Формула магнитной индукции кругового тока. Определение индукции магнитного поля на оси кругового тока

Магнитное поле тока:

Магнитное поле создается вокруг электрических зарядов при их движении. Так как движение электрических зарядов представляет собой электрический ток, то вокруг всякого про­водника с током всегда существует магнитное поле тока .

Чтобы убедиться в существовании магнитного поля тока, поднесем сверху к проводнику, по которому протекает электрический ток, обыкновенный компас. Стрелка компаса тотчас же отклонится в сторону. Поднесем компас к проводнику с током снизу - стрелка компаса отклонится в другую сторону (рисунок 1).

Применим закон Био–Савара–Лапласа для расчета магнитных полей простейших токов. Рассмотрим магнитное поле прямого тока.

Все векторы dB от произвольных элементарных участков dl имеют одинаковое направление. Поэтому сложение векторов можно заменить сложением модулей.

Пусть точка, в которой определяется магнитное поле, находится на расстоянии b от провода. Из рисунка видно, что:

;

Подставив найденные значения r и dl в закон Био–Савара–Лапласа, получим:

Для конечного проводника угол α изменяется от , до. Тогда

Для бесконечно длинного проводника , а , тогда

или, что удобнее для расчетов, .

Линии магнитной индукции прямого тока представляют собой систему концентрических окружностей, охватывающих ток.

21. Закон Био-Савара-Лапласа и его применение к расчету индукции магнитного поля кругового тока.

Магнитное поле кругового проводника с током.

22. Магнитный момент витка с током. Вихревой характер магнитного поля.

Магнитный момент витка с током это физическая величина, как и любой другой магнитный момент, характеризует магнитные свойства данной системы. В нашем случае систему представляет круговой виток с током. Этот ток создает магнитное поле, которое взаимодействует с внешним магнитным полем. Это может быть как поле земли, так и поле постоянного или электромагнита.

Рисунок - 1 круговой виток с током

Круговой виток с током можно представить в виде короткого магнита. Причем этот магнит будет направлен перпендикулярно плоскости витка. Расположение полюсов такого магнита определяется с помощью правила буравчика. Согласно которому северный плюс будет находиться за плоскостью витка, если ток в нем будет двигаться по часовой стрелке.

Рисунок- 2 Воображаемый полосовой магнит на оси витка

На этот магнит, то есть на наш круговой виток с током, как и на любой другой магнит, будет воздействовать внешнее магнитное поле. Если это поле будет однородным, то возникнет вращающий момент, который будет стремиться развернуть виток. Поле буде поворачивать виток так чтобы его ось расположилась вдоль поля. При этом силовые линии самого витка, как маленького магнита, должны совпасть по направлению с внешним полем.

Если же внешнее поле будет не однородным, то к вращающему моменту добавится и поступательное движение. Это движение возникнет вследствие того что участки поля с большей индукцией будут притягивать наш магнит в виде витка больше чем участки с меньшей индукцией. И виток начнет двигаться в сторону поля с большей индукцией.

Величину магнитного момента кругового витка с током можно определить по формуле.

Где, I ток протекающий по витку

S площадь витка с током

n нормаль к плоскости в которой находится виток

Таким образом, из формулы видно, что магнитный момент витка это векторная величина. То есть кроме величины силы, то есть ее модуля он обладает еще и направлением. Данное свойство магнитный момент получил из-за того что в его состав входит вектор нормали к плоскости витка.

Пусть постоянный электрический ток силой I протекает по плоскому круглому контуру радиуса R . Найдем индукцию поля в центре кольца в точке O (рис. 431).

рис. 431
 Мысленно разобьем кольцо на малые участки, которые можно считать прямолинейными, и применим закон Био -Саварра-Лапласа для определения индукции поля, создаваемого этим элементом, в центре кольца. В данном случае вектор элемента тока (IΔl) k и вектор r k , соединяющий данный элемент с точкой наблюдения (центр кольца), перпендикулярны, поэтому sinα = 1 . Вектор индукции поля, созданного выделенным участком кольца, направлен вдоль оси кольца, а его модуль равен

 Для любого другого элемента кольца ситуация абсолютно аналогична − вектор индукции также направлен по оси кольца, а его модуль определяется формулой (1). Поэтому суммирование этих векторов выполняется элементарно и сводится к суммированию длин участков кольца

 Усложним задачу − найдем индукцию поля в точке A , находящейся на оси кольца на расстоянии z от его центра (рис. 432).

рис. 432
 По-прежнему, выделяем малый участок кольца (IΔl) k и строим вектор индукции поля ΔB k , созданным этим элементом, в рассматриваемой точке. Это вектор перпендикулярен вектору r , соединяющему выделенный участок с точкой наблюдения. Векторы (IΔl) k и r k , как и ранее, перпендикулярны, поэтому sinα = 1 . Так кольцо обладает осевой симметрией, то суммарный вектор индукции поля в точке A должен быть направлен по оси кольца. К этому же выводу о направлении суммарного вектора индукции можно прийти, если заметить, что каждому выделенному участку кольца имеется симметричный ему с противоположной стороны, а сумма двух симметричных векторов направлена вдоль оси кольца. Таким образом, для того чтобы определить модуль суммарного вектора индукции, необходимо просуммировать проекции векторов на ось кольца. Эта операция не представляет особой сложности, если учесть, расстояния от всех точек кольца до точки наблюдения одинаковы r k = √{R 2 + z 2 } , а также одинаковы углы φ между векторами ΔB k и осью кольца. Запишем выражение для модуля искомого суммарного вектора индукции


 Из рисунка следует, что cosφ = R/r , с учетом выражения для расстояния r , получим окончательное выражение для вектора индукции поля


 Как и следовало ожидать, в центре кольца (при z = 0 ) формула (3) переходит в полученную ранее формулу (2).

Задания для самостоятельной работы.
1. Постройте график зависимости индукции поля (3) от расстояния до центра кольца.
2. Сравните полученную зависимость (3) с выражением для модуля напряженности электрического поля, создаваемого равномерно заряженным кольцом (36.6) . Объясните возникшие принципиальные различия между этими зависимостями.

Используя общий рассматриваемый здесь метод, можно рассчитать индукцию поля в произвольной точке. Рассматриваемая система обладает осевой симметрией, поэтому достаточно найти распределение поля в плоскости, перпендикулярной плоскости кольца и проходящей через его центр. Пусть кольцо лежит в плоскости xOy (рис. 433),

рис. 433
а поле рассчитывается в плоскости yOz . Кольцо следует разбить на малые участки, видимые из центра под углом Δφ и просуммировать поля создаваемые этими участками. Можно показать (попробуйте проделать это самостоятельно), что компоненты вектора магнитной индукции поля, создаваемого одним выделенным элементом тока, в точке с координатами (y, z ) рассчитываются по формулам:


 Необходимое суммирование не может быть проведено аналитически, так как при переходе от одного участка кольца к другому изменяются расстояния до точки суммирования. Поэтому «простейший» способ провести такое суммирование − использовать компьютер.
 Если же известно значение вектора индукции (или хотя бы имеется алгоритм его расчета) в каждой точке, то можно построить картину силовых линий магнитного поля. Очевидно, что алгоритм построения силовых линий векторного поля не зависит от его физического содержания, а такой алгоритм был кратко рассмотрен нами при изучении электростатики.
 На рис. 434 картина силовых линий рассчитана при разбиении кольца на 20 частей, этого оказалось вполне достаточно, так как и при 10 интервалах разбиения получался практически тот же рисунок.

рис. 434
 Рассмотрим выражение для индукции поля на оси кольца на расстояниях значительно больших радиуса кольца z >> R . В этом случае формула (3) упрощается и приобретает вид

где IπR 2 = IS = p m − произведение силы тока на площадь контура, то есть магнитный момент кольца. Эта формула совпадает (если как обычно, заменить μo в числителе на ε o в знаменателе) с выражением для напряженности электрического поля диполя на его оси.
 Такое совпадение не случайно, более того, можно показать, что подобное соответствие справедливо для любой точки поля, находящейся на больших расстояниях от кольца. Фактически малый контур с током является магнитным диполем (два одинаковых малых противоположно направленных элемента тока) − поэтому его поле совпадает с полем

Движение электрического заряда означает перемещение присущего заряду электрического силового поля это приводит к возникновению вихревого магнитного поля. Подобно электрическому полю магнитное поле также характеризуется напряжённостью , однако определение этого понятия связано уже не с зарядом, как это было в случае потенциального электрического поля, а с током, т. е. с движением электрических зарядов.

Направленное поступательное перемещение зарядов и вихревое магнитное поле, отображающее движение электрического поля этих зарядов, представляют собой две стороны единого электромагнитного процесса, называемого электрическим током.

Экспериментальное исследование магнитного поля токов провели в 1820 г. французские физики Ж. Био и Ф. Савар, а П. Лаплас 1 теоретически обобщил результаты этих измерений, получив в итоге формулу (для магнитного поля в вакууме):

(1)

где J - сила тока; - вектор, совпадающий с элементарным участком тока и направленный по току (рис.3); - вектор, проведённый от элемента тока в точку, в которой определяется

R - модуль этого вектора.

¾¾¾¾¾¾¾¾¾¾

1 Био Жан Батист (1774-1862) - французский физик. Работы посвящены оптике, электромагнетизму, акустике, истории науки.

Савар Феликс (1791 - 1841) - французский физик. Работы относятся к оптике, электромагнетизму, акустике, гидромеханике.

Лаплас Пьер Симон (1749 - 1827) - французский математик, физик и астроном. Физические исследования относятся к молекулярной физике, акустике, электричеству, оптике.

Как видно из выражения (1) , вектор направлен перпендикулярно к плоскости, проходящей через и точку, в которой вычисляется поле, его направление определяется по вращению головки правого винта поступательное движение которого совпадает с направлением . Для модуля dH можно написать следующее выражение:

(2)

где a - угол между векторами и .

Рассмотрим поле, создаваемое током, текущим по тонкому проводу, имеющему форму окружности радиусом R (круговой ток). Определим напряжённость магнитного поля в центре

кругового тока (рис. 4). Каждый элемент тока создаёт в центре напряжённость, направленную вдоль положительной нормали к контуру. Поэтому векторное сложение элементов сводится к сложению их модулей. По формуле (2)

рассчитаем dH для случая a=p/2:

Проинтегрируем это выражение по всему контуру:

(3)

Если контур состоит из n витков, то напряжён ость магнитного поля в центре будет равна:

Описание аппаратуры и метода измерений

Целью данной работы является определение величины . Для измерения применяется прибор, называемый тангенс-гальванометром , который состоит из кольцеобразного проводника или плоской катушки большого радиуса. Плоскость катушки расположена вертикально и вращением около вертикальной оси ей можно придать любое положение. В центре катушки укреплён компас с магнитной стрелкой. Рис. 5 даёт сечение прибора горизонтальной плоскостью, проходящей через центр витка, NS - направление магнитного меридиана, A и D - сечения катушки, NS - магнитная стрелка компаса.

Шкала лимба разделена на градусы.

При отсутствии тока в катушке на стрелку NS действует только магнитное поле Земли и стрелка устанавливается по направлению магнитного меридиана NS.

Поворотом около вертикальной оси совмещают плоскость катушки с плоскостью магнитного меридиана.

Если после такой установки катушки по ней пропустить ток, то стрелка отклонится на угол a . Теперь магнитная стрелка находится под действием двух полей: магнитного поля Земли () и магнитного поля, созданного током (). При условии совмещения плоскости витка с плоскостью меридиана векторы и взаимно перпендикулярны, тогда (см.рис.5)

; = (5)

Так как длина магнитной стрелки мала по сравнению с радиусом витка, то в пределах стрелки можно считать постоянной величиной (поле однородно) и равной ее значению в центре катушки, определяемой формулой (4).

Решая совместно уравнения (4) и (5), получим

где m – число витков катушки.

Формулой (6) можно воспользоваться для определения H 0 в данной работе

Порядок выполнения работы и обработка результатов измерений

1. Собрать установку по схеме (рис. 6) и, не включая тока, поворачивать подставку тангенс-гальванометра так, чтобы витки его катушки оказались в плоскости магнитного меридиана (см. выше).

2. Включить установку и установить реостатом ток J, подбирая определённый угол отклонения стрелки (в пределах 35 0 -55 0). Дождавшись, когда стрелка придёт в положение равновесия, отсчитать угол её отклонения от плоскости рамки a 1 . Данные значения J и a 1 заносятся в табл. 1.

3. Не изменяя ток по величине, изменить его направление переключателем П, измерить и записать в таблицу значение угла a 2 .

4. Проверить нулевую установку прибора и повторить измерения при том же токе ещё раз.

Вычислить среднее арифметическое значение угла a при заданном токе J (из четырёх измерений):

5. Проделать ещё несколько аналогичных опытов (3 - 5) при различных токах, выбирая углы отклонения стрелки в тех же пределах (35 0 -55 0); результаты занести в таблицу.

6. Для каждого опыта по формуле (6) вычислить H i , (принять a= ), и рассчитать среднее значение , которое заносится в таблицу (n – количество опытов при разном токе)

7. Произвести оценку погрешностей измерений H. Для этого необходимо определить среднее квадратическое отклонение по формуле

s ср = .

D / = DJ/J +DR/R+D(tga)/tga

Последний член этого выражения показывает, что относительная погрешность есть функция угла, имеющая наименьшее значение при a=45 0 (поэтому угол отклонения a следует брать в пределах 35 0 -55 0).Отсюда

что линии магнитной индукции поля кругового тока не являются правильными окружностями, они замыкаются, обходя проводник, по которому идет ток. Направление линий магнитной индукции можно определить с помощью правила правого винта (правило буравчика): если головку винта вращать в направлении тока в проводнике, то поступательное движение острия винта покажет направление магнитной индукции в центре кругового тока .

Закон Био́-Савара-Лапла́са - физический закон для определения вектора индукции магнитного поля, порождаемого постоянным электрическим током.

При прохождении постоянного тока по замкнутому контуру, находящемуся в вакууме, для точки, отстоящей на расстоянии r0, от контура магнитная индукция будет иметь вид.

Где I ток в контуре гамма контур, по которому идет интегрирование r0 произвольная точка

Циркуляцией магнитного поля вдоль замкнутого контура l называется интеграл:

,

где - проекция вектора на направление касательной к линии контура в данной точке.

Соответствующий интеграл для электрического поля в электростатике, как мы знаем, равен нулю, что отражает свойство потенциальности электростатического поля:

Магнитное поле не является потенциальным , оно, как было показано выше, является соленоидальным. Поэтому следует ожидать, что циркуляция магнитного поля вдоль замкнутого контура в общем случае отлична от нуля. Чтобы найти ее величину, выполним сначала некоторые вспомогательные действия.

Поле соленоида и тороидаСоленоид – цилиндрическая катушка, состоящая из большого числа витков, равномерно намотанных на сердечник. Тороид можно рассматривать как длинный соленоид, свернутый в кольцо

внутри соленоида поле однородно, а вне соленоида не однородно и очень слабое (можно считать, равным нулю).

Циркуляция вектора В по замкнутому контуру, совпадающему с одной из линий магнитной индукции, охватывающему все N витков, согласно (4.12) равна: .

Магнитное поле внутри тороида, так же, как в соленоиде, однородно, сосредоточено внутри; вне тороида магнитное поле, создаваемое круговыми токами тороида, равно нулю. Величина магнитного поля в тороиде определяется выражением причем длина тороида l берется по средней длине тороида (среднему диаметру).

Выражение для силы Ампера можно записать в виде: F = qnSΔlυB sin α. Взаимодействие параллельных токов Одним из важных примеров магнитного взаимодействия токов является взаимодействие параллельных токов. Закономерности этого явления были экспериментально установлены Ампером. Если по двум параллельным проводникам электрические токи текут в одну и ту же сторону, то наблюдается взаимное притяжение проводников. В случае, когда токи текут в противоположных направлениях, проводники отталкиваются. Взаимодействие токов вызывается их магнитными полями: магнитное поле одного тока действует силой Ампера на другой ток и наоборот. Опыты показали, что модуль силы, действующей на отрезок длиной Δl каждого из проводников, прямо пропорционален силам тока I1 и I2 в проводниках, длине отрезка Δl и обратно пропорционален расстоянию R между ними:

Где μ0 – постоянная величина, которую называют магнитной постоянной. Введение магнитной постоянной в СИ упрощает запись ряда формул. Ее численное значение равно

Магни́тный пото́к - поток как интеграл вектора магнитной индукции через конечную поверхность . Определяется через интеграл по поверхности

Также магнитный поток можно рассчитать как скалярное произведение вектора магнитной индукции на вектор площади.

Вначале решим более общую задачу нахождения магнитной индукции на оси витка с током. Для этого сделаем рисунок 3.8, на котором изобразим элемент тока и вектор магнитной индукции , который он создает на оси кругового контура в некоторой точке .

Рис. 3.8 Определение магнитной индукции

на оси кругового витка с током

Вектор магнитной индукции , создаваемый бесконечно малым элементом контура может быть определен с помощью закона Био-Савара-Лапласа (3.10).

Как следует из правил векторного произведения, магнитная индукция будет перпендикулярна плоскости, в которой лежат вектора и , поэтому модуль вектора будет равен

.

Для нахождения полной магнитной индукции от всего контура необходимо векторно сложить от всех элементов контура, т. е. фактически сосчитать интеграл по длине кольца

Данный интеграл можно упростить, если представить в виде суммы двух составляющих и

При этом в силу симметрии , поэтому результирующий вектор магнитной индукции будет лежать на оси . Следовательно, для нахождения модуля вектора нужно сложить проекции всех векторов , каждая из которых равна

.

Учитывая, что и , получим для интеграла следующее выражение

Нетрудно заметить, что вычисление получившегося интеграла даст длину контура, т. е. . В итоге суммарная магнитная индукция, создаваемая круговым контуром на оси в точке , равна

. (3.19)

Используя магнитный момент контура, формулу (3.19) можно переписать следующим образом

.

Теперь отметим, что полученное в общем виде решение (3.19) позволяет проанализировать предельный случай, когда точка помещена в центре витка. В этом случае и решение для магнитной индукции поля в центре кольца с током примет вид

Результирующий вектор магнитной индукции (3.19) направлен вдоль оси тока, а его направление связано с направлением тока правилом правого винта (рис. 3.9).

Рис. 3.9 Определение магнитной индукции

в центре кругового витка с током

Индукция магнитного поля в центре дуги окружности

Данная задача может быть решена как частный случай рассмотренной в предыдущем пункте задачи. В этом случае интеграл в формуле (3.18) следует брать не по всей длине окружности, а только по ее дуге l . А также учесть то, что индукция ищется в центре дуги, поэтому . В результате получим

, (3.21)

где – длина дуги; – радиус дуги.

5 Вектор индукции магнитного поля движущегося в вакууме точечного заряда (без вывода формулы)

,

где – электрический заряд; – постоянная нерелятивистская скорость; – радиус-вектор, проведенный от заряда к точке наблюдения.

Силы Ампера и Лоренца

Опыты по отклонению рамки с током в магнитном поле показывают, что на всякий проводник с током, помещенный в магнитное поле, действует механическая сила, называемая силой Ампера .

Закон Ампера определяет силу, действующую на проводник с током, помещенный в магнитное поле:

; , (3.22)

где – сила тока; – элемент длины провода (вектор совпадает по направлению с током ); – длина проводника. Сила Ампера перпендикулярна направлению тока и направлению вектора магнитной индукции.

Если прямолинейный проводник длиной находится в однородном поле, то модуль силы Ампера определяется выражением (рис. 3.10):

Сила Ампера всегда направлена перпендикулярно плоскости, содержащей векторы и , а ее направление как результат векторного произведения определяется правилом правого винта: если смотреть вдоль вектора , то поворот от к по кратчайшему пути должен происходить по часовой стрелке.

Рис. 3.10 Правило левой руки и правило буравчика для силы Ампера

С другой стороны, для определения направления силы Ампера можно также применить мнемоническоеправило левой руки (рис. 3.10): нужно поместить ладонь так, чтобы силовые линии магнитной индукции входили в нее, вытянутые пальцы показывали направление тока, тогда отогнутый большой палец укажет направление силы Ампера.

Исходя из формулы (3.22), найдем выражение для силы взаимодействия двух бесконечно длинных, прямых, параллельных друг другу проводников, по которым текут токи I 1 и I 2 (рис. 3.11) (опыт Ампера). Расстояние между проводами равно a.

Определим силу Ампера dF 21 , действующую со стороны магнитного поля первого тока I 1 на элемент l 2 dl второго тока.

Величина магнитной индукции этого поля B 1 в точке расположения элемента второго проводника с током равна

Рис. 3.11 Опыт Ампера по определению силы взаимодействия

двух прямолинейных токов

Тогда с учетом (3.22) получим

. (3.24)

Рассуждая точно так же, можно показать, что сила Ампера, действующая со стороны магнитного поля, создаваемого вторым проводником с током, на элемент первого проводника I 1 dl , равна

,

т. e. dF 12 = dF 21 . Таким образом, мы вывели формулу (3.1), которая была получена Ампером экспериментальным путем.

На рис. 3.11 показано направление сил Ампера. В случае, когда токи направлены в одну и ту же сторону, то это ‑ силы притяжения, а в случае токов разного направления ‑ силы отталкивания.

Из формулы (3.24), можно получить силу Ампера, действующую на единицу длины проводника

. (3.25)

Таким образом, сила взаимодействия двух параллельных прямых проводников с токами прямо пропорциональна произведению величин токов и обратно пропорциональна расстоянию между ними .

Закон Ампера утверждает, что на элемент с током, помещенный в магнитное поле, действует сила. Но всякий ток есть перемещение заряженных частиц. Естественно предположить, что силы, действующие на проводник с током в магнитном поле, обусловлены силами, действующими на отдельные движущиеся заряды. Этот вывод подтверждается рядом опытов (например, электронный пучок в магнитном поле отклоняется).

Найдем выражение для силы, действующей на заряд, движущийся в магнитном поле, исходя из закона Ампера. Для этого в формулу, определяющую элементарную силу Ампера

подставим выражение для силы электрического тока

,

где I – сила тока, протекающего через проводник; Q – величина полного заряда протекшего за время t ; q – величина заряда одной частицы; N общее число заряженных частиц, прошедших через проводник объемом V , длиной l и сечением S; n – число частиц в единице объема (концентрация); v – скорость частицы.

В результате получим:

. (3.26)

Направление вектора совпадаёт с направлением скорости v , поэтому их можно поменять местами.

. (3.27)

Эта сила действует на все движущиеся заряды в проводнике длиной и сечением S , число таких зарядов:

Следовательно, сила, действующая на один заряд, будет равна:

. (3.28)

Формула (3.28) определяет силу Лоренца , величина которой

где a - угол между векторами скорости частицы и магнитной индукции.

В экспериментальной физике часто встречается ситуация, когда заряженная частица движется одновременно и в магнитном и электрическом поле. В этом случае рассматривают полную силу Лоренца в виде

,

где – электрический заряд; – напряженность электрического поля; – скорость частицы; – индукция магнитного поля.

Только в магнитном поле на движущуюся заряженную частицу действует магнитная составляющая силы Лоренца (рис. 3.12)

Рис. 3.12 Сила Лоренца

Магнитная составляющая силы Лоренца перпендикулярна вектору скорости и вектору магнитной индукции. Она не изменяет величины скорости, а изменяет только ее направление, следовательно, работы не совершает.

Взаимная ориентация трех векторов ‑ , и , входящих в (3.30), показана на рис. 313 для положительно заряженной частицы.

Рис. 3.13 Сила Лоренца, действующая на положительный заряд

Как видно из рис. 3.13, если частица влетает в магнитное поле под углом к силовым линиям , то она равномерно движется в магнитном поле по окружности радиусом и периодом обращения:

где – масса частицы.

Отношение магнитного момента к механическому L (моменту импульса) заряженной частицы, движущейся по круговой орбите,

где ‑ заряд частицы; т ‑ масса частицы.

Рассмотрим общий случай движения заряженной частицы в однородном магнитном поле, когда ее скорость направлена под произвольным углом a к вектору магнитной индукции (рис. 3.14). Если заряженная частица влетает в однородное магнитное поле под углом , то она движется по винтовой линии.

Разложим вектор скорости на составляющие v || (параллельную вектору ) и v ^ (перпендикулярную вектору ):

Наличие v ^ приводит к тому, что на частицу будет действовать сила Лоренца и она будет двигаться по окружности радиусом R в плоскости перпендикулярной вектору :

.

Период такого движения (время одного витка частицы по окружности) равен

.

Рис. 3.14 Движение по винтовой линии заряженной частицы

в магнитном поле

За счет наличия v || частица будет двигаться равномерно вдоль , так как на v || магнитное поле не действует.

Таким образом, частица участвует одновременно в двух движениях. Результирующая траектория движения представляет собой винтовую линию, ось которой совпадает с направлением индукции магнитного поля. Расстояние h между соседними витками называется шагом винтовой линии и равно:

.

Действие магнитного поля на движущийся заряд находит большое практическое применение, в частности, в работе электронно-лучевой трубки, где используется явление отклонения заряженных частиц электрическим и магнитным полями, а также в работе масс-спектрографов, позволяющих определить удельный заряд частиц (q/m ) и ускорителей заряженных частиц (циклотронов).

Рассмотрим один такой пример, назыаемый «магнитной бутылкой» (рис. 3.15). Пусть неоднородное магнитное поле создано двумя витками с токами, протекающими в одном направлении. Сгущение линий индукции в какой-либо пространнственной области означает большее значение величины магнитной индукции в этой области. Индукция магнитного поля вблизи витков с током больше, чем в пространстве между ними. По этой причине радиус винтовой линии траектории частицы, обратно пропорциональный модулю индукции, меньше вблизи витков, чем в пространстве между ними. После того, как частица, двигаясь вправо по винтовой линии, пройдет среднюю точку, сила Лоренца, действующая на чатицу, приобретает компоненту , тормозящую ее движение вправо. В определенный момент эта компонента силы останавливает движение частицы в этом направлении и отталкивает ее влево к витку 1. При приближении заряженной частицы к витку 1 она также тормозится и начинает циркулировать между витками, оказавшись в магнитной ловушке, или между «магнитными зеркалами». Магнитные ловушки используются для удержания в определенной области пространства высокотемпературной плазмы ( К) при управляемом термоядерном синтезе.

Рис. 3.15 Магнитная «бутылка»

Закономерностями движения заряженных частиц в магнитном поле можно объяснить особенности движения космических лучей вблизи Земли. Космические лучи – это потоки заряженных частиц большой энергии. При приближении к поверхности Земли эти частицы начинают испытывать действие магнитного поля Земли. Те из них, которые направляются к магнитным полюсам, будут двигаться почти вдоль линий земного магнитного поля и навиваться на них. Заряженные частицы, подлетающие к Земле вблизи экватора, направлены почти перпендикулярно к линиям магнитного поля, их траектория будет искривляться. и лишь самые быстрые из них достигнут поверхности Земли (рис. 3.16).

Рис. 3.16 Образование Полярного сияния

Поэтому интенсивность космических лучей доходящих до Земли вблизи экватора, заметно меньше, чем вблизи полюсов. С этим связан тот факт что, Полярное сияние наблюдается главным образом в приполярных областях Земли.

Эффект Холла

В 1880г. американский физик Холл провел следующий опыт: он пропускал постоянный электрический ток I через пластинку из золота и измерял разность потенциалов между противолежащими точками A и C на верхней и нижней гранях (рис. 3.17).