Что такое значение а в уравнении. Уравнения

После того, как мы изучили понятие равенств, а именно один из их видов – числовые равенства, можно перейти к еще одному важному виду – уравнениям. В рамках данного материала мы объясним, что такое уравнение и его корень, сформулируем основные определения и приведем различные примеры уравнений и нахождения их корней.

Yandex.RTB R-A-339285-1

Понятие уравнения

Обычно понятие уравнения изучается в самом начале школьного курса алгебры. Тогда оно определяется так:

Определение 1

Уравнением называется равенство с неизвестным числом, которое нужно найти.

Принято обозначать неизвестные маленькими латинскими буквами, например, t , r , m др., но чаще всего используются x , y , z . Иными словами, уравнение определяет форма его записи, то есть равенство будет уравнением только тогда, когда будет приведен к определенному виду – в нем должна быть буква, значение которое надо найти.

Приведем несколько примеров простейших уравнений. Это могут быть равенства вида x = 5 , y = 6 и т.д., а также те, что включают в себя арифметические действия, к примеру, x + 7 = 38 , z − 4 = 2 , 8 · t = 4 , 6: x = 3 .

После того, как изучено понятие скобок, появляется понятие уравнений со скобками. К ним относятся 7 · (x − 1) = 19 , x + 6 · (x + 6 · (x − 8)) = 3 и др. Буква, которую надо найти, может встречаться не один раз, а несколько, как, например, в уравнении x + 2 + 4 · x − 2 − x = 10 . Также неизвестные могут быть расположены не только слева, но и справа или в обеих частях одновременно, например, x · (8 + 1) − 7 = 8 , 3 − 3 = z + 3 или 8 · x − 9 = 2 · (x + 17) .

Далее, после того, как ученики знакомятся с понятием целых, действительных, рациональных, натуральных чисел, а также логарифмами, корнями и степенями, появляются новые уравнения, включающие в себя все эти объекты. Примерам таких выражений мы посвятили отдельную статью.

В программе за 7 класс впервые возникает понятие переменных. Это такие буквы, которые могут принимать разные значения (подробнее см. в статье о числовых, буквенных выражениях и выражениях с переменными). Основываясь на этом понятии, мы можем дать новое определение уравнению:

Определение 2

Уравнение – это равенство, включающее в себя переменную, значение которой нужно вычислить.

То есть, к примеру, выражение x + 3 = 6 · x + 7 – это уравнение с переменной x , а 3 · y − 1 + y = 0 – уравнение с переменной y .

В одном уравнении может быть не одна переменная, а две и более. Их называют соответственно уравнениями с двумя, тремя переменными и др. Запишем определение:

Определение 3

Уравнениями с двумя (тремя, четырьмя и более) переменными называют уравнения, которые включают в себя соответствующее количество неизвестных.

К примеру, равенство вида 3 , 7 · x + 0 , 6 = 1 является уравнением с одной переменной x , а x − z = 5 – уравнением с двумя переменными x и z . Примером уравнения с тремя переменными может быть выражение x 2 + (y − 6) 2 + (z + 0 , 6) 2 = 26 .

Корень уравнения

Когда мы говорим об уравнении, сразу возникает необходимость определиться с понятием его корня. Попробуем объяснить, что оно означает.

Пример 1

Нам дано некое уравнение, включающее в себя одну переменную. Если мы подставим вместо неизвестной буквы число, то уравнение станет числовым равенством – верным или неверным. Так, если в уравнении a + 1 = 5 мы заменим букву числом 2 , то равенство станет неверным, а если 4 , то получится верное равенство 4 + 1 = 5 .

Нас больше интересуют именно те значения, с которыми переменная обратится в верное равенство. Они и называются корнями или решениями. Запишем определение.

Определение 4

Корнем уравнения называют такое значение переменной, которое обращает данное уравнение в верное равенство.

Корень также можно назвать решением, или наоборот – оба эти понятия означают одно и то же.

Пример 2

Возьмем пример для пояснения этого определения. Выше мы приводили уравнение a + 1 = 5 . Согласно определению, корнем в данном случае будет 4 , потому что при подстановке вместо буквы оно дает верное числовое равенство, а двойка не будет решением, поскольку ей отвечает неверное равенство 2 + 1 = 5 .

Сколько корней может иметь одно уравнение? Любое ли уравнение имеет корень? Ответим на эти вопросы.

Уравнения, не имеющие ни одного корня, тоже существуют. Примером может быть 0 · x = 5 . Мы можем подставить в него бесконечно много разных чисел, но ни одно из них не превратит его в верное равенство, поскольку умножение на 0 всегда дает 0 .

Также бывают уравнения, имеющие несколько корней. У них может быть как конечное, так и бесконечно большое количество корней.

Пример 3

Так, в уравнении x − 2 = 4 есть только один корень – шесть, в x 2 = 9 два корня ­­– три и минус три, в x · (x − 1) · (x − 2) = 0 три корня – нуль, один и два, в уравнении x=x корней бесконечно много.

Теперь поясним, как правильно записывать корни уравнения. Если их нет, то мы так и пишем: «уравнение корней не имеет». Можно также в этом случае указать знак пустого множества ∅ . Если корни есть, то пишем их через запятую или указываем как элементы множества, заключив в фигурные скобки. Так, если у какого-либо уравнения есть три корня - 2 , 1 и 5 , то пишем - 2 , 1 , 5 или { - 2 , 1 , 5 } .

Допускается запись корней в виде простейших равенств. Так, если неизвестная в уравнении обозначена буквой y , а корнями являются 2 и 7 , то мы пишем y = 2 и y = 7 . Иногда к буквам добавляются нижние индексы, например, x 1 = 3 , x 2 = 5 . Таким образом мы указываем на номера корней. Если решений у уравнения бесконечно много, то мы записываем ответ как числовой промежуток или используем общепринятые обозначения: множество натуральных чисел обозначается N , целых ­– Z , действительных – R . Скажем, если нам надо записать, что решением уравнения будет любое целое число, то мы пишем, что x ∈ Z , а если любое действительное от единицы до девяти, то y ∈ 1 , 9 .

Когда у уравнения два, три корня или больше, то, как правило, говорят не о корнях, а о решениях уравнения. Сформулируем определение решения уравнения с несколькими переменными.

Определение 5

Решение уравнения с двумя, тремя и более переменными – это два, три и более значения переменных, которые обращают данное уравнение в верное числовое равенство.

Поясним определение на примерах.

Пример 4

Допустим, у нас есть выражение x + y = 7 , которое представляет из себя уравнение с двумя переменными. Подставим вместо первой единицу, а вместо второй двойку. У нас получится неверное равенство, значит, эта пара значений не будет решением данного уравнения. Если же мы возьмем пару 3 и 4 , то равенство станет верным, значит, мы нашли решение.

Такие уравнения тоже могут не иметь корней или иметь бесконечное их количество. Если нам надо записать два, три, четыре и более значений, то мы пишем их через запятую в круглых скобках. То есть в примере выше ответ будет выглядеть как (3 , 4) .

На практике чаще всего приходится иметь дело с уравнениями, содержащими одну переменную. Алгоритм их решения мы подробно рассмотрим в статье, посвященной решению уравнений.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Уравнения

Как решать уравнения?

В этом разделе мы вспомним (или изучим – уж кому как) самые элементарные уравнения. Итак, что такое уравнение? Говоря человеческим языком, это какое-то математическое выражение, где есть знак равенства и неизвестное. Которое, обычно, обозначается буквой «х» . Решить уравнение - это найти такие значения икса, которые при подстановке в исходное выражение, дадут нам верное тождество. Напомню, что тождество – это выражение, которое не вызывает сомнения даже у человека, абсолютно не отягощенного математическими знаниями. Типа 2=2, 0=0, ab=ab и т.д. Так как решать уравнения? Давайте разберёмся.

Уравнения бывают всякие (вот удивил, да?). Но всё их бесконечное многообразие можно разбить всего на четыре типа.

4. Все остальные.)

Всех остальных, разумеется, больше всего, да...) Сюда входят и кубические, и показательные, и логарифмические, и тригонометрические и всякие другие. С ними мы в соответствующих разделах плотно поработаем.

Сразу скажу, что иногда и уравнения первых трёх типов так накрутят, что и не узнаешь их… Ничего. Мы научимся их разматывать.

И зачем нам эти четыре типа? А затем, что линейные уравнения решаются одним способом, квадратные другим, дробные рациональные - третьим, а остальные не решаются вовсе! Ну, не то, чтобы уж совсем никак не решаются, это я зря математику обидел.) Просто для них существуют свои специальные приёмы и методы.

Но для любых (повторяю - для любых! ) уравнений есть надёжная и безотказная основа для решения. Работает везде и всегда. Эта основа - Звучит страшно, но штука очень простая. И очень (очень!) важная.

Собственно, решение уравнения и состоит из этих самых преобразований. На 99%. Ответ на вопрос: "Как решать уравнения? " лежит, как раз, в этих преобразованиях. Намёк понятен?)

Тождественные преобразования уравнений.

В любых уравнениях для нахождения неизвестного надо преобразовать и упростить исходный пример. Причем так, чтобы при смене внешнего вида суть уравнения не менялась. Такие преобразования называются тождественными или равносильными.

Отмечу, что эти преобразования относятся именно к уравнениям. В математике ещё имеются тождественные преобразования выражений. Это другая тема.

Сейчас мы с вами повторим все-все-все базовые тождественные преобразования уравнений.

Базовые потому, что их можно применять к любым уравнениям – линейным, квадратным, дробным, тригонометрическим, показательным, логарифмическим и т.д. и т.п.

Первое тождественное преобразование: к обеим частям любого уравнения можно прибавить (отнять) любое (но одно и то же!) число или выражение (в том числе и выражение с неизвестным!). Суть уравнения от этого не меняется.

Вы, между прочим, постоянно пользовались этим преобразованием, только думали, что переносите какие-то слагаемые из одной части уравнения в другую со сменой знака. Типа:

Дело знакомое, переносим двойку вправо, и получаем:

На самом деле вы отняли от обеих частей уравнения двойку. Результат получается тот же самый:

х+2 - 2 = 3 - 2

Перенос слагаемых влево-вправо со сменой знака есть просто сокращённый вариант первого тождественного преобразования. И зачем нам такие глубокие познания? – спросите вы. В уравнениях низачем. Переносите, ради бога. Только знак не забывайте менять. А вот в неравенствах привычка к переносу может и в тупик поставить….

Второе тождественное преобразование : обе части уравнения можно умножить (разделить) на одно и то же отличное от нуля число или выражение. Здесь уже появляется понятное ограничение: на ноль умножать глупо, а делить и вовсе нельзя. Это преобразование вы используете, когда решаете что-нибудь крутое, типа

Понятное дело, х = 2. А вот как вы его нашли? Подбором? Или просто озарило? Чтобы не подбирать и не ждать озарения, нужно понять, что вы просто поделили обе части уравнения на 5. При делении левой части (5х) пятёрка сократилась, остался чистый икс. Чего нам и требовалось. А при делении правой части (10) на пять, получилась, знамо дело, двойка.

Вот и всё.

Забавно, но эти два (всего два!) тождественных преобразования лежат в основе решения всех уравнений математики. Во как! Имеет смысл посмотреть на примерах, что и как, правда?)

Примеры тождественных преобразований уравнений. Основные проблемы.

Начнём с первого тождественного преобразования. Перенос влево-вправо.

Пример для младшеньких.)

Допустим, надо решить вот такое уравнение:

3-2х=5-3х

Вспоминаем заклинание: "с иксами - влево, без иксов - вправо!" Это заклинание - инструкция по применению первого тождественного преобразования.) Какое выражение с иксом у нас справа? ? Ответ неверный! Справа у нас - ! Минус три икс! Стало быть, при переносе влево, знак поменяется на плюс. Получится:

3-2х+3х=5

Так, иксы собрали в кучку. Займёмся числами. Слева стоит тройка. С каким знаком? Ответ "с никаким" не принимается!) Перед тройкой, действительно, ничего не нарисовано. А это значит, что перед тройкой стоит плюс. Так уж математики договорились. Ничего не написано, значит, плюс. Следовательно, в правую часть тройка перенесётся с минусом. Получим:

-2х+3х=5-3

Остались сущие пустяки. Слева - привести подобные, справа - посчитать. Сразу получается ответ:

В этом примере хватило одного тождественного преобразования. Второе не понадобилось. Ну и ладно.)

Пример для старшеньких.)

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.


















Корни уравнения не изменяются, если какое – нибудь слагаемое перенести из одной части уравнения в другую, изменив при этом его знак. 3х – 8 = х – 14 3х –х = х = -6 х = -3












Уравнение, содержащее переменную под знаком логарифма, называется логарифмическим. Решение логарифмического уравнения вида основано на том, что такое уравнение равносильно уравнению f(x)=g(x) при дополнительных условиях f(x) Согласно определению логарифма,




0, то уравнение решений не имеет Если D=0, то уравнение имеет единственное решение: Если D > 0, то уравнение имеет два р" title="Квадратным уравнение с одним неизвестным называется уравнение вида Дискриминантом квадратного уравнения называется число Если D > 0, то уравнение решений не имеет Если D=0, то уравнение имеет единственное решение: Если D > 0, то уравнение имеет два р" class="link_thumb"> 23 Квадратным уравнение с одним неизвестным называется уравнение вида Дискриминантом квадратного уравнения называется число Если D > 0, то уравнение решений не имеет Если D=0, то уравнение имеет единственное решение: Если D > 0, то уравнение имеет два решения: 0, то уравнение решений не имеет Если D=0, то уравнение имеет единственное решение: Если D > 0, то уравнение имеет два р"> 0, то уравнение решений не имеет Если D=0, то уравнение имеет единственное решение: Если D > 0, то уравнение имеет два решения:"> 0, то уравнение решений не имеет Если D=0, то уравнение имеет единственное решение: Если D > 0, то уравнение имеет два р" title="Квадратным уравнение с одним неизвестным называется уравнение вида Дискриминантом квадратного уравнения называется число Если D > 0, то уравнение решений не имеет Если D=0, то уравнение имеет единственное решение: Если D > 0, то уравнение имеет два р"> title="Квадратным уравнение с одним неизвестным называется уравнение вида Дискриминантом квадратного уравнения называется число Если D > 0, то уравнение решений не имеет Если D=0, то уравнение имеет единственное решение: Если D > 0, то уравнение имеет два р">






















Тригонометрическое уравнение вида все члены которого имеют одну и ту же степень относительно синуса и косинуса, называется однородным. Однородное уравнение легко сводиться к уравнению относительно, если все его члены разделить на. При этом если, то такое деление не приведет к потере решений, поскольку значение не удовлетворяет уравнению. Если же, то выносится за скобки.


Уравнение вида равносильно уравнению,где Наиболее часто применяется метод, состоящий в том, что все члены уравнения, состоящие в правой части, переносятся в левую часть; после чего левая часть уравнения разлагается на множители, при этом применяются формулы разложения тригонометрических функций в произведение, формулы понижения степени, формулы преобразования произведения тригонометрических функций в систему.




Иррациональные уравнения Уравнения, содержащие один знак радикала второй степени -В-Возведение обеих частей уравнения в степень. При возведении обеих частей уравнения в четную степень, получается уравнение, неравносильное исходному. Избавиться от посторонних корней помогает непосредственная проверка полученных корней в исходном уравнении, т.е. корни поочередно подставляют в начальное уравнение и проверяют, верно ли получается числовое равенство.


Равенство нулю произведения(частного) двух выражений. Произведение двух выражений равно нулю, если хотя бы одно из выражений равно нулю, а другое при этом имеет смысл. Формально это записывается так: Формальная запись частного от деления двух выражений равных нулю:




Уравнения, содержащие два(три) знака радикала второй степени Возведение в квадрат обеих частей уравнения. Сначала уравнение нужно преобразовать так, чтобы в одной части стояли радикалы, а в другой- остальные члены исходного уравнения. Так поступают, если в уравнении два радикала. Если же их три, то два из них оставляют в одной части уравнения, а третий переносят в другую. Затем обе части уравнения возводят в квадрат и проводятся необходимые преобразования. Далее все члены уравнения, не содержащие радикалов, снова переносятся в одну сторону уравнения, а оставшийся радикал(теперь он один!)-в другую. Полученное уравнение вновь возводят в квадрат, и в итоге получается уравнение, не содержащее радикалов.







Уравнения, содержащие радикалы третьей и более высоких степей. При решении уравнений, содержащих радикалы третьей степени, бывает полезно пользоваться следующими тождествами: Решить уравнение: Решение: Возведем обе части этого уравнения в третью степень и воспользуемся выше приведённым тождеством: Заметим, что выражение, стоящее в скобках, равно 1, что следует из первоначального уравнения. Учитывая это и приводя подобные члены, получим: Раскроем скобки, приведем подобные члены и решим квадратное уравнение. Его корни х=5 и х=-25/2. Если считать (по определению), что корень нечетной степени можно извлекать и из отрицательных чисел, то оба полученных числа являются решениями исходного уравнения. Ответ:5,-25/2


Уравнение с параметром При каких значениях а уравнение имеет два корня, один из которых больше 1, а другой меньше? Решение: Рассмотрим функцию: и построим эскиз её графика. При а=0 функция становится линейной и двух пересечений с осью Ох(корней уравнения у=0) иметь не может. При а>0 графиком функции является парабола, ветви которой направлены вверх. Необходимым и достаточным условием существования корней таких, что а в этом случае является единственное условие: Если же а 0 графиком функции является парабола, ветви которой направлены вверх. Необходимым и достаточным условием существования корней таких, что а в этом случае является единственное условие: Если же а">


Графический способ решения систем уравнений Система уравнений состоит из двух или более алгебраических уравнений. Решение системы называется такой набор значений переменных, который при подстановке обращает каждое уравнение системы в числовое или буквенное тождество. Решить систему - значит найти все её решения или доказать что их нет.


Графическое решение систем Графический способ решения систем уравнений состоит в следующем: Строятся графики каждого уравнения системы; Определяются точки пересечения графиков; Записывается ответ: координаты точек пересечения построенных графиков. Графический способ решения систем уравнений в большинстве случаев не дает точного решения системы, однако он может быть полезен для наглядной иллюстрации рассуждений.




Равносильность уравнений Равносильными (эквивалентными) уравнения называются в том случае, если все корни первого уравнения являются корнями второго уравнения, а все корни второго уравнения – корнями первого. Равносильные преобразования уравнения – это преобразования, приводящие к равносильному уравнению: 1)Прибавление одновременно к обеим частям уравнения любого числа (в частности, перенос слагаемых из одной части уравнения в другую с изменением знака) 2) Умножение (и деление) обеих частей уравнения одновременно на любое число, отличное от нуля. Кроме того, для уравнений в области действительных чисел: 3) Возведением обеих частей уравнения в любую нечетную степень 4) Возведение обеих частей уравнения при условии, что они неотрицательны, в любую четную натуральную степень



Показательные уравнения. Показательным называют уравнение, в котором неизвестное входит только в показатели степеней при постоянных основаниях. Показательное уравнение вида равносильно уравнению Имеются два основных метода решения показательных уравнений: 1)приведение уравнения к виду,а затем к виду; 2) введение новой переменной. Пример: Решим уравнение:


Список используемой литературы: Д.И.Аверьянов – «Большой справочник для поступающих в ВУЗы» 1998г. В.К.Егерев- «Сборник задач по математике для поступающих в ВУЗы под редакцией М.И.Сканави». 1997г. Ю.Н.Макарычев – «Алгебра. Дополнительные главы к школьному учебнику. 8 класс.» 2003г. Ю.Н.Макарычев – «Алгебра. Дополнительные главы к школьному учебнику. 9 класс.» 2003г.


Презентацию подготовили: Шманова Виктория Деева Александра 11 класс МОУ «СОШ 1» г. Шумиха 2007г. подробная информация по тел


УРАВНЕНИЯ
Уравнением называется математическое соотношение, выражающее равенство двух алгебраических выражений. Если равенство справедливо для любых допустимых значений входящих в него неизвестных, то оно называется тождеством; например, соотношение вида (x - 1)2 = (x - 1)(x - 1) выполняется при всех значениях переменной x. Для обозначения тождества часто вместо обычного знака равенства = пишут знак є, который читается "тождественно равно". Тождества используются в алгебре при записи разложения многочленов на множители (как в приведенном выше примере). Встречаются они и в тригонометрии в таких соотношениях, как sin2x + cos2x = 1, а в общем случае выражают формальное отношение между двумя на первый взгляд различными математическими выражениями. Если уравнение, содержащее переменную x, выполняется только при определенных, а не при всех значениях x, как в случае тождества, то может оказаться полезным определить те значения x, при которых это уравнение справедливо. Такие значения x называются корнями или решениями уравнения. Например, число 5 является корнем уравнения 2x + 7= 17. Уравнения служат мощным средством решения практических задач. Точный язык математики позволяет просто выразить факты и соотношения, которые, будучи изложенными обычным языком, могут показаться запутанными и сложными. Неизвестные величины, обозначаемые в задаче символами, например x, можно найти, сформулировав задачу на математическом языке в виде уравнений. Методы решения уравнений составляют в основном предмет того раздела математики, который называется теорией уравнений.
ТИПЫ УРАВНЕНИЙ
Алгебраические уравнения. Уравнения вида fn = 0, где fn - многочлен от одной или нескольких переменных, называются алгебраическими уравнениями. Многочленом называется выражение вида fn = a0 xiyj... vk + a1 xlym... vn + ј + asxpyq... vr, где x, y, ..., v - переменные, а i, j, ..., r - показатели степеней (целые неотрицательные числа). Многочлен от одной переменной записывается так: f(x) = a0xn + a1xn - 1 + ... + an - 1x + an или, в частном случае, 3x4 - x3 + 2x2 + 4x - 1. Алгебраическим уравнением с одним неизвестным называется любое уравнение вида f(x) = 0. Если a0 № 0, то n называется степенью уравнения. Например, 2x + 3 = 0 - уравнение первой степени; уравнения первой степени называются линейными, так как график функции y = ax + b имеет вид прямой. Уравнения второй степени называются квадратными, а уравнения третьей степени - кубическими. Аналогичные названия имеют и уравнения более высоких степеней.
Трансцендентные уравнения. Уравнения, содержащие трансцендентные функции, такие, как логарифмическая, показательная или тригонометрическая функция, называются трансцендентными. Примером могут служить следующие уравнения:

Где lg - логарифм по основанию 10.
Дифференциальные уравнения. Так называются уравнения, содержащие одну или несколько функций и их производные или дифференциалы. Дифференциальные уравнения оказались исключительно ценным средством точной формулировки законов природы.
Интегральные уравнения. Уравнения, содержащие неизвестную функцию под знаком интеграла, например, f (s) = тK (s, t) f (t) dt, где f (s) и K(s,t) заданы, а f (t) требуется найти.
Диофантовы уравнения. Диофантовым уравнением называется алгебраическое уравнение с двумя или более неизвестными с целыми коэффициентами, решение которого ищется в целых или рациональных числах. Например, уравнение 3x - 5y = 1 имеет решение x = 7, y = 4; вообще же его решениями служат целые числа вида x = 7 + 5n, y = 4 + 3n.
РЕШЕНИЕ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ
Для всех перечисленных выше типов уравнений общих методов решения не существует. И все же во многих случаях, особенно для алгебраических уравнений определенного типа, имеется достаточно полная теория их решения.
Линейные уравнения. Эти простые уравнения решаются путем их сведения к эквивалентному уравнению, из которого непосредственно видно значение неизвестного. Например, уравнение x + 2 = 7 можно свести к эквивалентному уравнению x = 5 вычитанием числа 2 из правой и левой частей. Шаги, совершаемые при сведении простого уравнения, например, x + 2 = 7, к эквивалентному, основаны на использовании четырех аксиом. 1. Если равные величины увеличить на одно и то же число, то результаты будут равны. 2. Если из равных величин вычесть одно и то же число, то результаты будут равны. 3. Если равные величины умножить на одно и то же число, то результаты будут равны. 4. Если равные величины разделить на одно и то же число, то результаты будут равны. Например, чтобы решить уравнение 2x + 5 = 15, мы воспользуемся аксиомой 2 и вычтем число 5 из правой и левой частей, в результате чего получим эквивалентное уравнение 2x = 10. Затем мы воспользуемся аксиомой 4 и разделим обе части полученного уравнения на 2, в результате чего исходное уравнение сведется к виду x = 5, что и является искомым решением.
Квадратные уравнения. Решения общего квадратного уравнения ax2 + bx + c = 0 можно получить с помощью формулы


Таким образом, существуют два решения, которые в частном случае могут совпадать.
Другие алгебраические уравнения. Явные формулы, аналогичные формуле для решения квадратного уравнения, можно выписать только для уравнений третьей и четвертой степеней. Но и эти формулы сложны и далеко не всегда помогают легко находит корни. Что же касается уравнений пятой степени или выше, то для них, как доказал Н.Абель в 1824, нельзя указать общую формулу, которая выражала бы корни уравнения через его коэффициенты при помощи радикалов. В отдельных частных случаях уравнения высших степеней удается легко решить, факторизуя их левую часть, т.е. разлагая ее на множители. Например, уравнение x3 + 1 = 0 можно записать в факторизованном виде (x + 1)(x2 - x + 1) = 0. Решения мы находим, полагая каждый из множителей равным нулю: Таким образом, корни равны x = -1,
Системы линейных уравнений. Два линейных уравнения с двумя неизвестными можно записать в виде


Решение такой системы находится с помощью определителей


Оно имеет смысл, если

>
>>">



>">

и
отличен от нуля. В этом случае решения уравнений не существует; уравнения несовместны. Численный пример такой ситуации - система
">

Если же D = 0, то возможны два случая. (1) По крайней мере один из определителей
и
отличен от нуля. В этом случае решения уравнений не существует; уравнения несовместны. Численный пример такой ситуации - система

(2) Оба определителя равны нулю. В этом случае второе уравнение просто кратно первому и существует бесконечное число решений. Общая теория рассматривает m линейных уравнений с n переменными:


Если m = n и матрица (aij) невырожденна, то решение единственно и может быть найдено по правилу Крамера:


где Aji - алгебраическое дополнение элемента aij в матрице (aij). В более общем плане существуют следующие теоремы. Пусть r - ранг матрицы (aij), s - ранг окаймленной матрицы (aij; bi), которая получается из aij присоединением столбца из чисел bi. Тогда: (1) если r = s, то существует n - r линейно независимых решений; (2) если r См. также АЛГЕБРА .

Энциклопедия Кольера. - Открытое общество . 2000 .

Смотреть что такое "УРАВНЕНИЯ" в других словарях:

    Уравнение равенство вида или, где f и g функции (в общем случае векторные) одного или нескольких аргументов, а также задача по нахождению таких значений аргументов, при которых это равенство достигается. На возможные значения аргументов могут… … Википедия

    уравнения - решать дифференциальные уравнения решение … Глагольной сочетаемости непредметных имён

    Уравнения Эйлера Лагранжа (в физике также уравнения Лагранжа Эйлера или уравнения Лагранжа) являются основными формулами вариационного исчисления, c помощью которых ищутся стационарные точки и экстремумы функционалов. В частности, эти… … Википедия

    Механика сплошных сред Сплошная среда Классическая меха … Википедия

    - (англ. RANS (Reynolds averaged Navier Stokes)) уравнения Навье Стокса (уравнения движения вязкой жидкости) осредненные по Рейнольдсу. Используются для описания турбулентных течений. Метод осреднения Рейнольдса заключается в замене случайно… … Википедия

    Уравнения Эйлера Лагранжа являются основными формулами вариационного исчисления, c помощью которых ищутся экстремумы функционалов. В частности, эти уравнения широко используются в задачах оптимизации, и, совместно с принципом действия,… … Википедия

    Уравнения Прока обобщение уравнений Максвелла, призванное описывать массивные частицы со спином 1. Уравнения Прока обычно записываются в виде, где антисимметричный тензор электромагнитного поля … Википедия