Максимальная сила лоренца формула. Т

По отношению ко всем остальным пальцам, в одной плоскости с ладонью.

Представьте, что четыре пальца ладони, которые вы держите вместе, указывают направление скорости движения заряда, если он положительный, или противоположное скорости направление , если заряд .

Сила Лоренца может быть равна нулю и не иметь векторной составляющей. Это происходит в том случае, когда траектория заряженной частицы расположена параллельно силовым линиям магнитного поля. В таком случае частица имеет прямолинейную траекторию движения и постоянную . Сила Лоренца никак не влияет на движение частицы, потому что в этом случае она вообще отсутствует.

В самом простом случае заряженная частица имеет траекторию движения, перпендикулярную силовым линиям магнитного поля. Тогда сила Лоренца создает центростремительное ускорение, вынуждая заряженную частицу двигаться по окружности.

Обратите внимание

Сила Лоренца была открыта в 1892 году Хендриком Лоренцом, физиком из Голландии. Сегодня она достаточно часто применяется в различных электроприборах, действие которых зависит от траектории движущихся электронов. Например, это электронно-лучевые трубки в телевизорах и мониторах. Всевозможные ускорители, разгоняющие заряженные частицы до огромных скоростей, посредством силы Лоренца задают орбиты их движения.

Полезный совет

Частным случаем силы Лоренца является сила Ампера. Ее направление вычисляют по правилу левой руки.

Источники:

  • Сила Лоренца
  • сила лоренца правило левой руки

Вполне логично и понятно, что на разных участках пути скорость движения тела неравномерно, где-то она быстрее, а где-то медленнее. Для того, чтобы измерять изменения скорости тела за промежутки времени, было введено понятие "ускорение ". Под ускорение м понимается изменение скорости движения объекта тела за определенный промежуток времени, в который и произошло изменение скорости.

Вам понадобится

  • Знать скорость перемещения объекта на разных участках в разные промежутки времени.

Инструкция

Определение ускорения при равномерно-ускоренном .
Такой тип движения , что объект за равные времени ускоряется на одно и то же значение. Пусть в один из моментов движения t1 его движения была бы v1, а в момент t2 скорость бы составляла v2. Тогда объекта можно было бы рассчитать по формуле:
a = (v2-v1)/(t2-t1)

Магнитная индукция является векторной величиной, а потому кроме абсолютной величины характеризуется направлением . Чтобы найти его, нужно найти полюса постоянного магнита или направление тока, который порождает магнитное поле.

Вам понадобится

  • - эталонный магнит;
  • - источник тока;
  • - правый буравчик;
  • - прямой проводник;
  • - катушка, виток провода, соленоид.

Инструкция

магнитной индукции . Для этого найдите его и полюс. Обычно магнита имеет синий цвет, а южный ¬– . Если полюса магнита неизвестны, возьмите эталонный магнит и поднесите его северным полюсом к неизвестному. Тот конец, который притянется к северному полюсу эталонного магнита, будет полюсом магнита, индукция поля которого измеряется. Линии магнитной индукции выходят из северного полюса и входят в южный полюс. Вектор в каждой точке линии идет в направлении линии по касательной.

Определите направление вектора магнитной индукции прямого проводника с током. Ток идет от положительного полюса источника к отрицательному. Возьмите буравчик, который вкручивается при вращении по часовой стрелке, он называется правый. Начните вкручивать его в том направлении, куда идет ток у проводнике. Вращение рукояти покажет направление замкнутых круговых линий магнитной индукции . Вектор магнитной индукции в этом случае будет проходить по касательной к окружности.

Найдите направление магнитного поля витка с током, или . Для этого подключите проводник к источнику тока. Возьмите правый буравчик и вращайте его рукоятку в направлении тока, идущего по виткам от положительного полюса источника тока к отрицательному. Поступательное движение штока буравчика покажет направление силовых линий магнитного поля. Например, если рукоятка буравчика по направлению тока против часовой стрелки (влево), то он, выкручиваясь, поступательно движется в сторону наблюдателя. Поэтому магнитного поля направлены тоже в сторону наблюдателя. Внутри витка, катушки или соленоида линии магнитного поля прямые, по направлению и абсолютной величине совпадают с вектором магнитной индукции .

Полезный совет

В качестве правого буравчика можно использовать обычный штопор для открывания бутылок.

Индукция возникает в проводнике при пересечении силовых линий поля, если его перемещать в магнитном поле. Индукция характеризуется направлением, которое можно определить по установленным правилам.

Вам понадобится

  • - проводник с током в магнитном поле;
  • - буравчик или винт;
  • - соленоид с током в магнитном поле;

Инструкция

Чтобы узнать направление индукции, следует воспользоваться одним из двух : правилом буравчика или правилом правой руки. Первое в основном для прямого провода, в котором ток. Правило правой руки применяют для катушки или соленоида, питаемого током.

Чтобы узнать направление индукции по правилу буравчика, определите полярность провода. Ток всегда течет от положительного полюса к отрицательному. Расположите буравчик или винт вдоль провода с током: носик буравчика должен смотреть на отрицательный полюс, а рукоятка в сторону положительного. Начните вращать буравчик или винт как бы закручивая его, то есть по . Возникающая индукция имеет вид замкнутых окружностей вокруг питаемого током провода. Направление индукции будет совпадать с направлением вращения рукоятки буравчика или шляпки винта.

Правило правой руки говорит:
Если взять катушку или соленоид в ладонь правой руки, чтобы четыре пальца лежали по направлению течения тока в витках, то большой палец, отставленный в бок, укажет направление индукции.

Чтобы определить направление индукции, используя правой руки, необходимо взять соленоид или катушку с током так, чтобы ладонь лежала на положительном , а четыре пальца руки по направлению тока в витках: мизинец ближе к плюсу, а указательный палец к . Отставьте большой палец в бок (как бы показывая жест « »). Направление большого пальца будет указывать на направление индукции.

Видео по теме

Обратите внимание

Если направление тока в проводнике поменять, тогда буравчик следует выкручивать, то есть вращать его против часовой стрелки. Направление индукции также будет совпадать с направлением вращения рукоятки буравчика.

Полезный совет

Вы можете определить направление индукции мысленно представляя себе вращение буравчика или винта. Не обязательно иметь его под рукой.

Источники:

  • Электромагнитная индукция

Под линиями индукции понимают силовые линии магнитного поля. Для того чтобы получить информацию об этом виде материи, недостаточно знать абсолютную величину индукции, нужно знать и ее направление. Направление линий индукции можно найти при помощи специальных приборов или пользуясь правилами.

Вам понадобится

  • - прямой и круговой проводник;
  • - источник постоянного тока;
  • - постоянный магнит.

Инструкция

Подключите к источнику постоянного тока прямой проводник. Если по нему течет ток, он магнитным полем, силовые линии которого представляют собой концентрические окружности. Определите направление силовых линий, воспользовавшись правилом . Правым буравчиком называется винт, продвигающийся при вращении в правую сторону (по часовой стрелке).

Определите направление тока в проводнике, учитывая, что он протекает от положительного полюса источника к отрицательному. Шток винта расположите параллельно проводнику. Начинайте вращать его так, чтобы шток начал двигаться в направлении тока. В этом случае направление вращения рукоятки покажет направление линий индукции магнитного поля.

РЕФЕРАТ

По предмету «Физика»
Тема: «Применение силы Лоренца»

Выполнил: Студент группы Т-10915Логунова М.В.

ПреподавательВоронцов Б.С.

Курган 2016

Введение. 3

1. Использование силы Лоренца. 4

.. 4

1. 2 Масс-спектрометрия . 6

1. 3 МГД генератор . 7

1. 4 Циклотрон . 8

Заключение. 11

Список использованной литературы.. 13


Введение

Сила Лоренца - сила, с которой электромагнитное поле согласно классической (неквантовой) электродинамике действует наточечную заряженную частицу. Иногда силой Лоренца называют силу, действующую на движущийся со скоростью υ заряд q лишь со стороны магнитного поля, нередко же полную силу - со стороны электромагнитного поля вообще, иначе говоря, со стороны электрического E и магнитного B полей.

В Международной системе единиц (СИ) выражается как:

F Л = q υ B sin α

Названа в честь голландского физика Хендрика Лоренца, который вывел выражение для этой силы в 1892 году. За три года до Лоренца правильное выражение было найдено О. Хевисайдом.

Макроскопическим проявлением силы Лоренца является сила Ампера.


Использование силы Лоренца

Действие, оказываемое магнитным полем на движущиеся заряженные частицы, очень широко используют в технике.

Основным применением силы Лоренца (точнее, её частного случая - силы Ампера) являются электрические машины (электродвигатели и генераторы). Сила Лоренца широко используется в электронных приборах для воздействия на заряженные частицы (электроны и иногда ионы), например, в телевизионных электронно-лучевых трубках , в масс-спектрометрии и МГД-генераторах .

Также в созданных в настоящее время экспериментальных установках для осуществления управляемой термоядерной реакции действие магнитного поля на плазму используют для скручивания ее в шнур, не касающийся стенок рабочей камеры. Движение заряженных частиц по окружности в однородном магнитном поле и независимость периода такого движения от скорости частицы используют в циклических ускорителях заряженных частиц - циклотронах.

1. 1. Электронно-лучевые приборы

Электронно-лучевые приборы (ЭЛП) - класс вакуумных электронных приборов, в которых используется поток электронов, сконцентрированный в форме одиночного луча или пучка лучей, которые управляются как по интенсивности (току), так и по положению в пространстве, и взаимодействуют с неподвижной пространственной мишенью (экраном) прибора. Основная сфера применения ЭЛП - преобразование оптической информации в электрические сигналы и обратное преобразование электрического сигнала в оптический - например, в видимое телевизионное изображение.

В класс электронно-лучевых приборов не включаются рентгеновские трубки, фотоэлементы, фотоумножители, газоразрядные приборы (декатроны) и приёмно-усилительные электронные лампы (лучевые тетроды, электровакуумные индикаторы, лампы со вторичной эмиссией и тому подобное) с лучевой формой токов.

Электронно-лучевой прибор состоит, как минимум, из трёх основных частей:

· Электронный прожектор (пушка) формирует электронный луч (или пучок лучей, например, три луча в цветном кинескопе) и управляет его интенсивностью (током);

· Отклоняющая система управляет пространственным положением луча (отклонением его от оси прожектора);

· Мишень (экран) приёмного ЭЛП преобразует энергию луча в световой поток видимого изображения; мишень передающего или запоминающего ЭЛП накапливает пространственный потенциальный рельеф, считываемый сканирующим электронным лучом

Рис. 1 Устройство ЭЛТ

Общие принципы устройства.

В баллоне ЭЛТ создан глубокий вакуум. Для создания электронного луча применяется устройство, именуемое электронной пушкой. Катод, нагреваемый нитью накала, испускает электроны. Изменением напряжения на управляющем электроде (модуляторе) можно изменять интенсивность электронного луча и, соответственно, яркость изображения. Покинув пушку, электроны ускоряются анодом. Далее луч проходит через отклоняющую систему, которая может менять направление луча. В телевизионных ЭЛТ применяется магнитная отклоняющая система как обеспечивающая большие углы отклонения. В осциллографических ЭЛТ применяется электростатическая отклоняющая система как обеспечивающая большее быстродействие. Электронный луч попадает в экран, покрытый люминофором. От бомбардировки электронами люминофор светится и быстро перемещающееся пятно переменной яркости создаёт на экране изображение.

1. 2 Масс-спектрометрия

Рис. 2

Действие силы Лоренца используют и в приборах, называемых масс-спектрографами, которые предназначены для разделения заряженных частиц по их удельным зарядам.

Масс-спектрометрия (масс-спектроскопия, масс-спектрография, масс-спектральный анализ, масс-спектрометрический анализ) - метод исследования вещества, основанный на определении отношения массы к заряду ионов, образующихся приионизации представляющих интерес компонентов пробы. Один из мощнейших способов качественной идентификации веществ, допускающий также и количественное определение. Можно сказать, что масс-спектрометрия - это «взвешивание» молекул, находящихся в пробе.

Схема простейшего масс-спектрографа показана на рисунке 2.

В камере 1, из которой откачан воздух, находится источник ионов 3. Камера помещена в однородное магнитное поле, в каждой точке которого индукция B⃗ B→перпендикулярна плоскости чертежа и направлена к нам (на рисунке 1 это поле обозначено кружочками). Между электродами А и В приложено ускоряющее напряжение, под действием которого ионы, вылетающие из источника, разгоняются и с некоторой скоростью попадают в магнитное поле перпендикулярно линиям индукции. Двигаясь в магнитном поле по дуге окружности, ионы попадают на фотопластинку 2, что позволяет определить радиус R этой дуги. Зная индукцию магнитного поля В и скорость υ ионов, по формуле

можно определить удельный заряд ионов. А если заряд иона известен, можно вычислить его массу.

История масс-спектрометрии ведётся с основополагающих опытов Дж. Дж. Томсона в начале XX века. Окончание «-метрия» в названии метода появилось после повсеместного перехода от детектирования заряженных частиц при помощи фотопластинок к электрическим измерениям ионных токов.

Особенно широкое применение масс-спектрометрия находит в анализе органических веществ, поскольку обеспечивает уверенную идентификацию как относительно простых, так и сложных молекул. Единственное общее требование - чтобы молекула поддавалась ионизации. Однако к настоящему времени придумано

столько способов ионизации компонентов пробы, что масс-спектрометрию можно считать практически всеохватным методом.

1. 3 МГД генератор

Магнитогидродинамический генератор, МГД-генератор - энергетическая установка, в которой энергия рабочего тела (жидкой или газообразной электропроводящей среды), движущегося в магнитном поле, преобразуется непосредственно в электрическую энергию.

Принцип работы МГД-генератора, как и обычного машинного генератора, основан на явлении электромагнитной индукции, то есть - на возникновении тока в проводнике, пересекающем силовые линии магнитного поля. В отличие от машинных генераторов проводником в МГД-генераторе является само рабочее тело.

Рабочее тело движется поперёк магнитного поля, и под действием магнитного поля возникают противоположно направленные потоки носителей зарядов противоположных знаков.

На заряженную частицу действует сила Лоренца.

Рабочим телом МГД-генератора могут служить следующие среды:

· электролиты;

· жидкие металлы;

· плазма (ионизированный газ).

Первые МГД-генераторы использовали в качестве рабочего тела электропроводные жидкости (электролиты). В настоящее время применяют плазму, в которой носителями зарядов являются в основном свободные электроны и положительные ионы. Под действием магнитного поля носители зарядов отклоняются от траектории, по которой газ двигался бы в отсутствие поля. При этом в сильном магнитном поле может возникать поле Холла (см. Эффект Холла) - электрическое поле, образуемое в результате соударений и смещений заряженных частиц в плоскости, перпендикулярной магнитному полю.

1. 4 Циклотрон

Циклотрон - резонансный циклический ускоритель нерелятивистских тяжёлых заряженных частиц (протонов, ионов), в котором частицы двигаются в постоянном и однородном магнитном поле, а для их ускорения используется высокочастотное электрическое поле неизменной частоты.

Схема устройства циклотрона показана на рис.3. Тяжелые заряженные частицы (протоны, ионы) попадают в камеру из инжектора вблизи центра камеры и ускоряются переменным полем фиксированной частоты, приложенным к ускоряющим электродам (их два и они называются дуантами). Частицы с зарядом Ze и массой m движутся в постоянном магнитном поле напряженностью B, направленном перпендикулярно плоскости движения частиц, по раскручивающейся спирали. Радиус R траектории частицы, имеющей скорость v, определяется формулой

где γ = -1/2 – релятивистский фактор.

В циклотроне для нерелятивистской (γ ≈ 1) частицы в постоянном и однородном магнитном поле радиус орбиты пропорционален скорости (1), а частотаобращения нерелятивистской частицы (циклотронная частота не зависит от энергии частицы

E = mv 2 /2 = (Ze) 2 B 2 R 2 /(2m) (3)

В зазоре между дуантами частицы ускоряются импульсным электрическим полем (внутри полых металлических дуантов электрического поля нет). В результате энергия и радиус орбиты возрастают. Повторяя ускорение электрическим полем на каждом обороте, энергию и радиус орбиты доводят до максимально допустимых значений. При этом частицы приобретают скорость v = ZeBR/m и соответствующую ей энергию:

На последнем витке спирали включается отклоняющее электрическое поле, выводящее пучок наружу. Постоянство магнитного поля и частоты ускоряющего поля делают возможным непрерывный режим ускорения. Пока одни частицы двигаются по внешним виткам спирали, другие находятся в середине пути, а третьи только начинают движение.

Недостатком циклотрона является ограничение существенно нерелятивистскими энергиями частиц, так как даже не очень большие релятивистские поправки (отклонения γ от единицы) нарушают синхронность ускорения на разных витках и частицы с существенно возросшими энергиями уже не успевают оказаться в зазоре между дуантами в нужной для ускорения фазе электрического поля. В обычных циклотронах протоны можно ускорять до 20-25 МэВ.

Для ускорения тяжёлых частиц в режиме раскручивающейся спирали до энергий в десятки раз больших (вплоть до 1000 МэВ) используют модификацию циклотрона, называемую изохронным (релятивистским) циклотроном, а также фазотрон. В изохронных циклотронах релятивистские эффекты компенсируются радиальным возрастанием магнитного поля.


Заключение

Скрытый текст

Письменное заключение (самое основное по всем подпунктам первого раздела – принципы действия, определения)

Список использованной литературы

1. Википедия [Электронный ресурс]: Сила Лоренца. URL: https://ru.wikipedia.org/wiki/Сила_Лоренца

2. Википедия [Электронный ресурс]: Магнитогидродинамический генератор. URL: https://ru.wikipedia.org/wiki/ Магнитогидродинамический_генератор

3. Википедия [Электронный ресурс]: Электронно-лучевые приборы. URL: https://ru.wikipedia.org/wiki/ Электронно-лучевые_приборы

4. Википедия [Электронный ресурс]: Масс-спектрометрия. URL: https://ru.wikipedia.org/wiki/Масс-спектрометрия

5. Ядерная физика в Интернете [Электронный ресурс]: Циклотрон. URL: http://nuclphys.sinp.msu.ru/experiment/accelerators/ciclotron.htm

6. Электронный учебник физики [Электронный ресурс]: Т. Применения силы Лоренца// URL: http://www.physbook.ru/index.php/ Т._Применения_силы_Лоренца

7. Академик [Электронный ресурс]: Магнитогидродинамический генератор// URL: http://dic.academic.ru/dic.nsf/enc_physics/МАГНИТОГИДРОДИНАМИЧЕСКИЙ

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-03-31

Сила Ампера , действующая на отрезок проводника длиной Δl с силой тока I , находящийся в магнитном поле B ,

Выражение для силы Ампера можно записать в виде:

Эту силу называют силой Лоренца . Угол α в этом выражении равен углу между скоростью и вектором магнитной индукции Направление силы Лоренца, действующей на положительно заряженную частицу, так же, как и направление силы Ампера, может быть найдено по правилу левой руки или по правилу буравчика . Взаимное расположение векторов , и для положительно заряженной частицы показано на рис. 1.18.1.

Рисунок 1.18.1.

Взаимное расположение векторов , и Модуль силы Лоренца численно равен площади параллелограмма, построенного на векторах и помноженной на заряд q

Сила Лоренца направлена перпендикулярно векторам и

При движении заряженной частицы в магнитном поле сила Лоренца работы не совершает. Поэтому модуль вектора скорости при движении частицы не изменяется.

Если заряженная частица движется в однородном магнитном поле под действием силы Лоренца, а ее скорость лежит в плоскости, перпендикулярной вектору то частица будет двигаться по окружности радиуса

Период обращения частицы в однородном магнитном поле равен

называется циклотронной частотой . Циклотронная частота не зависит от скорости (следовательно, и от кинетической энергии) частицы. Это обстоятельство используется в циклотронах – ускорителях тяжелых частиц (протонов, ионов). Принципиальная схема циклотрона приведена на рис. 1.18.3.

Между полюсами сильного электромагнита помещается вакуумная камера, в которой находятся два электрода в виде полых металлических полуцилиндров (дуантов ). К дуантам приложено переменное электрическое напряжение, частота которого равна циклотронной частоте . Заряженные частицы инжектируются в центре вакуумной камеры. Частицы ускоряются электрическим полем в промежутке между дуантами. Внутри дуантов частицы движутся под действием силы Лоренца по полуокружностям, радиус которых растет по мере увеличения энергии частиц. Каждый раз, когда частица пролетает через зазор между дуантами, она ускоряется электрическим полем. Таким образом, в циклотроне, как и во всех других ускорителях, заряженная частица ускоряется электрическим полем, а удерживается на траектории магнитным полем. Циклотроны позволяют ускорять протоны до энергии порядка 20 МэВ.

Однородные магнитные поля используются во многих приборах и, в частности, в масс-спектрометрах – устройствах, с помощью которых можно измерять массы заряженных частиц – ионов или ядер различных атомов. Масс-спектрометры используются для разделения изотопов , то есть ядер атомов с одинаковым зарядом, но разными массами (например, 20 Ne и 22 Ne). Простейший масс-спектрометр показан на рис. 1.18.4. Ионы, вылетающие из источника S , проходят через несколько небольших отверстий, формирующих узкий пучок. Затем они попадают в селектор скоростей , в котором частицы движутся в скрещенных однородных электрическом и магнитном полях . Электрическое поле создается между пластинами плоского конденсатора, магнитное поле – в зазоре между полюсами электромагнита. Начальная скорость заряженных частиц направлена перпендикулярно векторам и

На частицу, движущуюся в скрещенных электрическом и магнитном полях, действуют электрическая сила и магнитная сила Лоренца . При условии E = υB эти силы точно уравновешивают друг друга. Если это условие выполняется, частица будет двигаться равномерно и прямолинейно и, пролетев через конденсатор, пройдет через отверстие в экране. При заданных значениях электрического и магнитного полей селектор выделит частицы, движущиеся со скоростью υ = E / B .

Далее частицы с одним и тем же значением скорости попадают в камеру масс-спектрометра, в которой создано однородное магнитное поле Частицы движутся в камере в плоскости, перпендикулярной магнитному полю, под действием силы Лоренца. Траектории частиц представляют собой окружности радиусов R = m υ / qB" . Измеряя радиусы траекторий при известных значениях υ и B" можно определить отношение q / m . В случае изотопов (q 1 = q 2) масс-спектрометр позволяет разделить частицы с разными массами.

Современные масс-спектрометры позволяют измерять массы заряженных частиц с точностью выше 10 –4 .

Если скорость частицы имеет составляющую вдоль направления магнитного поля, то такая частица будет двигаться в однородном магнитном поле по спирали. При этом радиус спирали R зависит от модуля перпендикулярной магнитному полю составляющей υ ┴ вектора а шаг спирали p – от модуля продольной составляющей υ || (рис. 1.18.5).

Таким образом, траектория заряженной частицы как бы навивается на линии магнитной индукции. Это явление используется в технике для магнитной термоизоляции высокотемпературной плазмы , то есть полностью ионизированного газа при температуре порядка 10 6 K. Вещество в таком состоянии получают в установках типа «Токамак» при изучении управляемых термоядерных реакций. Плазма не должна соприкасаться со стенками камеры. Термоизоляция достигается путем создания магнитного поля специальной конфигурации. В качестве примера на рис. 1.18.6 изображена траектория движения заряженной частицы в магнитной «бутылке» (или ловушке ).

Аналогичное явление происходит в магнитном поле Земли, которое является защитой для всего живого от потоков заряженных частиц из космического пространства. Быстрые заряженные частицы из космоса (главным образом от Солнца) «захватываются» магнитным полем Земли и образуют так называемые радиационные пояса (рис. 1.18.7), в которых частицы, как в магнитных ловушках, перемещаются туда и обратно по спиралеобразным траекториям между северным и южным магнитными полюсами за времена порядка долей секунды. Лишь в полярных областях некоторая часть частиц вторгается в верхние слои атмосферы, вызывая полярные сияния. Радиационные пояса Земли простираются от расстояний порядка 500 км до десятков земных радиусов. Следует вспомнить, что южный магнитный полюс Земли находится вблизи северного географического полюса (на северо-западе Гренландии). Природа земного магнетизма до сих пор не изучена.

Контрольные вопросы

1.Опишите опыты Эрстеда и Ампера.

2.Что является источником магнитного поля?

3. В чем состоит гипотеза Ампера, объясняющая существования магнитного поля постоянного магнита?

4.В чем состоит принципиальное отличие магнитного поля от электрического?

5.Сформулируйте определение вектора магнитной индукции.

6. Почему магнитное поле называется вихревым?

7. Сформулируйте законы:

А) Ампера;

Б) Био-Савара-Лапласа.

8. Чему равен модуль вектора магнитной индукции поля прямого тока?

9. Сформулируйте определение единицы силы тока (ампера) в Международной системе единиц.

10. Запишите формулы, выражающую величину:

А) модуля вектора магнитной индукции;

Б) силы Ампера;

В) силы Лоренца;

Г) периода обращения частицы в однородном магнитном поле;

Д) радиуса кривизны окружности, при движении заряженной частицы в магнитном поле;

Тест для самоконтроля

          Что наблюдалось в опыте Эрстеда?

1) Взаимодействие двух параллельных проводников с током.

2) Взаимодействие двух магнитных стрелок

3) Поворот.магнитной стрелки вблизи проводника при пропускании через него тока.

4) Возникновение электрического тока в катушке пнри вдвигании в нее магнита.

          Как взаимодействуют два параллельных проводника, если по ним пропускают токи в одном направлении?

    Притягиваются;

    Отталкиваются;

    Сила и момент сил равны нулю.

    Сила равна нулю, но момент сил не равен нулю.

          Какая формула определяет выражение модуля силы Ампера?

          Какая формула определяет выражение модуля силы Лоренца?

Б)

В)

Г)

    0,6 Н; 2) 1 Н; 3) 1,4 Н; 4) 2,4 Н.

1) 0,5 Тл; 2) 1 Тл; 3) 2 Тл; 4) 0,8 Тл.

          Электрон со скоростью V влетает в магнитное поле с модулем индукции В перпендикулярно магнитным линиям. Какое выражение соответствует радиусу орбиты электрона?

Ответ: 1)
2)

4)

8. Как изменится период обращения заряженной частицы в циклотроне при увеличении её скорости в 2 раза? (V << c).

1) Увеличится в 2 раза; 2) Увеличится в 2 раза;

3) Увеличится в 16 раз; 4) Не изменится.

9. Какой формулой определяется модуль индукции магнитного поля, созданного в центре кругового тока с радиусом окружности R ?

1)
2)
3)
4)

10. Сила тока в катушке равна I . Какой из формул определяется модуль индукции магнитного поля в середине катушки длиной l c числом витков N ?

1)
2)
3)
4)

Лабораторная работа №

Определение горизонтальной составляющей индукции магнитного поля Земли.

Краткая теория к лабораторной работе.

Магнитное поле это материальная среда, передающая так называемые магнитные взаимодействия. Магнитное поле является одной из форм проявления электромагнитного поля.

Источниками магнитных полей являются движущиеся электрические за­ряды, проводники с током и переменные электрические поля. Порождаясь дви­жущимися зарядами (токами), магнитное поле, в свою очередь, действует толь­ко на движущиеся заряды (токи), на неподвижные же заряды оно действия не оказывает.

Основной характеристикой магнитного поля является вектор магнитной индукции :

Модуль вектора магнитной индукции численно равен максимальной си­ле, действующей со стороны магнитного поля на проводник единичной длины, по которому протекает ток единичной силы. Вектор образует правую тройку с вектором силы и направлением тока. Таким образом, магнитная индукция это силовая характеристика магнитного поля.

Единицей магнитной индукции в СИ является Тесла (Тл).

Силовыми линиями магнитного поля называются воображаемые линии, в каждой точке которых касательные совпадают с направлением вектора магнитной индукции. Магнитные силовые линии всегда замкнуты, никогда не пересекаются.

Закон Ампера определяет силовое действие магнитного поля на проводник с током.

Если в магнитное поле с индукцией помещен проводник с током, то на каждый направленный по току элемент проводника действует сила Ампера, определяемая соотношением

.

Направление силы Ампера совпадает с направлением векторного произ­ведения
, т.е. она перпендикулярна плоскости, в которой лежат векторы и (рис.1).

Рис. 1. К определению направления силы Ампера

Если перпендикулярен , то направление силы Ампера можно определить по правилу левой руки: четыре вытянутых пальца направить по току, ладонь расположить перпендикулярно силовым линиям, тогда большой палец покажет направление силы Ампера. Закон Ампера положен в основу определения магнитной индукции, т.е. соотношение (1) следует из формулы (2), записанной в скалярном виде.

Сила Лоренца – это сила, с которой электромагнитное поле действует на движущуюся в этом поле заряженную частицу. Формула силы Лоренца была впервые получена Г. Лоренцем как результат обобщения опыта и имеет вид:

.

где
– сила, действующая на заряженную частицу в электрическом поле с напряженностью ;
сила, действующая на заряженную частицу в магнитном поле.

Формулу для магнитной составляющей силы Лоренца можно получить из закона Ампера, учитывая, что ток – это упорядоченное движение электрических зарядов. Если бы магнитное поле не действовало на движущиеся заряды, оно не оказывало бы действия и на проводник с током. Магнитная составляющая силы Лоренца определяется выражением:

.

Направлена эта сила перпендикулярно плоскости, в которой лежат векторы скорости и индукции магнитного поля ; её направление совпадает с направлением векторного произведения
для q > 0 и с направлением
для q >0 (рис. 2).

Рис. 2. К определению направления магнитной составляющей силы Лоренца

Если вектор перпендикулярен вектору , то направление магнитной составляющей силы Лоренца для положительно заряженных частиц можно найти по правилу левой руки, а для отрицательно заряженных частиц по правилу правой руки. Так как магнитная составляющая силы Лоренца всегда направлена перпендикулярно скорости , то работы по перемещению частицы она не совершает. Она может лишь изменять направление скорости , искривлять траекторию движения частицы, т.е. выполнять роль центростремительной силы.

Закон Био-Савара-Лапласа служит для расчёта магнитных полей (определения ), создаваемых проводниками с током.

Согласно закону Био-Савара-Лапласа, каждый направленный по току элемент проводника создаёт в точке, находящейся на расстоянии от этого элемента, магнитное поле, индукция которого определяется соотношением:

.

где
Гн/м – магнитная постоянная;µ – магнитная проницаемость среды.

Рис. 3. К закону Био-Савара-Лапласа

Направление
совпадает с направлением векторного произведения
, т.е.
перпендикулярен плоскости, в которой лежат векторы и. Одновременно
является касательной к силовой линии, направление которой можно определить по правилу буравчика: если поступательное движение острия буравчика направить по току, то направление вращения рукоятки определит направление силовой линии магнитного поля (рис. 3).

Чтобы найти магнитное поле, создаваемое всем проводником, нужно применить принцип суперпозиции полей:

.

Например, вычислим магнитную индукцию в центре кругового тока (рис. 4).

Рис. 4. К расчёту поля в центре кругового тока

Для кругового тока
и
, поэтому соотношение (5) в скалярной форме имеет вид:

Закон полного тока (теорема о циркуляции магнитной индукции) является ещё одним законом для расчёта магнитных полей.

Закон полного тока для магнитного поля в вакууме имеет вид:

.

где B l проекция на элемент проводника , направленный по току.

Циркуляция вектора магнитной индукции по любому замкнутому контуру равна произведению магнитной постоянной на алгебраическую сумму токов, охватываемых этим контуром.

Теорема Остроградского-Гаусса для магнитного поля выглядит следующим образом:

.

где B n проекция вектора на нормаль к площадке dS .

Поток вектора магнитной индукции через произвольную замкнутую поверхность равен нулю.

Характер магнитного поля следует из формул (9), (10).

Условием потенциальности электрического поля является равенство нулю циркуляции вектора напряженности
.

Потенциальное электрическое поле порождается неподвижными электрическими зарядами; силовые линии поля не замкнуты, начинаются на положительных зарядах и кончаются на отрицательных.

Из формулы (9) мы видим, что в магнитном поле циркуляция вектора магнитной индукции отлична от нуля, следовательно, магнитное поле потенциальным не является.

Из соотношения (10) следует, что магнитных зарядов, способных создавать потенциальные магнитные поля, не существует. (В электростатике аналогичная теорема тлеет вид
.

Магнитные силовые линии замыкаются сами на себя. Такое поле называется вихревым. Таким образом, магнитное поле – это вихревое поле. Направление силовых линий поля определяется правилом буравчика. У прямолинейного бесконечно длинного проводника с током силовые линии имеют вид концентрических окружностей, охватывающих проводник (рис. 3).

Возникновение силы, действующей на электрический заряд, движущийся во внешнем электромагнитном поле

Анимация

Описание

Силой Лоренца называетсясила, действующая на заряженную частицу, движущуюся во внешнем электромагнитном поле.

Формула для силы Лоренца (F ) была впервые получена путем обобщения опытных фактов Х.А. Лоренцем в 1892 г. и представлена в работе «Электромагнитная теория Максвелла и ее приложение к движущимся телам». Она имеет вид:

F = qE + q, (1)

где q - заряженная частица;

Е - напряженность электрического поля;

B - вектор магнитной индукции, не зависящий от величины заряда и скорости его движения;

V - вектор скорости заряженной частицы относительно системы координат, в которой вычисляются величины F и B .

Первый член в правой части уравнения (1) - сила, действующая на заряженную частицу в электрическом поле F Е =qE, второй член - сила, действующая в магнитном поле:

F м = q. (2)

Формула (1) универсальна. Она справедлива как для постоянных, так и для переменных силовых полей, а также для любых значений скорости заряженной частицы. Она является важным соотношением электродинамики, так как позволяет связать уравнения электромагнитного поля с уравнениями движения заряженных частиц.

В нерелятивистском приближении сила F , как и любая другая сила, не зависит от выбора инерциальной системы отсчета. Вместе с тем магнитная составляющая силы Лоренца F м изменяется при переходе от одной системы отсчета к другой из-за изменения скорости, поэтому будет изменяться и электрическая составляющая F Е . В связи с этим разделение силы F на магнитную и электрическую имеет смысл только с указанием системы отсчета.

В скалярной форме выражение (2) имеет вид:

Fм = qVBsina , (3)

где a - угол между векторами скорости и магнитной индукции.

Таким образом магнитная часть силы Лоренца максимальна, если направление движения частицы перпендикулярно магнитному полю (a =p /2), и равна нулю, если частица движется вдоль направления поля В (a =0).

Магнитная сила F м пропорциональна векторному произведению , т.е. она перпендикулярна вектору скорости заряженной частицы и поэтому работы над зарядом не совершает. Это означает, что в постоянном магнитном поле под действием магнитной силы искривляется лишь траектория движущейся заряженной частицы, но энергия ее всегда остается неизменной , как бы частица ни двигалась.

Направление магнитной силы для положительного заряда определяется согласно векторному произведению (рис. 1).

Направление силы, действующей на положительный заряд в магнитном поле

Рис. 1

Для отрицательного заряда (электрона) магнитная сила направлена в противоположную сторону (рис. 2).

Направление силы Лоренца, действующей на электрон в магнитном поле

Рис. 2

Магнитное поле В направлено к читателю перпендикулярно рисунку. Электрическое поле отсутствует.

Если магнитное поле однородно и направлено перпендикулярно скорости, заряд массой m движется по окружности. Радиус окружности R определяется по формуле:

где - удельный заряд частицы.

Период обращения частицы (время одного оборота) не зависит от скорости, если скорость частицы много меньше скорости света в вакууме. В противном случае период обращения частицы возрастает в связи с возрастанием релятивистской массы.

В случае нерелятивистской частицы:

где - удельный заряд частицы.

В вакууме в однородном магнитном поле, если вектор скорости не перпендикулярен вектору магнитной индукции (a№p /2), заряженная частица под действием силы Лоренца (ее магнитной части) движется по винтовой линии с постоянной по величине скоростью V . При этом ее движение складывается из равномерного прямолинейного движения вдоль направления магнитного поля В со скоростью и равномерного вращательного движения в плоскости перпендикулярной полю В со скоростью (рис. 2).

Проекция траектории движения частицы на плоскость перпендикулярную В есть окружность радиуса:

период обращения частицы:

Расстояние h , которое проходит частица за время Т вдоль магнитного поля В (шаг винтовой траектории), определяется по формуле:

h = Vcos a T . (6)

Ось винтовой линии совпадает с направлением поля В , центр окружности перемещается вдоль силовой линии поля (рис. 3).

Движение заряженной частицы, влетевшей под углом a№p /2 в магнитное поле В

Рис. 3

Электрическое поле отсутствует.

Если электрическое поле E № 0, движение носит более сложный характер.

В частном случае, если векторы E иB параллельны, в процессе движения изменяется составляющая скорости V 11 , параллельная магнитному полю, вследствие чего меняется шаг винтовой траектории (6).

В том случае, если E иB не параллельны, происходит перемещение центра вращения частицы, называемое дрейфом, перпендикулярно полю В . Направление дрейфа определяется векторным произведением и не зависит от знака заряда.

Воздействие магнитного поля на движущиеся заряженные частицы приводят к перераспределению тока по сечению проводника, что находит свое проявление в термомагнитных и гальваномагнитных явлениях.

Эффект открыт нидерландским физиком Х.А. Лоренцем (1853-1928).

Временные характеристики

Время инициации (log to от -15 до -15);

Время существования (log tc от 15 до 15);

Время деградации (log td от -15 до -15);

Время оптимального проявления (log tk от -12 до 3).

Диаграмма:

Технические реализации эффекта

Техническая реализация действия силы Лоренца

Техническая реализация эксперимента по прямому наблюдению действия силы Лоренца на движущийся заряд как правило довольно сложна, так как соответствующие заряженные частицы имеют молекулярный характерный размер. Поэтому наблюдение их траектории в магнитном поле требует вакуумирования рабочего объема во избежание столкновений, искажающих траекторию. Так что специально такие демонстрационные установки как правило не создаются. Легче всего для демонстрации использовать стандартный секторный магнитный масс-анализатор Ниера, см. Эффект 409005, - действие которого целиком основано на силе Лоренца.

Применение эффекта

Типичное испольтзование в технике - датчик Холла, широко используемый в измерительной технике.

Пластинка из металла или полупроводника помещается в магнитное поле В . При пропускании через нее электрического тока плотности j в направлении перпендикулярном магнитному полю в пластине возникает поперечное электрическое поле, напряженность которого Е перпендикулярна обоим векторамj и В . По данным измерений находят В .

Объясняется этот эффект действием силы Лоренца на движущийся заряд.

Гальваномагнитные магнитометры. Масс-спектрометры. Ускорители заряженных частиц. Магнитогидродинамические генераторы.

Литература

1. Сивухин Д.В. Общий курс физики.- М.: Наука, 1977.- Т.3. Электричество.

2. Физический энциклопедический словарь.- М., 1983.

3. Детлаф А.А., Яворский Б.М. Курс физики.- М.: Высшая школа, 1989.

Ключевые слова

  • электрический заряд
  • магнитная индукция
  • магнитное поле
  • напряженность электрического поля
  • сила Лоренца
  • скорость частицы
  • радиус окружности
  • период обращения
  • шаг винтовой траектории
  • электрон
  • протон
  • позитрон

Разделы естественных наук:

Действие, оказываемое магнитным полем на движущиеся заряженные частицы, очень широко используют в технике.

Например, отклонение электронного пучка в кинескопах телевизоров осуществляют с помощью магнитного поля, которое создают специальными катушками. В ряде электронных приборов магнитное поле используется для фокусировки пучков заряженных частиц.

В созданных в настоящее время экспериментальных установках для осуществления управляемой термоядерной реакции действие магнитного поля на плазму используют для скручивания ее в шнур, не касающийся стенок рабочей камеры. Движение заряженных частиц по окружности в однородном магнитном поле и независимость периода такого движения от скорости частицы используют в циклических ускорителях заряженных частиц - циклотронах.

Действие силы Лоренца используют и в приборах, называемых масс-спектрографами , которые предназначены для разделения заряженных частиц по их удельным зарядам.

Схема простейшего масс-спектрографа показана на рисунке 1.

В камере 1, из которой откачан воздух, находится источник ионов 3. Камера помещена в однородное магнитное поле, в каждой точке которого индукция \(~\vec B\) перпендикулярна плоскости чертежа и направлена к нам (на рисунке 1 это поле обозначено кружочками). Между электродами А ч В приложено ускоряющее напряжение, под действием которого ионы, вылетающие из источника, разгоняются и с некоторой скоростью попадают в магнитное поле перпендикулярно линиям индукции. Двигаясь в магнитном поле по дуге окружности, ионы попадают на фотопластинку 2, что позволяет определить радиус R этой дуги. Зная индукцию магнитного поля В и скорость υ ионов, по формуле

\(~\frac q m = \frac {v}{RB}\)

можно определить удельный заряд ионов. А если заряд иона известен, можно вычислить его массу.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 328.