в Кембридже.) , работа над которым продолжалась более семи лет.

Пока в печати продолжалась шумиха, началась серьёзная работа по проверке доказательства. Каждый фрагмент доказательства должен быть тщательно изучен прежде, чем доказательство может быть признано строгим и точным. Уайлс провёл беспокойное лето в ожидании отзывов рецензентов, надеясь, что ему удастся получить их одобрение. В конце августа эксперты нашли недостаточно обоснованное суждение.

Оказалось, что данное решение содержит грубую ошибку, хотя в целом и верно. Уайлс не сдался, призвал на помощь известного специалиста в теории чисел Ричарда Тейлора, и уже в 1994 году они опубликовали исправлен-ное и дополненное доказательство теоремы. Самое удивительное, что эта работа заняла целых 130 (!) полос в математическом журнале «Annals of Mathematics». Но и на этом история не закончилась — последняя точка была поставлена только в следующем, 1995 году, когда в свет вышел окончательный и «идеальный», с математи-ческой точки зрения, вариант доказательства.

«…через полминуты после начала праздничного обеда по случаю её дня рождения, я подарил Наде рукопись полного доказательства» (Эндрю Уальс). Я ещё не говорил, что математики странные люди?


На этот раз никаких сомнений в доказательстве не было. Две статьи были подвергнуты самому тщательному анализу и в мае 1995 года были опубликованы в журнале «Annals of Mathematics».

С того момента прошло немало времени, однако в обществе до сих пор бытует мнение о неразрешимости Великой теоремы Фер-ма. Но даже те, кто знает о найденном доказательстве, продолжают работу в этом направлении — мало кого устраивает, что Великая теорема требует решения в 130 страниц!

Поэтому сейчас силы очень многих математиков (в основном это любители, а не профессио-нальные ученые) брошены на поиски простого и лаконичного до-казательства, однако этот путь, скорее всего, не приведет никуда...

источник

Пьер Ферма утверждал, что:

невозможно разложить куб на два куба или биквадрат на два биквадрата и вообще невозможно разложить какую-либо степень, большую чем два, на две степени с таким же показателем.

Как же подойти к доказательству этого утверждения Ферма?

(картинка для привлечения внимания)

Представим себе, что мы нашли или построили прямоугольный треугольник со следующими сторонами: катеты - , и гипотенузой где (p, q, k, n) - числа натуральные. Тогда по теореме Пифагора получим или . Таким образом, если мы найдем или построим такой треугольник, то мы опровергнем Ферма. Если же мы докажем, что такой треугольник не существует, то мы докажем теорему.

Так как в утверждении речь идёт о натуральных числах, то найдем, чему равняется разность квадратов двух нечетных натуральных чисел. Т.е. решим уравнение . Для этого построим прямоугольные треугольники, гипотенуза которых равна , а катет равен , где и (a > b) . Тогда по теореме Пифагора можно вычислить второй катет по формуле (1) , или (2) . Мы получили, что стороны этих треугольников равны и . Таким образом, мы можем перебрать все пары чисел a и b из натурального множества (назовем эти числа “генераторами” данного тождества) и получить все возможные треугольники с заданными свойствами , . Докажем необходимость данного решения. Перепишем (1) в виде . Так как Z и Y нечетные числа, значит можно написать (Z - Y) = 2b и (Z + Y)=2a. Решая их относительно Z и Y, получим Z = (a + b) и Y = (a - b). Тогда можно записать, что X = 4ab и, подставляя эти значения в (1) , получим .

Примечание
Чтобы избежать получения подобных треугольников, и, учитывая, что Z и Y - нечетные числа по условию, числа a и b должны быть взаимно простыми и разной четности. Далее будем считать, что четным является число a . Для того, чтобы упорядочить распределение прямоугольных треугольников в множестве натуральных чисел N , поступим следующим образом: из этого множества вычтем все числа, которые являются четными степенями натуральных чисел. Обозначим это множество , где n - натуральное число. Затем из оставшихся натуральных чисел вычтем все числа, которые являются нечетными (≥3) степенями натуральных чисел и обозначим множество этих чисел как . Оставшиеся натуральные числа составят множество, числа которого есть натуральные числа в первой степени. Обозначим это множество . Очевидно, соединение этих 3-х множеств есть множество натуральных чисел, или . Множество представим как ряд = {1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17,………}. Представим множества и в виде рядов. Тогда множество будет представлять собой матрицу, состоящую из бесконечного числа строк, каждая строка будет состоять из чисел ряда , возведенных в степень 2n , а n - есть номер строки. Так первая строка состоит из квадратов всех чисел ряда , вторая строка состоит из 4-х степеней этих чисел и т.д. Рассмотрим множество , которое будет представлять собой матрицу, состоящую из бесконечного числа строк, каждая строка которой будет состоять из чисел ряда , возведенных в степень 2n+1 . (n - есть номер строки). Так первая строка этой матрицы состоит из кубов чисел ряда , вторая строка состоит из чисел ряда в пятой степени и т.д. Рассмотрим множество . Т.к. , то примем тот же алгоритм построения треугольников (см. выше). Найдем «генераторы» тождества, Это будут числа , где , составим тождество: (3) , мы получили множество прямоугольных треугольников с целочисленными сторонами. Здесь - гипотенуза, - катет и - второй катет. Для опровержения утверждения Ферма нужно, чтобы стороны X, Y, Z искомого треугольника равнялись (4) . Где (p, q, k, n) - натуральные числа. По теореме Пифагора будем иметь или и утверждение Ферма будет опровергнуто. Из тождества видно, что . Рассмотрим последнее равенство , в этом равенстве «p » ни при каких значениях «a и b » не будет натуральным числом, если . Это означает, что в рассмотренном множестве треугольников не существует ни одного треугольника с искомыми сторонами (4) .
Теперь рассмотрим множество . Обозначим (2n+1) как «m », тогда во множестве получим прямоугольные треугольники, описываемые тождеством (6) . Если мы сможем построить прямоугольный треугольник X, Y, Z со сторонами (7) , где , то мы опровергнем утверждение Ферма, т.к. по теореме Пифагора и (p, q и k) - натуральные числа. Надо, чтобы . Рассматривая последнее равенство заметим, что «p » не может быть натуральным числом ни при каких значениях «a и b », , если . Значит и в этом множестве треугольников не существует ни одного треугольника с искомыми сторонами (7) .

Однако из вышесказанного видно, что все доказательство сводится к анализу числа , где «» при любых натуральных «a и b » не будет натуральным числом в степени «m/2 ». Или же (8) при тех же условиях не будет натуральным числом в степени «m». Из доказательства видно, что «генераторами» тождества (6) являются числа «» из ряда Но, анализируя (8) , можно подставить вместо «» число . Так как есть четное число, (см.Примечание), то - натуральное число. После подстановки его в (8) получим , то есть натуральные числа в степени «m». Совершив вышеуказанную подстановку в тождество (6) , и, обозначив через , получим следующее тождество: . Мы получили множество прямоугольных треугольников со сторонами . Если (k,q, p) - натуральные числа в нечетной степени, т.е. где r - любое нечетное число, а . Чтобы опровергнуть Ферма нужно, чтобы: В последнем равенстве при любых натуральных a и b , - числа натуральные, но первые два равенства невозможны, так как, если «m и r » любые нечетные числа, то - иррациональные числа, а числа в скобках - числа натуральные. Если же (k,q, p) - натуральные числа в четной степени, т.е. , то мы получим следующие равенства (5) . В данном варианте последнее равенство невозможно, т.к. извлекая корень m степени из обеих частей равенства получим , т.е. в скобках иррациональное число, а - натуральное. Это значит, что и в этом множестве не найдено «нужного» треугольника. А это значит, что для любых нечетных «m » утверждение Ферма верно, а значит, верно, для всех простых показателей «m ≥ 3».

Остается найти доказательство теоремы для четных показателей. Из (5) следует, что, если в каноническом разложении четного показателя степени есть нечетное простое число, то утверждение Ферма для этой степени верно. Очевидно, что этому условию отвечают все четные числа, кроме числа «4 » и чисел кратных четырем, т.е. 8, 16, 32, 64 … и т.д. В разложении этих чисел есть только простое число 2 . Поэтому вышеприведенное доказательство не дает ответа для этих степеней.

Значит остается доказать теорему для «n = 4 ». Можно предположить, что у Ферма было общее доказательство, но не полное. Может быть, поэтому он и не записал свое доказательство. И только через несколько лет, создав свой метод «бесконечного или неопределенного спуска», он доказал, что не существует прямоугольного треугольника с целочисленными сторонами, у которого площадь равнялась бы квадрату натурального числа. После этого доказательство теоремы для «n = 4 » не составило труда. Это доказательство Ферма записал. И теорема оказалась доказанной полностью.

Теги: теорема Ферма, краткое доказательство