Эндотелиальная дисфункция и патология сердечно сосудистой системы. Повреждение сосудистого эндотелия - пусковой механизм развития атеросклероза

Эндотелиальная дисфункция подразумевает функциональное поражение эндотелия - слоя клеток, выстилающих просвет всех кровеносных сосудов. Данные клетки, выделяя различные факторы, реагируют на механические (прежде всего гемодинамические) воздействия и химические вещества, содержащиеся в крови. Помимо вышеописанных свойств эндотелий носит барьерную функцию между кровью и тканями, контролируя транспорт различных веществ между ними. А самое важное эндотелий определяет анатомо-функциональное состояние сосудов . Эндотелиальная дисфункция приводит к нарушению этого состояния, конечным итогом которого является снижение релаксирующей функции гладкомышечных клеток сосудов, способствующая патологической вазоконстрикции, с последующим пуском процессов ведущих к атеросклеротическому поражению. Однако почти все исследователи считают, что эректильная дисфункция может не только являться проявлением соматического заболевания, но и быть самостоятельным заболеванием. Этими же исследователями было доказано, что эректильная дисфункция предшествует ранним проявлениям атеросклеротического поражения крупных сосудов .

Необходимо учесть, что у определенной части больных, которых были выявлены атеросклеротические поражения крупных сосудов, в период возникновения эректильных нарушений, отсутствовало какое-либо органическое сужение небольших по диаметру внутренних половых и кавернозных артерий. Из чего следует, что не всегда артериогенная ЭД связана с атеросклеротическим поражением кавернозных артерий, и может быть обусловлена эндотелиальной дисфункцией. Данное предположение доказывается последними исследованиями, показавшими возможность восстановления эрекции у части больных после устранения факторов риска , а также после проведенной медикаментозной терапии. Высокая эффективность ингибиторов ФДЭ-5, а также вазоактивных препаратов для интракавернозного введения, превышающая 70% на период действия препаратов и приводящая к частичному или полному восстановлению эректильной функции, также не сходится с данными терапии атеросклероза крупных сосудов .

Поэтому, несмотря на нарушение функциональных свойств эндотелиальных клеток возникающих при поражении кавернозных артерий, сопровождающееся разрушением этих клеток и неполной их регенерацией, при устранении факторов риска происходит восстановление эрекции у части больных.

Приведённые данные свидетельствуют, что в основе артериогенной эректильной дисфункции у части пациентов лежит не органическое, а функциональное, потенциально обратимое поражение артерий .

В течение последних лет получены неопровержимые доказательства о том, что NO является важным компонентом в защите эндотелиальной функции. Hedlund и Aszodi обнаружили, что случайные повреждения эндотелия приводят к утрате способности сосудов расслабляться под действием ацетилхолина, и предположили, что, вероятно, из эндотелия высвобождается какой-то нестабильный фактор, который они назвали эндотелиальным фактором расслабления, которого идентифицировали как NO. Помимо этой важной функции, роль NO в половом члене очень сложна и включает в себя регуляцию биохимического механизма эрекции .

Таким образом, NO представляет собой субстанцию, которая постоянно продуцируется и выделяется вегетативными нервными окончаниями и эндотелиальными клетками в кавернозную ткань. Синтез NO в организме осуществляется в результате 5-и электронного окисления концевого атома азота гуанидина аминокислоты L-аргинина с помощью семейства ферментов, определяемых как NO-синтазы (NOS) и относящихся к классу гем-содержащих циторедуктаз подобных цитохрому Р-450 .

Оценивая роль NO в эрекции полового члена, основное внимание уделяют на конститутивные - эндотелиальные и нейральные ее источники, которые функционально связаны с плазматической мембраной, экспрессированы постоянно и обеспечивают базальное освобождение NO .

Существует также индуцибельная NO-синтетаза, так называемая макрофагальная, образующаяся в лейкоцитах, функция, которой ограничивается в осуществлении ими цитотоксического действия. В то время как эндотелиальная и нейральная изоформы являются конституциональными разновидностями фермента, то индуцибельная NO-синтетаза экспрессируется в основном при воспалении или инфекционном процессе .

NO вырабатываемый эндотелиальными клетками и нехолинергическими неадренергическими нервными окончаниями кавернозных тел полового члена, за счет расслабления гладкомышечных клеток артерий и трабекул обеспечивает увеличение притока артериальной крови, с последующим повышением внутрикавернозного давления и развитием эрекции полового члена . Системный процесс, приводящий к снижению способности эндотелия синтезировать и выделять оксид азота NO, а также уменьшение биодоступности последнего, является непосредственной причиной развития эректильной дисфункции .

Образованный в нервных волокнах и эндотелии NO, переходит в гладкомышечные клетки сосудов, стимулируя растворенную гуанилинциклазу, которая приводит к повышению уровня цГМФ путем превращения гуанозин трифосфата в циклический гуанозинмонофосфат.

Классическая регуляторная роль цГМФ состоит в стимуляции релаксации мышечных клеток, дегрануляции нейтрофилов, торможении агрегации тромбоцитов . Изучение расслабления, опосредованного NO\цГМФ ясно показало, что пусковым механизмом в каскаде реакций является циклическая гуанозинмонофосфат-зависимая киназа I, которая снижает внутриклеточную концентрацию кальция в результате угнетения активности кальциевых каналов и открытия Са2+-зависимых К+-каналов, приводя к гиперполяризации и нарушению фосфорирования легких цепей гладкомышечных клеток. Медиатором блокирующим физиологическое действие циклического гуанозинмонофосфата является фермент из семейства фосфодиэстераз, который путем гидролиза связи 3"5" приводит к разрыву этой цепи .

Причиной дефицита закиси азота в эндотелии, могут быть: снижение продукции эндотелиального N0, быстрое окисление ее избытком свободных радикалов, увеличение продукции эндотелиальных вазоконстрикторных факторов, которые противодействуют вазодилататорному эффекту NO или маскируют его. Необходимо также учесть, что сама молекула NO нестабильна и продолжительность жизни ее составляет, около 10 сек . Экспрессия NO-синтетазы может варьировать в определённых пределах , находясь в прямой зависимости от концентрации L-аргинина. Снижение его внутриклеточной концентрации вследствие ухудшения транспорта L-аргинина в эндотелиальные клетки, а также повышение активности фермента аргиназы, расщепляющий аргинин, может нарушать функцию эндотелиальной NO-синтетазы и тоже приводить к эндотелиальной дисфункции . Этими данными и объясняется высокая конкурирующая эффективность L-аргинина в коррекции дисфункции эндотелия.

Также известно, что уровень эNO-синтетазы снижается при воздействии на эндотелиальные. клетки медиаторов - воспаления и липопротеидов низкой плотности. Важно учесть, нарушение структуры NO-синтетазы путем угнетения этого энзима эндогенными ингибиторами N-монометиларгинином и ассиметричным диметиларгинином. . Данный процесс, а также снижение концентрации тетрагидробиоптерина, возникает в основном при разных патологических состояниях, в том числе гиперхолестеринемии, . гипертензии, периферическом атеросклерозе и сердечной; недостаточности .

Наконец, реакция гладкой мышцы на NO может измениться на уровне ионных каналов или рецепторов. По-видимому, снижение чувствительности рецепторов гладкомышечных клеток к NO не является значимой причиной развития эндотелиальной дисфункции; что доказывается сохранённой реакцией сосудов на применение нитратов у пациентов с, выраженными нарушениями эндотелиальной функции. . Необходимо также отметить, что в эндотелиальной NO-синтетазе комплекс Са2+ - кальмодулин является как бы субъединицей фермента, и поэтому активность этого подтипа NOS зависит от изменений концентрации внутриклеточного кальция.

Сравнительно-недавно к потенциальным факторам риска атеросклероза стали относить гомоцистеинемию . Гомоцистеин - серосодержащая-аминокислота, образующаяся при метаболизме метионина.

Гомоцистеин приводит к эндотелиальной. дисфункции путем ослабления сосудистого тонуса и тока крови в них, активации и адгезии воспалительных клеток, митогенного влияния на гладкомышечные клетки, стимулирования аккумуляции белков в атероме и биосинтеза коллагена, а также за счет ослабления антитромботической функции эндотелиальных клеток. Повышение, концентрации гомоцистеина в крови ведет к созданию условий для развития и прогрессирования атеросклероза, которые реализуются за счет нескольких механизмов.

В плазме крови гомоцистеин легко окисляется с образованием гомоцистина, смешанных дисульфидов гомоцистеина и гомоцистеин-тиолактона, токсичных для клеток эндотелия.

Гомоцистеин способствует образованию дисульфидных производных белков, накоплению в мембранах клеток и межклеточном пространстве липопротеинов низкой (ЛПНП) и очень, низкой плотности (ЛПОНП) и их окислению, а также уменьшению синтеза, серосодержащих гликозаминогликанов, что приводит к снижению эластичности стенок сосудов. В итоге сосуды теряют эластичность, снижается их способность, к дилатации, что в значительной степени.обусловлено дисфункцией: эндотелия .

Таким образом, избыток гомоцистеина в организме создает проблемы: он первым внедряется в эндотелий сосудов, и повреждает ее и только потом "за дело" берется холестери н.

Гомоцистеин воздействует также на другое звено патогенеза атеросклероза - тромбогенез. В литературе имеются данные о том;, что гомоцистеин повышает агрегационную способность тромбоцитов и их адгезивные свойства, нарушает функцию тканевого активатора плазминогена, блокируя: его связывание с эндотелиоцитами, стимурлирует факторы свертывания - V, X и XII, а также ингибирует функцию естественных антикоагулянтов, таких как антитромбин III и протеин C, повышая активность тромбина .

Выраженность гомоцистеинемии коррелирует с риском развития ЭД , установлена достоверная связь между уровнем гомоцистеина и тяжестью ЭД

Гомоцистеин приводит к ингибированию эффектов оксида: азота, снижает его биодоступность, влияет на чувствительность тканей к нему . D. Lang, M. Kredan и соавт. высказали мнение о связи гомоцистеина с продукцией оксида азота (NO) через NO-синтазу, что позволило объяснить механизм дисфункции эндотелия .

Полученные результаты подтверждают данные об атеросклерозе как диффузном процессе, при котором эндотелиальная дисфункция, инициируемая факторами риска, проявляется как в системных, так и в периферических артериях . Ремоделирование сосудов и дисфункция эндотелия - взаимосвязанные стороны одного и того же процесса .

Плазменный уровень гомоцистеина имеет тенденцию к увеличению с возрастом, особенно у лиц с артериальной гипертензией и гиперхолестеринемией , что связано с возрастными физиологическими изменениями.

Таким образом, результатами вышеуказанного исследования подтверждается гипотеза о том, что дисфункция эндотелия предшествует атеросклерозу, так как четко прослеживается связь нарушения эндотелий зависимой вазодилатации с факторами риска и возможность восстановления ее после их коррекции. Снижение повышенного уровня гомоцистеина, ХС ЛПНП и улучшение функции эндотелия является приоритетным направлением во вторичной профилактике ИБС. Следует учесть, что вне зависимости от преобладания тех или иных механизмов развития эндотелиальной дисфункции, они взаимосвязаны.

Суммируя данные о патогенезе эндотелиальной дисфункции, можно предположить, что в ее развитии при разных заболеваниях могут в разной степени участвовать все перечисленные механизмы, подчеркивая роль нарушений эндотелия в качестве главного патологического процесса, являющегося следствием действия на сосуды неблагоприятных факторов. Выяснение точной причины дисфункции эндотелия очень важно для разработки направленных методов терапии артериогенной эректильной дисфункции.

Гасанов Р.В. Влияние регуляторного приема ингибиторов фосфодиэстеразы 5 типа на эректильную и эндотелиальную функции у больных с артериогенной эректильной дисфункцией

Похожие материалы

Вальвачев А.А. Москва

Endothelium produces a wide range of biological active substances of the variable functional specter, including regulators of regional circulation. Endothelial dysfunction can initiate (or modulate) a number of pathological conditions (e.g. atherosclerosis, hypertension, stroke, myocardial infarction, etc.).

Исследования последних 10-15 лет существенно изменили представление о роли эндотелия сосудов в общем гомеостазе . Оказалось, что эндотелий синтезирует огромное количество биологически активных веществ (БАВ), играющих весьма важную роль во многих процессах в норме и в патологии (гемодинамике, гемостазе, иммунных реакциях, регенерации и др.). Наличие такой обширной эндокринной активности у эндотелия дало основание D. Antomuoci, L.A. Fitzpatrick (1996) назвать его эндокринным деревом.

В настоящем обзоре остановимся только на одном направлении функционирования эндотелия - его участии в формировании адекватного кровотока, что обеспечивается согласованием агрегатного состояния крови и тонуса (диаметра) сосудов.

Эндокринная активность эндотелия зависит от его функционального состояния, которое в значительной мере определяется поступающей информацией, им воспринимаемой. На эндотелии находятся многочисленные рецепторы к различным биологически активным веществам (БАВ), он воспринимает также давление и объем движущейся крови - так называемое напряжение сдвига, стимулирующее синтез противосвертывающих и сосудорасширяющих веществ . Поэтому чем больше давление и скорость движущейся крови (артерии), тем реже образуются тромбы.

Дисфункция эндотелия , наступающая при воздействии повреждающих агентов (механических, инфекционных, обменных, иммуннокомплексных и т.п.), резко меняет направление его эндокринной активности на противоположную: образуются вазоконстрикторы, коагулянты.

Биологически активные вещества, вырабатываемые эндотелием, действуют в основном паракринно (на соседние клетки) и аутокринно-паракринно (на эндотелий), но сосудистая стенка - структура динамичная. Ее эндотелий постоянно обновляется, отжившие фрагменты вместе с БАВ попадают в кровь, разносятся по всему организму и могут оказывать влияние на системный кровоток. Об активности эндотелия можно судить по содержанию его БАВ в крови.

Строение сосудистой стенки создает определенную закономерность в распределении факторов свертывания (вазоконстрикторов) и противосвертывания (вазодилататоров). Пока эндотелий цел, не поврежден, он синтезирует главным образом факторы противосвертывания, являющиеся также вазодилататорами. Эти биологически активные вещества препятствуют росту гладких мышц - стенки сосуда не утолщаются, диаметр его не меняется. Кроме того, эндотелий адсорбирует из плазмы крови многочисленные противосвертывающие вещества. Сочетание на эндотелии антикоагулянтов и вазодилататоров в физиологических условиях является основой для адекватного кровотока, особенно в сосудах микроциркуляции.

Повреждение эндотелия сосудов и обнажение субэндотелиальных слоев запускает реакции агрегации, свертывания, препятствующие кровопотере, вызывает спазм сосуда, который может быть очень сильным и не устраняется денервацией сосуда (И.В. Давыдовский, 1969). Прекращается образование антиагрегантов. При кратковременном действии повреждающих агентов эндотелий продолжает выполнять защитную функцию, препятствуя кровопотере. Но при продолжительном повреждении эндотелия, по мнению многих исследователей , эндотелий начинает играть ключевую роль в патогенезе ряда системных патологий (атеросклероз, гипертония, инсульты, инфаркты и др.). Это объясняется участием эндотелия в активизации ренин-ангиотензиновой и симпатической систем, переключением активности эндотелия на синтез оксидантов, вазоконстрикторов, агрегантов и тромбогенных факторов, а также уменьшением деактивации эндотелиальных биологически активных веществ из-за повреждения эндотелия некоторых сосудистых областей (в частности, в легких).

Итак, эндотелий может вырабатывать как факторы свертывания (вазоконстрикторы), так и противосвертывания (вазодилататоры).

Активность эндотелия в физиологических условиях. В физиологических условиях изнутри на сосудистой стенке преобладают антикоагулянты - их обилие и высокая активность обеспечивают надежность реакции.

Эндотелий создает гладкую поверхность, покрыт слизистой <дымкой> - гликокаликсом - гликопротеинами, обладающими антиадгезивными свойствами (препятствуют прилипанию тромбоцитов). Небольшой слой фибрина, покрывающий эндотелий, связывает тромбин. Заряд стенки сосуда положительный, что также препятствует сближению тромбоцитов (имеющих положительный заряд) с эндотелием. Однако основной причиной антикоагулянтной и вазодилататорной функции стенки сосудов является синтез эндотелием соответствующих биологически активных веществ.

Оксид азота. Большое значение в поддержании адекватного кровотока придается оксиду азота (NO), который синтезируется эндотелием и является сигнальной молекулой в сердечно-сосудистой системе - реакция сосудов определяется степенью образования NO . Оно происходит с участием NO-синтазы, превращающей a -аргинин в оксид азота (NO) - нестабильный гормон с периодом полураспада в несколько секунд. Существуют три изомера синтазы :

I - нейрональная (в нервных клетках);
II - индуцибельная (в макрофагах);
III - эндотелиальная (в эндотелии).

Механизм действия NO. NO является основным стимулятором образования цГМФ. Увеличивая количество цГМФ, он уменьшает содержание кальция в тромбоцитах и гладких мышцах. Ионы кальция - обязательные участники всех фаз гемостаза и сокращения мышц. ЦГМФ, активизируя цГМФ-зависимую протеиназу, создает условия для открытия многочисленных калиевых и кальциевых каналов. Особенно большую роль играют белки - К Са 2+ -каналы. Открытие этих каналов для калия приводит к расслаблению гладких мышц благодаря выходу калия и кальция из мышц при реполяризации (затухание биотока действия). Активирование каналов К Са 2+ , плотность которых на мембранах очень велика, является основным механизмом действия оксида азота . Поэтому конечный эффект NO - антиагрегирующий, противосвертывающий и вазодилататорный. NO предупреждает также рост и миграцию гладких мышц сосудов, тормозит выработку адгезивных молекул, препятствует развитию спазма в сосудах. Оксид азота выполняет функции нейромедиатора, транслятора нервных импульсов, участвует в механизмах памяти, обеспечивает бактерицидный эффект .

Основным стимулятором активности оксида азота является напряжение сдвига. Образование NO увеличивается также под действием ацетилхолина, кининов, серотонина, катехоламинов и др. При интактном эндотелии многие вазодилататоры (гистамин, брадикинин, ацетилхолин и др.) оказывают сосудорасширяющий эффект через оксид азота . Особенно сильно NO расширяет мозговые сосуды.

Если функции эндотелия нарушены, ацетилхолин вызывает либо ослабленную, либо извращенную реакцию. Поэтому реакция сосудов на ацетилхолин является показателем состояния эндотелия сосудов и используется в качестве теста его функционального состояния (О.В. Иванова и др., 1998).

Оксид азота легко окисляется, превращаясь в пероксинитрат - ONOO-. Этот очень активный окислительный радикал, способствующий окислению липидов низкой плотности (ЛПНП), оказывает цитоксическое и иммунногенное действия, повреждает ДНК, вызывает мутацию, подавляет функции ферментов (T. Nguyen, Brunson, 1992), может разрушать клеточные мембраны. Образуется пероксинитрат при стрессах, нарушениях липидного обмена, тяжелых травмах. Высокие дозы ONOO- усиливают повреждающие эффекты продуктов свободного радикального окисления . Снижение уровня оксида азота проходит под влиянием глюкокортикоидов, подавляющих активность синтазы оксида азота. Ангиотензин II является главным антагонистом NO, способствуя превращению оксида азота в пероксинитрат.

Следовательно, состояние эндотелия устанавливает соотношение между оксидом азота (антиагрегантом, антикоагулянтом, вазодилятатором) и пероксинитратом, увеличивающим уровень окислительного стресса, что приводит к тяжелым последствиям.

Простациклин. Большую роль в гемостазе и гемодинамике играет и другой мощный антикоагулянт - простациклин (простагладин Pgl 2). Он образуется из фосфолипидов. Под действием циклооксигеназы отщепляется арахидоновая кислота, которая затем превращается в простагландины (Pg 2 и РgН 2) - нестойкие соединения. Из них под действием фермента простациклин-синтетазы образуется простациклин. Последний, действуя на мембрану гладких мышц, включает месенджеры II типа - аденилатциклазу, увеличивающую в клетке содержание цАМФ, который снижает в них уровень Ca 2+ .

Таким образом, простациклин действует как антиагрегант, противосвертывающий фактор, причем механизм действия такой же, как и оксида азота: удаление ионов кальция из гладких мышц, что препятствует спазму сосудов, агрегации тромбоцитов и свертыванию крови. Простациклин и оксид азота нормализуют липидный обмен, предупреждая развитие атеросклероза, тормозят ростовый процесс.

Стимуляторами образования простациклина являются, как и для оксида азота, напряжение сдвига, кинины и в отличие от оксида азота - ангиотезин I.

Тромбомодулин. Эндотелий сосудов синтезирует одноцепочный гликопротеид - тромбомодулин, выполняющий функцию рецептора тромбина. Тромбомодулин определяет скорость и направление процесса гемостаза . Тромбин, присоединившись к тромбомодулину, приобретает новые качества: образует вместе с противосвертывающими протеинами С и S (кофактор протеина S) антиагрегантный и антитромботический комплекс, который препятствует свертыванию и тормозит фибринолиз.

Протеины С и S образуются в печени с участием витамина К (протеин S синтезируется также в эндотелии и в мегакариоцитах).

Итак, эндотелий сосудов посредством рецептора тромбомодулина блокирует самый активный фактор свертывания - тромбин.

Эндотелий в физиологическом состоянии инактивирует процессы свертывания еще и по другим механизмам. Одним из них является синтез антитромбина III (образуется также и в печени) -очень сильного активатора гепарина, адсорбируюшегося эндотелием из крови. Образуется гепарин в печени, легких, базофилами, тучными клетками. Сам эндотелий синтезирует гепариноподобные вещества.

Таким образом, в нормальных физиологических условиях эндотелий сосудов препятствует агрегации, коагуляции крови и спазмированию сосудов, синтезируя группу активных веществ: оксид азота, простациклин, антитромбин III и др. Кроме того, эндотелий, образуя тромбомодулин, блокирует активные коагулянты, выделяющиеся печенью и находящиеся в плазме крови (тромбин). И, наконец, эндотелий адсорбирует антикоагулянты из плазмы крови, препятствуя адгезии и агрегации тромбоцитов на своей поверхности (гепарин, протеины С и S).

Повреждение сосудистой стенки или нарушение функции эндотелия. Эндотелий при повреждении становится инициатором свертывания крови и сужения (спазма) сосудов. В норме это - защитная реакция, предохраняющая организм от потери крови. Но в других, патологических ситуациях данное направление активности эндотелия начинает или усугубляет патологический процесс.

Преобладание агрегантов (и вазоконстрикторов) объясняется следующими основными причинами. Во-первых, повреждение или нарушение функции эндотелия подавляет секрецию антиагрегирующих, противосвертывающих и сосудорасширяющих веществ; во-вторых, эндотелий в этих условиях секретирует очень активные агреганты, коагулянты и вазоконстрикторы.

Эндотелины - это группа полипептидов, состоящая из трех изомеров (эндотелин-1, эндотелин-2 и эндотелин-3), отличающихся некоторыми вариациями и последовательностью расположения аминокислот. Открытие эндотелинов в 1988 г. позволило объяснить ряд непонятных феноменов гемостаза в норме и патологии.

Эндотелий секретирует <большой> эндотелин <проэндотелин> (38 аминокислотных остатков). Под влиянием эндотелинпревращаюшего фермента, находящегося внутри и на поверхности эндотелия, из большого эндотелина образуются три изомера эндотелинов.

Эндотелины - бициклические полипептиды, состоящие из 21 аминокислотного остатка с двумя бисульфидными связями. Имеется большое сходство между структурой эндотелинов и некоторыми нейротоксическими пептидами (яды скорпиона, роющей змеи).

При паракринно-аутокринном действии (т.е. на эндотелий) в ответ на вазоконстрикторы эндотелий вырабатывает антиагреганты, вазодилататоры (NO, простациклин) и натриуретический пептид.

Основной механизм действия эндотелинов заключается в высвобождении кальция, что вызывает:

1) стимуляцию всех фаз гемостаза, начиная с агрегации тромбоцитов и заканчивая образованием красного тромба;

2) сокращение и рост гладких мышц сосудов, приводящие к утолщению стенки сосудов и уменьшению их диаметра - вазоконстрикции.

Синтез эндотелинов усиливают тромбин (активизирующий эндотелинпревращающий фермент) и тромбоциты. Эндотелины, в свою очередь, вызывают адгезию и агрегацию тромбоцитов.

Эффекты эндотелинов неоднозначны и определяются рядом причин. Наиболее активен изомер - эндотелин-1. Он образуется не только в эндотелии, но и в гладких мышцах сосудов, нейронах, глие, мезенгиальных клетках почек, печени и других органах. Полупериод жизни - 10-20 мин., в плазме крови - 4-7 мин. Легкие удаляют до 90% эндотелинов. Эндотелин-1 причастен к ряду патологических процессов (инфаркту миокарда, нарушению ритма сердца, легочной и системной гипертонии, атеросклерозу и др.).

Эффекты эндотелинов определяются и свойствами рецепторов, с которыми эндотелины соединяются. Связываясь с эндотелин А-рецепторами, они тормозят синтез NO в сосудах и вызывают сужение сосудов; присоединившись к рецепторам В-1, вызывают расширение сосудов (тормозится образование цАМФ и усиливается синтез NO).

Имеет значение и доза эндотелинов: в физиологических условиях эндотелины тоже образуются, но в небольшом количестве. Реагируя с В-1-рецепторами, они расширяют сосуды. Однако поврежденный эндотелий синтезирует большое количество эндотелинов, вызывающих вазоконстрикцию. Большие дозы эндотелинов, введенные добровольцам , приводят к значительным изменениям системной гемодинамики: снижению ЧСС и ударного объема сердца, увеличению на 50% сосудистого сопротивления в большом круге кровообращения и на 130% в малом.

При велоэргометрической нагрузке у спортсменов в крови очень быстро повышалось содержание эндотелина-3 с одновременным возрастанием уровня норадреналина (S. Moeda et al., 1997). Считают, что выделение эндотелинов в данном случае имеет нейрогенную природу.

Специфично действие эндотелинов в различных сосудистых областях. В легких они разрушаются, но при легочной гипертензии в крови легких уровень этих веществ повышается в 2-3 раза . Много эндотелинов образуется в почках. Полагают, что эндотелины причастны к развитию почечной гипертензии. При инсультах их уровень повышается и в спинномозговой жидкости.

Ренин-ангиотензиновая система. Эндотелий сосудов участвует в формировании очень активной агрегирующей и вазоконстрикторной системы - ангиотензиновой. Активной формой этой системы является ангиотезин-II - октапептид, вызывающий генерализованную и очень сильную (в 50 раз сильнее адреналина) реакцию (В.Ф. Мордвин и соавт., 2001). Полупериод жизни ангиотензина-II - 10-12 мин.

Механизм образования ангиотензина II. Исходным веществом для синтеза ангиотензина II служит ангиотензиноген (?2-глобулин), образующийся в печени. Ренин, синтезируясь в юкстагломерулярном аппарате почек, превращает ангиотензиноген в малоактивное вещество - ангиотензин I.

Выделение ренина стимулируется местными (нарушение кровообращения в почках, гипоксия почек) и системными факторами (уменьшение объема циркулирующей крови и воды в организме, снижение артериального давления).

Ангиотензин I преобразуется в активное вещество - ангиотензин II под влиянием ангиотензинпревращающего фермента (АПФ), вырабатывающегося в основном эндотелием сосудов. Особенно много АПФ синтезируется в легких, где имеется богатая сосудистая сеть.

Поскольку ингибиторы АПФ не приводят к полной блокаде ангиотензина II, то считают (Ю.В. Белоусов, 2001), что имеются и другие пути превращения ангиотензина I в ангиотензин II.

Между ренин-ангиотензиновой системой и симпатоадреналовой (САС) существуют многоуровневые положительные связи (Ж.Д. Ковалева, 2001): ангеотензин II активирует САС, облегчает высвобождение норадреналина, а САС, в свою очередь стимулирует образование ренина почками.

Воздействия ангиотензина II на органы осуществляются через специфические рецепторы двух типов, имеющихся во многих органах. Спектр влияний ангиотензина очень широк.

Совместно с САС ангиотензин II вызывает:

Повышение сосудистого тонуса (сокращение гладких мышц сосудов);

Увеличение объема циркулирующей крови, что происходит благодаря активизации выделения альдостерона (увеличивающего реабсорбцию натрия) и усилению секреции АДГ (задерживающего воду в организме);

Положительные тропные влияния на миокард, приводящие к увеличению минутного объема сердца ;

Повышение уровня ингибитора тканевого активатора плазминогена (М.Я. Коган-Пономарев, А. Д. Добровольский, 1996).

В итоге под действием ангиотензина II повышается артериальное давление.

При значительных нарушениях функции и структуры эндотелия происходит резкая активизация ренин-ангиотензиновой системы, что делает её повреждающим агентом . Это направление действия ренин-ангиотензиновой системы усугубляется тесным взаимодействием ангиотензина II с САС - создается порочный круг: чем выше активность одной системы, тем выше, соответственно, и другой.

В больших дозах ангиотензин II способствует возникновению окислительного (оксидантного) стресса, так как, во-первых, угнетает инактивацию норадреналина легкими; во-вторых, увеличивает активность НАД- и НАДФ-зависимой оксидазы и превращает оксид азота в супероксид азота - один из основных окислителей ЛПНП; в-третьих, уменьшает синтез NO, разрушая брадикинин, сильный стимулятор образования NO; в-четвертых, стимулирует окисление ЛПНП макрофагами.

Таким образом, ангиотензин II, связывая между собой многие факторы, воздействующие на тонус сосудов (ренин-ангиотензино-вую, кининовую, симпатическую нервную систему, альдостерон и др.), становится центральным звеном регуляции артериального давления. Поэтому, с современной точки зрения, считается целесообразным при лечении больных артериальной гипертензией, недостаточностью кровообращения и профилактике острого инфаркта применение ингибиторов АПФ и блокаторов рецепторов ангеотензина II.

Кроме перечисленных выше биологически активных веществ, эндотелий вырабатывает еще большое число вазоактивных факторов, участвующих в гемостазе.

Важная роль отводится фибронектину - гликопротеиду, состоящему из двух цепей, соединенных дисульфидными связями. Вырабатывается он всеми клетками сосудистой стенки, тромбоцитами. Фибронектин является рецептором для фибрин-стабилизирующего фактора. Способствует адгезии тромбоцитов, участвуя в образовании белого тромба; связывает гепарин. Присоединяясь к фибрину, фибронектин уплотняет тромб. Под действием фибронектина клетки гладких мышц, эпителиоцитов, фибробластов повышают свою чувствительность к факторам роста, что может вызвать утолщение мышечной стенки сосудов (сужение диаметра).

Фактор Виллебранда (VIII - vWF) - синтезируется в эндотелии и мегакариоцитах; сульфитированный гликопротеид с большим молекулярным весом (1000 цД); стимулирует начало тромбообразования: способствует прикреплению рецепторов тромбоцитов к коллагену и фибронектину сосудов, а также друг другу, т.е. усиливает адгезию и агрегацию тромбоцитов. Синтез и выделение ф. Виллебранда возрастает под влиянием вазопрессина, при повреждении эндотелия. Поскольку все стрессорные состояния увеличивают выделение вазопрессина, то при стрессах, экстремальных состояниях тромбогенность сосудов возрастает, чему способствует повышение синтеза ф. Виллебранда.

VIII-vWF является также носителем ф. VIII - антигемофильного глобулина А, белка с меньшим молекулярным весом (200 кД). Ф.VIII вырабатывается в печени и макрофагами и участвует в процессе внутреннего каскада фибринообразования.

Ф. Виллебранда у здоровых людей предотвращает рост тромба в сосудах, активируя образования плазмина.

Тромбоксан А 2 (ТхА 2) - очень активный фактор - способствует быстрой агрегации тромбоцитов, увеличивает доступность их рецепторов для фибриногена, активирует коагуляцию, сужает кровеносные сосуды, вызывает спазм бронхов. ТхА 2 вырабатывается гладкими мышцами сосудов, тромбоцитами. Одним из факторов, стимулирующих выделение тромбоксана А 2 , является кальций, который в большом количестве выделяется из тромбоцитов в начале их агрегации. Тромбоксан еще больше увеличивает содержание кальция в цитоплазме тромбоцитов. Кальций активирует фосфолипазу А 2 , превращающую арахидоновую кислоту в простагландины G 2 , Н 2 , а последний - в тромбоксан А 2 . Кроме того, кальций активирует сократительные белки тромбоцитов, что усиливает их агрегацию и реакцию освобождения.

Тромбоспондин - гликопротеид, который вырабатывается эндотелием сосудов, но находится и в тромбоцитах. Образует комплексы с коллагеном, гепарином, является сильным агрегирующим фактором, опосредуя адгезию тромбоцитов к субэндотелию.

Увеличению тромбогенности сосудов при их повреждении или нарушении функции способствует и ряд других, кроме приведенных выше, факторов. Адгезивными и агрегирующими свойствами обладают субэндотелиальные структуры, особенно коллаген.

Коллаген - наиболее распространенное и прочное соединение - ассоциированные, клейкие гликопротеиды и протеогликаны. Зрелый коллаген состоит из тройной полипептидной цепи, стабилизируется многочисленными связями. Выделяют около 19 типов коллагена, отличающихся толщиной фибрилл, волокнистостью или аморфностью. Образуется коллаген в фибробластах, гладких мышцах, эндотелии. В его образовании большую роль играет витамин С.

Коллаген присутствует в коллагеновых волокнах, базальных мембранах, аморфном основном веществе соединительной ткани, связывает компоненты межклеточного вещества с компонентами клеточных мембран. Коллагены, особенно типа I и III, обладают сильными агрегирующими свойствами: при участии адгезивных белков (фибронектина и VIII-WF) они фиксируют тромбоциты.

Большую роль в активизации тромбоцитов играет АТФ, его энергия и продукты распада (АДФ), образующиеся при повреждении эндотелия. Происходит гидролиз и того АТФ, которым богаты тромбоциты. Поэтому в месте повреждения сосуда, где скапливаются тромбоциты, благодаря обилию тромбоагрегирующих факторов, в том числе и АДФ, будет выделяться много энергии, которая необходима для процессов активизации тромбоцитов.

Заключение . Достижения последних лет в изучении структуры и функции эндотелия сосудов открыли совершенно новые его свойства, что способствовало внедрению новых форм лекарственных средств. Эндотелий оказался огромной эндокринной железой, вырабатывающей широкий спектр биологически активных веществ. Биологически активные вещества эндотелия участвуют во многих механизмах гомеостаза, в том числе и в регуляции местного кровотока. Состав БАВ, вырабатываемых эндотелием, определяется состоянием последнего. В физиологическом состоянии БАВ эндотелия создают условия для адекватного местного кровотока, синтезируя мощные антикоагулянты, являющиеся и вазодилятаторами. Активность эндотелия в норме обеспечивает трофику органов и выполняет защитную функцию благодаря наличию в эндотелии высокоорганизованных механизмов саморегуляции.

При нарушении функции или структуры эндотелия резко меняется спектр выделяемых им биологически активных веществ. Эндотелий начинает секретировать агреганты, коагулянты, вазоконстрикторы, причем часть из них (ренин-ангиотензиновая система) оказывают влияние на всю сердечно-сосудистую систему. При неблагоприятных условиях (гипоксия, нарушения обмена веществ, атеросклероз и т.п.) эндотелий становится инициатором (или модулятором) многих патологических процессов в организме.

Литература

1. Арабидзе Г.Г., Арабидзе Гр.Г. Гипотензивная терапия // Кардиология. - 1997. - №3. - С.88-95.

2. Балахонова Т.В., Соболева Г.Н., Атьков О.Ю., Карпов Ю.А. Определение чувствительности плечевой артерии к напряжению сдвига на эндотелий как метод оценки состояния эндотелий-зависимой вазодилятации с помощью ультразвука высокого разрешения у больных с артериальной гипертонией // Кардиология. - 1998. - Т.38. - №3. - С. 37.

3. Голиков П.П., Картавенко В.И., Николаева Н.Ю. и др. Состояние вазоактивных факторов у больных с сочетанной травмой // Патологическая физиология. - 2000. - 40. - №8. - С.65-70.

4. Гомазков О.А. Эндотелин в кардиологии: молекулярные, физиологические и патологические аспекты // Кардиология. - 2001. - №2. - С.50-58.

5. Грацианский Н.А. Предупреждение обострений коронарной болезни сердца. Вмешательства недоказанным клиническим эффектам: ингибиторы ангиотензинпревращающего фермента и антиоксиданты // Кардиология - 1998. - №6. - С.4-19.

6. Грацианский Н.А., Качалков Д.В., Давыдов С.А. Связь реакции коронарных артерий на внутрикоронарное введение ацетилхолина с факторами риска ишемической болезни сердца // Кардиология. - 1999. - 39. - №1. - С.25-30.

7. Грибкова И.В., Шуберт Р., Серебряков В.П. NO активирует Ca2+ - активируемый К+ ток гладкомышечных клеток хвостовой артерии крысы через GMP - зависимый механизм // Кардиология. - 2002. - №8. - С.34-37.

8. Дроздова Г.А. Клеточные механизмы артериальной гипертензии // Патологическая физиология. - 2000. - №3. - С.26-31.

9. Зотова И.В., Затейщиков Д.А., Сидоренко Б.А. Синтез оксида азота и развитие атеросклероза // Кардиология. - №4. - С.58-67.

10. Кудряшева О.В., Затейщиков Д.А., Сидоренко Б.А. Эндотелиальный гемостаз: система тромбомодулина и её роль в развитии атеросклероза и его осложнений // Кардиология. - 2000. - 40. - №8. - С.65-70.

11. Мелкумянц А.М., Балашов С.А., Хаютин В.М. Регуляция просвета магистральных артерий в соответствии с напряжением сдвига на эндотелии // Физиолог. журн. - 1992. - №6. - С.70-78.

12. Сергиенко В.Б., Саютина Е.В., Самойленко Л.Е. и др. Роль дисфункции эндотелия в развитии ишемии миокарда у больных ишемической болезнью сердца с неизменными и малоизмененными коронарными артериями // Кардиология. - 1999. - Т.39. - №1. - С.25-30.

13. Сыромятникова Н.В., Кошенко Т.В., Гончарова В.А. Метаболическая активность легких. - СПб.: Интермедика, 1997. - С.35-47.

14. Семченко В., Хаютин В.М., Герова М. и др. Чувствительность малой артерии мышечного типа к скорости кровотока: реакция самоприспособления просвета артерии // Физиол. журн. СССР. - 1979. - №2. - С.291-298.

15. Хадарцев А.А. Биофизико-химические процессы в управлении биологическими системами // Вестник новых медицинских технологий. - 1999. - Т. IV. - №2. - С.34-37.

16. Хаютин В.М., Лукошкова Е.В., Рогоза А.И., Никольский В.П. Отрицательные обратные связи в патогенезе первичной артериальной гипертонии: механочувствительность эндотелия // Физиолог. журн. - 1993. - №8. - С.1-12.

17. Шафер М.Ж., Мареев В.Ю. Роль ингибиторов ангиотензинпревращающего фермента в лечении больных ишемической болезнью сердца, стабильной стенокардией, с сохранением функции левого желудочка // Кардиология. - 1999. - Т. 39. - С.75-84.

18. Cannon R.O. Does coronary endothelial dysfunction cause myocardial ischemia in the absence of obstructive coronary artery disease? // Cirulation. - 1997. - V.96. - P.3251-3254.

19. Celermajer D.S., Sorensen K.S., Gooch V.M. et al. Non - invasive detection of endothelial dysfunction in children end adults at rick atherosclerosis // Lancet. - 1992. - V.340. - P.1111-1115.

20. Fukao M., Mason H.S., Britton F.C. et al. Cyclic GMP - dependent protein kinase activates cloned BKCa channes expressed in mammain cells by direct phosphorykation at serine // Biol. Chem. - 1999. - V.274. - P.10927-10935.

21. Furchgott R.E., Ignore L.S., Murad F. Nutrie oxide as a signaling molecule in the cardiovasenlar system. // Press Releause: The 1998 Nobel Prize in Physiology of Medicine. - Webmaster.

22. Killy D.G., Baffigand S.L., Smith T.W. Nitric oxide and Cardiac function // Circulat. Res. - 1996. - V.79. - P.363-380.

Ч то является причиной развития метаболического синдрома и инсулинорезистентности (ИР) тканей? Какова связь между ИР и прогрессированием атеросклероза? На эти вопросы пока не получено однозначного ответа. Предполагают, что первичным дефектом, лежащим в основе развития ИР, является дисфункция эндотелиальных клеток сосудов.

Эндотелий сосудов представляет собой гормонально активную ткань, которую условно называют самой большой “эндокринной железой” человека. Если выделить из организма все клетки эндотелия, их вес составит приблизительно 2 кг, а общая протяженность - около 7 км. Уникальное положение клеток эндотелия на границе между циркулирующей кровью и тканями делает их наиболее уязвимыми для различных патогенных факторов, находящихся в системном и тканевом кровотоке. Именно эти клетки первыми встречаются с реактивными свободными радикалами, с окисленными липопротеинами низкой плотности, с гиперхолестеринемией, с высоким гидростатическим давлением внутри выстилаемых ими сосудов (при артериальной гипертонии), с гипергликемией (при сахарном диабете). Все эти факторы приводят к повреждению эндотелия сосудов, к дисфункции эндотелия, как эндокринного органа и к ускоренному развитию ангиопатий и атеросклероза. Перечень функций эндотелия и их нарушений перечислены в таблице 1.

Функциональная перестройка эндотелия при воздействии патологических факторов проходит несколько стадий:

I стадия - повышенная синтетическая активность клеток эндотелия, эндотелий работает как “биосинтетическая машина”.

II стадия - нарушение сбалансированной секреции факторов, регулирующих тонус сосудов, систему гемостаза, процессы межклеточного взаимодействия. На этой стадии нарушается естественная барьерная функция эндотелия, повышается его проницаемость для различных компонентов плазмы.

III стадия - истощение эндотелия, сопровождающееся гибелью клеток и замедленными процессами регенерации эндотелия.

Из всех факторов, синтезируемых эндотелием, роль “модератора” основных функций эндотелия принадлежит эндотелиальному фактору релаксации или оксиду азота (NO). Именно это соединение регулирует активность и последовательность “запуска” всех остальных биологически-активных веществ, продуцируемых эндотелием. Оксид азота не только вызывает расширение сосудов, но и блокирует пролиферацию гладкомышечных клеток, препятствует адгезии клеток крови и обладает антиагрегантными свойствами. Таким образом, оксид азота является базовым фактором антиатерогенеза.

К сожалению, именно NO-продуцирующая функция эндотелия оказывается наиболее ранимой. Причина тому - высокая нестабильность молекулы NO, являющейся по природе своей свободным радикалом. В результате благоприятное антиатерогенное действие NO нивелируется и уступает место токсическому атерогенному действию других факторов поврежденного эндотелия.

В настоящее время существуют две точки зрения на причину эндотелиопатии при метаболическом синдроме . Сторонники первой гипотезы утверждают, что дисфункция эндотелия вторична по отношению к имеющейся ИР, т.е. является следствием тех факторов, которые характеризуют состояние ИР - гипергликемии, артериальной гипертонии, дислипидемии. При гипергликемии в эндотелиальных клетках активируется фермент протеинкиназа-С, который увеличивает проницаемость сосудистых клеток для белков и нарушает эндотелий-зависимую релаксацию сосудов. Кроме того, гипергликемия активирует процессы перекисного окисления, продукты которого угнетают сосудорасширяющую функцию эндотелия. При артериальной гипертонии повышенное механическое давление на стенки сосудов приводит к нарушению архитектоники эндотелиальных клеток, повышению их проницаемости для альбумина, усилению секреции сосудосуживающего эндотелина-1, ремоделированию стенок сосудов. Дислипидемия повышает экспрессию адгезивных молекул на поверхности эндотелиальных клеток, что дает начало формированию атеромы. Таким образом, все перечисленные состояния, повышая проницаемость эндотелия, экспрессию адгезивных молекул, снижая эндотелий-зависимую релаксацию сосудов, способствуют прогрессированию атерогенеза.

Сторонники другой гипотезы считают, что дисфункция эндотелия является не следствием, а причиной развития ИР и связанных с ней состояний (гипергликемии, гипертонии, дислипидемии). Действительно, для того чтобы соединиться со своими рецепторами, инсулин должен пересечь эндотелий и попасть в межклеточное пространство. В случае первичного дефекта эндотелиальных клеток трансэндотелиальный транспорт инсулина нарушается. Следовательно, может развиться состояние ИР. В таком случае ИР будет вторичной по отношению к эндотелиопатии (рис. 1).

Рис. 1. Возможная роль дисфункции эндотелия в развитии синдрома инсулинорезистентности

Для того, чтобы доказать эту точку зрения, необходимо исследовать состояние эндотелия до появления симптомов ИР, т.е. у лиц с высоким риском развития метаболического синдрома. Предположительно, к группе высокого риска формирования синдрома ИР относятся дети, родившиеся с низким весом (менее 2,5 кг). Именно у таких детей впоследствии в зрелом возрасте появляются все признаки метаболического синдрома. Связывают это с недостаточной внутриутробной капилляризацией развивающихся тканей и органов, включая поджелудочную железу, почки, скелетную мускулатуру. При обследовании детей в возрасте 9-11 лет, родившихся с низким весом, было обнаружено достоверное снижение эндотелий-зависимой релаксации сосудов и низкий уровень антиатерогенной фракции липопротеидов высокой плотности, несмотря на отсутствие у них других признаков ИР. Это исследование позволяет предположить, что, действительно, эндотелиопатия первична по отношению к ИР.

До настоящего времени не получено достаточных данных в пользу первичной или вторичной роли эндотелиопатии в генезе ИР. В то же время неоспоримым является факт, что эндотелиальная дисфункция является первым звеном в развитии атеросклероза, связанного с синдромом ИР . Поэтому поиск терапевтических возможностей восстановления нарушенной функции эндотелия остается наиболее перспективным в предупреждении и лечении атеросклероза. Все состояния, входящие в понятие метаболического синдрома (гипергликемия, артериальная гипертония, гиперхолестеринемия) усугубляют дисфункцию эндотелиальных клеток. Поэтому устранение (или коррекция) этих факторов безусловно будет способствовать улучшению функции эндотелия. Перспективными препаратами, позволяющими улучшить функцию эндотелия, остаются антиоксиданты, устраняющие повреждающее воздействие окислительного стресса на клетки сосудов, а также лекарства, повышающие продукцию эндогенного оксида азота (NO), например, L-аргинин.

В таблице 2 перечислены препараты, у которых доказано антиатерогенное действие посредством улучшения функции эндотелия. К ним относятся: статины (симвастатин ), ингибиторы ангиотензинпревращающего фермента (в частности, эналаприл ), антиоксиданты, L-аргинин, эстрогены.

Экспериментальные и клинические исследования по выявлению первичного звена в развитии ИР продолжаются. Одновременно идет поиск препаратов, способных нормализовать и сбалансировать функции эндотелия при различных проявлениях синдрома инсулинорезистентности. В настоящее время стало совершенно очевидно, что тот или иной препарат только в том случае сможет оказать антиатерогенное воздействие и предупредить развитие сердечно-сосудистых заболеваний, если он прямо или опосредованно восстанавливает нормальную функцию эндотелиальных клеток.

Симвастатин -

Зокор (торговое название)

(Merck Sharp & Dohme Idea)

Эналаприл -

Веро-эналаприл (торговое название)

(Верофарм ЗАО)

?■ .: ...

1. Развитие атеросклероза и его осложнений (ИБС, острый инфаркт миокарда, мозговой инсульт, ремоделирование сердца и сосудов, сердечная недостаточность, и, наконец, смертельный исход) представляет собой последовательную цепь событий, объединенных понятием сердечно-сосудистый континуум (ССК). Пусковым моментом ССК являются ряд заболеваний и факторов, таких как артериальная гипертония, нарушение липидного и углеводного обмена, курение и др. (т.н, "факторы риска").

2. Влияние факторов риска на развитие ССК может осуществляться при участии различных механизмов. Одним из наиболее важным среди иих является эндотелиальная дисфункция (ЭД). ЭД определяется как потеря эндотелием барьерных свойств, способности регулировать тонус и толщину сосуда, управлять процессами коагуляции и фибринолиза, оказывать иммунное и противовоспалительное действие. Глубинные механизмы ЭД связаны с уменьшением синтеза и усилением распада N0 - универсального биологического медиатора, блокирующего вазоконстрикторные, пролиферативные и агрегационные эффекты, провоцируемые факторами риска. Ключевую роль в нарушениях метаболизма N0 и развитии ЭД играет гиперактивация ренин-ангиотензин-альдостероновой системы (РААС). Усиление синтеза ангиотензина II на поверхности, эндотелиальных клеток приводит не только к снижению экспрессии N0, но и к ускорению пролиферации ГМК (развитию гипертрофии сосудистой стенки - ГСС и левого желудочка ГЛЖ), к повышению адгезивности и проницаемости сосуда и развитию микроангиопатии, усилению воспалительного компонента реакции сосудистой стенки на воздействие факторов риска.

    Потеря эндотелием барьерных качеств, усиление проницаемости стенки для богатых холестерином липопротеидов и макрофагов служит основой для развития атеросклеротических изменений (липидных пятен, полосок, а затем и бляшек) в интиме сосуда. Постепенное развитие хронического стенозирующего процесса в бассейне коронарных артерий коронарных артерий и последующая гибернация миокарда сами по себе постепенно приводят к ремоделированию сердца. Этому способствуют также энергоёмкие и гемодинамически (через повышение ОПСС)связанные, между собой ГСС и ГЛЖ.

    Существенное ускорение развития ССК происходит цри дестабилизации и разрыве атеросклеротической бляшки и формировании э месте разрыва тромба. Клиническим выражением этой ситуации является острый коронарный синдром (ОКС) и ОИМ. (или ОНМК применительно к мозгу). Главной причиной дестабилизации бляшки и развития ОКС является ЭД: развитие воспаления на ей поверхности, повышение проницаемости эндотелия для макрофагов и форменных элементов крови, усиление коагулирующих и ослабления фибринолитических свойств крови.

    Уменьшение последствий сосудистой катастрофы (ОИМ, ОНМК) и уменьшение гибели кардиомиоцитов (КМЦ) - главная цель следующего этапа ССК. Достижение этой цели стало возможным с появлением медикаментозных и хирургических методов устранения (предупреждения) стеноза. Наиболее эффективный и доступный их них -ангиопластика со стентированием сосудов мишени. Однако механическое воздействие на сосуд и устранение стеноза, особенно в условиях ЭД, спустя некоторое время нередко провоцирует развитие рестеноза, что может способствовать гибкий ещё большего числа КМЦ и усугублять течение основного заболевания. То же относится к реконструктивным операциям на сосудах сердца (мозга и др.).

    На следующем этапе ССК - при постинфарктном ремоделировании сердца отсутствие защитной роли сосудистого эндотелия приводит к быстрому развитию клинически выраженной сердечной недостаточности и без соответствующего лечения - к смерти. Пролиферативные процессы в миокарде с преобладанием фиброза,отсутствие резерва дилатации микрососудистого русла как следствие, падение сократительной способностимиокарда, особенно при нагрузке, « прямой результат ЭД. Проявлением ЭД на периферии у больных ХСН служит нарушение микроциркуляции-в поперечно-полосатой мускулатуре и связанные с ней снижение толерантности кнагрузкам, склонность к отекам, развитие кахексии.

Центральная роль ЭД в развитии ССК обусловлена тем, что 90% компонентов РААС расположены в тканях: в сердце, почках, надпочечниках, но главным образом на поверхности клеток сосудистого эндотелия. Поэтому гиперактивация РААС более всего и быстрее затрагивает именно сосудистый эндотелий. Знание механизмов и движущей силы развития ССК вооружает нас пониманием того, что оптимальным средством профилактики и лечения заболеваний ССК являются в числе прочих и меры по устранению ЭД. Поскольку ключевую роль в развитии ЭД играет гиперактивация в тканевой (эндотелиальной) РААС - наиболее эффективными препаратами будут ингибиторы АПФ. обладающие максимально высоким сродством к тканевым компонентам РААС. Средством выбора среди -прочих иАПФ является квинаприл (Аккупро), препарат с лучшими показателями блокирующей активности тканевой РААС.

Патология сердечно-сосудистой системы продолжает занимать основное место в структуре заболеваемости, смертности и первичной инвалидизации, являясь причиной уменьшения общей продолжительности и ухудшения качества жизни пациентов как во всем мире, так и в нашей стране. Анализ показателей состояния здоровья населения Украины свидетельствует, что заболеваемость и смертность от болезней кровообращения остаются высокими и составляют 61,3% от общего показателя смертности. Поэтому разработка и внедрение мероприятий, направленных на улучшение профилактики и лечения сердечно-сосудистых заболеваний (ССЗ), являются актуальной проблемой кардиологии.

Согласно современным представлениям, в патогенезе возникновения и прогрессирования многих ССЗ — ишемической болезни сердца (ИБС), артериальной гипертензии (АГ), хронической сердечной недостаточности (ХСН) и легочной гипертензии (ЛГ) — одну из основных ролей играет эндотелиальная дисфункция (ЭД).

Роль эндотелия в норме

Как известно, эндотелий представляет собой тонкую полупроницаемую мембрану, отделяющую кровоток от более глубоких структур сосуда, которая непрерывно вырабатывает огромное количество биологически активных веществ, в связи с чем является гигантским паракринным органом.

Главная роль эндотелия состоит в поддержании гомеостаза путем регуляции противоположных процессов, происходящих в организме:

  1. тонуса сосудов (баланса вазоконстрикции и вазодилатации);
  2. анатомического строения сосудов (потенцирование и ингибирование факторов пролиферации);
  3. гемостаза (потенцирование и ингибирование факторов фибринолиза и агрегации тромбоцитов);
  4. местного воспаления (выработка про- и противовоспалительных факторов).

Основные функции эндотелия и механизмы, с помощью которых он осуществляет эти функции

Эндотелий сосудов выполняет ряд функций (таблица), важнейшей из которых является регуляция сосудистого тонуса. Еще R.F. Furchgott и J.V. Zawadzki доказали, что расслабление сосудов после введения ацетилхолина происходит вследствие высвобождения эндотелием эндотелиального фактора релаксации (ЭФР), и активность этого процесса зависит от целости эндотелия. Новым достижением в изучении эндотелия было определение химической природы ЭФР — азота оксида (NO).

Основные функции эндотелия сосудов

Функции эндотелия

Основные обеспечивающие механизмы

Атромбогенность сосудистой стенки

NO, t-РА, тромбомодулин и другие факторы

Тромбогенность сосудистой стенки

Фактор Виллебранда, РАI-1, РАI-2 и другие факторы

Регуляция адгезии лейкоцитов

Р-селектин, Е-селектин, IСАМ-1, VСАМ-1 и другие молекулы адгезии

Регуляция тонуса сосудов

Эндотелии (ЭТ), NO, РGI-2 и другие факторы

Регуляция роста сосудов

VEGF, FGFb и другие факторы

Азота оксид как эндотелиальный фактор релаксации

NO — это сигнальная молекула, которая является неорганическим веществом со свойствами радикала. Малые размеры, отсутствие заряда, хорошая растворимость в воде и липидах обеспечивают ей высокую проницаемость сквозь клеточные мембраны и субклеточные структуры. Время существования NO составляет около 6 с, после чего при участии кислорода и воды он превращается в нитрат (NO 2) и нитрит (NO 3) .

NO образуется из аминокислоты L-аргинина под влиянием ферментов NO-синтаз (NOS). В настоящее время выделены три изоформы NOS: нейрональная, индуцибельная и эндотелиальная.

Нейрональная NOS экспрессируется в нервной ткани, скелетных мышцах, кардиомиоцитах, эпителии бронхов и трахеи. Это конституциональный фермент, модулируемый внутриклеточным уровнем ионов кальция и принимающий участие в механизмах памяти, координации между нервной активностью и сосудистым тонусом, реализации болевого раздражения.

Индуцибельная NOS локализована в эндотелиоцитах, кардиомиоцитах, гладкомышечных клетках, гепатоцитах, но основной ее источник — макрофаги. Она не зависит от внутриклеточной концентрации ионов кальция, активируется под влиянием различных физиологических и патологических факторов (провоспалительные цитокины, эндотоксины) в случаях, когда в этом есть необходимость.

Эндотелиальная NOS — конституциональный фермент, регулируемый содержанием кальция. При активации этого фермента в эндотелии происходит синтез физиологического уровня NO, приводящего к релаксации гладкомышечных клеток. NO, образующийся из L-аргинина, при участии фермента NOS активирует в гладкомышечных клетках гуанилатцикпазу, стимулирующую синтез циклического гуанозинмонофосфата (ц-ГМФ), который является основным внутриклеточным мессенджером в сердечно-сосудистой системе и снижает содержание кальция в тромбоцитах и гладких мышцах. Поэтому конечными эффектами NO являются дилатация сосудов, торможение активности тромбоцитов и макрофагов. Вазопротекторные функции NO заключаются в модуляции высвобождения вазоактивных модуляторов, блокировании окисления липопротеинов низкой плотности, подавлении адгезии моноцитов и тромбоцитов к сосудистой стенке.

Таким образом, роль NO не ограничивается только регуляцией сосудистого тонуса. Он проявляет ангиопротекторные свойства, регулирует пролиферацию и апоптоз, оксидантные процессы, блокирует агрегацию тромбоцитов и оказывает фибринолитический эффект. NO ответственен также за противовоспалительные эффекты.

Итак, NO оказывает разнонаправленные эффекты:

  1. прямое отрицательное инотропное действие;
  2. вазодилататорное действие:

- антисклеротическое (тормозит клеточную пролиферацию);
- антитромботическое (препятствует адгезии циркулирующих тромбоцитов и лейкоцитов к эндотелию).

Эффекты NO зависят от его концентрации, места продукции, степени диффузии через сосудистую стенку, способности взаимодействовать с кислородными радикалами и уровня инактивации.

Существуют два уровня секреции NO:

  1. Базальная секреция — в физиологических условиях поддерживает тонус сосудов в покое и обеспечивает неадгезивность эндотелия по отношению к форменным элементам крови.
  2. Стимулированная секреция — усиление синтеза NO при динамическом напряжении мышечных элементов сосуда, сниженном содержании кислорода в ткани в ответ на выброс в кровь ацетилхолина, гистамина, брадикинина, норадреналина, АТФ и др., что обеспечивает вазодилатацию в ответ на приток крови.

Нарушение биодоступности NO происходит вследствие следующих механизмов:

Снижения его синтеза (дефицит субстрата NO — L-аргинина);
- уменьшения на поверхности эндотелиальных клеток количества рецепторов, раздражение которых в норме приводит к образованию NO;
- усиления деградации (разрушение NO наступает прежде, чем вещество достигает места своего действия);
- повышения синтеза ЭТ-1 и других вазоконстрикторных субстанций.

Кроме NO, к вазодилатирующим агентам, образующимся в эндотелии, относятся простациклин, эндотелиальный фактор гиперполяризации, натрийуретический пептид С-типа и др., играющие важную роль в регуляции сосудистого тонуса при снижении уровня NO.

К основным эндотелиальным вазоконстрикторам относятся ЭТ-1, серотонин, простагландин Н 2 (ПГН 2) и тромбоксан А 2 . Самый известный и изученный из них— ЭТ-1 — оказывает непосредственное констрикторное влияние на стенку как артерий, так и вен. К другим вазоконстрикторам относятся ангиотензин II и простагландин F 2a , непосредственно действующие на гладкомышечные клетки.

Дисфункция эндотелия

В настоящее время под ЭД понимают дисбаланс между медиаторами, обеспечивающими в норме оптимальное течение всех эндотелийзависимых процессов.

Развитие ЭД одни исследователи связывают с недостатком продукции или биодоступности NO в стенке артерий, другие — с дисбалансом продукции вазодилатирующих, ангиопротекторных и ангиопролиферативных факторов, с одной стороны, и вазоконстрикторных, протромботических и пролиферативных факторов — с другой. Основную роль в развитии ЭД играют оксидантный стресс, продукция мощных вазоконстрикторов, а также цитокинов и фактора некроза опухоли, которые подавляют продукцию NO. При длительном воздействии повреждающих факторов (гемодинамическая перегрузка, гипоксия, интоксикация, воспаление) функция эндотелия истощается и извращается, в результате чего в ответ на обычные стимулы возникают вазоконстрикция, пролиферация и тромбообразование.

Кроме указанных факторов, ЭД вызывают:

Гиперхолестеролемия, гиперлипидемия;
- АГ;
- спазм сосудов;
- гипергликемия и сахарный диабет;
- курение;
- гипокинезия;
- частые стрессовые ситуации;
- ишемия;
- избыточная масса тела;
- мужской пол;
- пожилой возраст.

Следовательно, основными причинами повреждения эндотелия являются факторы риска атеросклероза, которые реализуют свое повреждающее действие через усиление процессов оксидантного стресса. ЭД является начальным этапом в патогенезе атеросклероза. In vitro установлено снижение продукции NO в клетках эндотелия при гиперхолестеролемии, что обусловливает свободнорадикальное повреждение клеточных мембран. Окисленные липопротеины низкой плотности усиливают экспрессию молекул адгезии на поверхности эндотелиальных клеток, приводя к моноцитарной инфильтрации субэндотелия.

При ЭД нарушается баланс между гуморальными факторами, оказывающими защитное действие (NO, ПГН), и факторами, повреждающими стенку сосуда (ЭТ-1, тромбоксан А 2 , супероксиданион). Одними из наиболее существенных звеньев, повреждающихся в эндотелии при атеросклерозе, являются нарушение в системе NO и угнетение NOS под влиянием повышенного уровня холестерола и липопротеинов низкой плотности. Развившаяся при этом ЭД обусловливает вазоконстрикцию, повышенный клеточный рост, пролиферацию гладкомышечных клеток, накопление в них липидов, адгезию тромбоцитов крови, тромбообразование в сосудах и агрегацию. ЭТ-1 играет важную роль в процессе дестабилизации атеросклеротической бляшки, что подтверждается результатами обследования больных с нестабильной стенокардией и острым инфарктом миокарда (ИМ). В исследовании отмечено наиболее тяжелое течение острого ИМ при снижении уровня NO (на основании определения конечных продуктов метаболизма NO — нитритов и нитратов) с частым развитием острой левожелудочковой недостаточности, нарушениями ритма и ормированием хронической аневризмы левого желудочка сердца.

В настоящее время ЭД рассматривают в качестве основного механизма формирования АГ. При АГ одним из главных факторов развития ЭД является гемодинамический, который ухудшает эндотелийзависимое расслабление вследствие уменьшения синтеза NO при сохраненной или увеличенной продукции вазоконстрикторов (ЭТ-1, ангиотензина II), ускоренной его деградации и изменении цитоархитектоники сосудов. Так, уровень ЭТ-1 в плазме крови у больных с АГ уже на начальных стадиях заболевания достоверно превышает таковой у здоровых лиц. Наибольшее значение в уменьшении выраженности эндотелийзависимой вазодилатации (ЭЗВД) придают внутриклеточному оксидантному стрессу, так как свободнорадикальное окисление резко снижает продукцию NO эндотелиоцитами. С ЭД, препятствующей нормальной регуляции мозгового кровообращения, у больных с АГ также связывают высокий риск цереброваскулярных осложнений, следствием чего являются энцефалопатия, транзиторные ишемические атаки и ишемический инсульт.

Среди известных механизмов участия ЭД в патогенезе ХСН выделяют следующие:

1) повышение активности эндотелиального АТФ, сопровождающегося увеличением синтеза ангиотензина II;
2) подавление экспрессии эндотелиальной NOS и снижение синтеза NO, обусловленные:

Хроническим снижением кровотока;
- повышением уровня провоспалительных цитокинов и фактора некроза опухоли, подавляющих синтез NO;
- повышением концентрации свободных R(-), инактивирующих ЭФР-NO;
- повышением уровня циклооксигеназозависимых эндотелиальных факторов констрикции, препятствующих дилатирующему влиянию ЭФР-NO;
- снижением чувствительности и регулирующего влияния мускариновых рецепторов;

3) повышение уровня ЭТ-1, оказывающего вазоконстрикторное и пролиферативное действие.

NO контролирует такие легочные функции, как активность макрофагов, бронхоконстрикция и дилатация легочных артерий. У пациентов с ЛГ снижается уровень NO в легких, одной из причин которого является нарушение метаболизма L-аргинина. Так, у больных с идиопатической ЛГ отмечают снижение уровня L-аргинина наряду с повышением активности аргиназы. Нарушенный метаболизм асимметричного диметиларгинина (АДМА) в легких может инициировать, стимулировать или поддерживать течение хронических заболеваний легких, в том числе артериальной ЛГ. Повышенный уровень АДМА отмечают у пациентов с идиопатической ЛГ, хронической тромбоэмболической ЛГ и ЛГ при системном склерозе. В настоящее время активно изучают роль NO также в патогенезе легочных гипертензивных кризов. Усиленный синтез NO является адаптивной реакцией, противодействующей чрезмерному повышению давления в легочной артерии в момент острой вазоконстрикции.

В 1998 г. были сформированы теоретические основы для нового направления фундаментальных и клинических исследований по изучению ЭД в патогенезе АГ и других ССЗ и способах эффективной ее коррекции.

Принципы лечения дисфункции эндотелия

Поскольку патологические изменения функции эндотелия являются независимым предиктором неблагоприятного прогноза большинства ССЗ, эндотелий представляется идеальной мишенью для терапии. Цель терапии при ЭД — устранение парадоксальной вазоконстрикции и с помощью повышенной доступности NO в стенке сосудов создание защитной среды в отношении факторов, приводящих к ССЗ. Основной задачей является улучшение доступности эндогенного NO благодаря стимуляции NOS или ингибированию распада.

Немедикаментозные методы лечения

В экспериментальных исследованиях установлено, что потребление продуктов с высоким содержанием липидов приводит к развитию АГ за счет повышенного образования свободных радикалов кислорода, инактивирующих NO, что диктует необходимость ограничения жиров. Большое потребление соли подавляет действие NO в периферических резистивных сосудах. Физические упражнения повышают уровень NO у здоровых лиц и у пациентов с ССЗ, поэтому известные рекомендации в отношении уменьшения потребления соли и данные о пользе физических нагрузок при АГ и ИБС находят свое еще одно теоретическое обоснование. Считается, что положительный эффект на ЭД может оказывать применение антиоксидантов (витамины С и Е). Назначение витамина С в дозе 2 г пациентам с ИБС способствовало значительному кратковременному уменьшению выраженности ЭЗВД, что объяснялось захватом радикалов кислорода витамином С и, таким образом, повышением доступности NO.

Медикаментозная терапия

  1. Нитраты . Для терапевтического воздействия на коронарный тонус давно применяют нитраты, способные независимо от функционального состояния эндотелия отдавать NO стенке сосудов. Однако несмотря на эффективность в отношении расширения сосудов и уменьшение выраженности миокардиальной ишемии, применение препаратов этой группы не приводит к длительному улучшению эндотелиальной регуляции коронарных сосудов (ритмичность изменений тонуса сосудов, которая управляется с помощью эндогенного NO, не поддается стимуляции экзогенно введенному NO).
  2. Ингибиторы ангиотензинпревращающего фермента (АПФ) и ингибиторы рецепторов ангиотензина II. Роль ренин-ангиотензин-альдостероновой системы (РАС) в отношении ЭД главным образом связана с вазоконстрикторной эффективностью ангиотензина II. Основной локализацией АПФ являются мембраны эндотелиальных клеток сосудистой стенки, в которых находится 90% всего объема АПФ. Именно кровеносные сосуды — основное место превращения неактивного ангиотензина I в ангиотензин II. Основными блокаторами РАС являются ингибиторы АПФ. Кроме того, препараты этой группы проявляют дополнительные вазодилатирующие свойства вследствие их способности блокировать деградацию брадикинина и повышать его уровень в крови, что способствует экспрессии генов эндотелиальной NOS, повышению синтеза NO и уменьшению его разрушения.
  3. Диуретики . Существуют данные, доказывающие, что индапамид обладает эффектами, позволяющими, помимо диуретического действия, оказывать прямое вазодилатирующее влияние за счет антиоксидантных свойств, повышения биодоступности NO и уменьшения его разрушения.
  4. Антагонисты кальция. Блокирование кальциевых каналов уменьшает прессорный эффект важнейшего вазоконстриктора ЭТ-1, не влияя прямо на NO. Кроме того, препараты этой группы снижают концентрацию внутриклеточного кальция, что стимулирует секрецию NO и обусловливает вазодилатацию. Одновременно уменьшаются агрегация тромбоцитов и экспрессия молекул адгезии, а также подавляется активация макрофагов.
  5. Статины . Поскольку ЭД является фактором, приводящим к развитию атеросклероза, при заболеваниях, ассоциированных с ним, существует необходимость коррекции нарушенных функций эндотелия. Эффекты статинов связаны со снижением уровня холестерола, угнетением его локального синтеза, торможением пролиферации гладкомышечных клеток, активацией синтеза NO, что способствует стабилизации и предотвращению дестабилизации атеросклеротической бляшки, а также снижению вероятности возникновения спастических реакций. Это подтверждено в многочисленных клинических исследованиях.
  6. L -аргинин. Аргинин — условно незаменимая аминокислота. Среднесуточная потребность в L-аргинине составляет 5,4 г. Он является необходимым предшественником для синтеза белков и таких биологически важных молекул, как орнитин, пролин, полиамины, креатин и агматин. Однако главная роль аргинина в организме человека состоит в том, что он является субстратом для синтеза NO. Поступивший с пищей L-аргинин всасывается в тонком кишечнике и поступает в печень, где основное его количество утилизируется в орнитиновом цикле. Остающаяся часть L-аргинина используется ка к субстрат для продукции NO.

Эндотелийзависимые механизмы L -аргинина:

Участие в синтезе NO;
- уменьшение адгезии лейкоцитов к эндотелию;
- уменьшение агрегации тромбоцитов;
- снижение уровня ЭТ в крови;
- повышение эластичности артерий;
- восстановление ЭЗВД.

Следует отметить, что система синтеза и высвобождения NO эндотелием обладает значительными резервными возможностями, однако потребность в постоянном стимулировании его синтеза приводит к истощению субстрата NO — L-аргинина, восполнить который призван новый класс эндотелиопротекторов — донаторов NO. До недавнего времени отдельного класса эндотелиопротекторных препаратов не существовало, в качестве средств, способных корригировать ЭД, рассматривали лекарственные препараты других классов, обладающих подобными плейотропными эффектами.

Клинические эффекты L-аргинина как донатора N O . Имеющиеся данные указывают на то, что эффект L-apгининa зависит от его концентрации в плазме крови. При приеме L-apгининa внутрь его эффект связан с улучшением ЭЗВД. L-apгинин снижает агрегацию тромбоцитов и уменьшает адгезию моноцитов. При повышении концентрации L-apгининa в крови, которое достигают путем в/в его введения, проявляются эффекты, не связанные с продукцией NO, а высокий уровень L-apгининa в плазме крови приводит к неспецифической дилатации.

Влияние на гиперхолестеролемию. В настоящее время существуют данные доказательной медицины об улучшении эндотелиальной функции у больных с гиперхолестеролемией после приема L-apгининa, подтвержденные в двойном слепом плацебо-контролируемом исследовании.

Под влиянием перорального приема L-aprининa у больных со стенокардией повышается толерантность к физической нагрузке по данным пробы с 6-минутной ходьбой и при велоэргометрической нагрузке. Аналогичные данные получены при кратковременном применении L-apгининa у пациентов с хронической ИБС. После инфузии 150 мкмоль/л L-aprининa у пациентов с ИБС отмечено увеличение диаметра просвета сосуда в стенозированном сегменте на 3-24%. Применение раствора аргинина для перорального приема у больных со стабильной стенокардией II-III функционального класса (по 15 мл 2 раза в сутки в течение 2 мес) дополнительно к традиционной терапии способствовало достоверному увеличению выраженности ЭЗВД, повышению толерантности к физической нагрузке и улучшению качества жизни. У больных с АГ доказан положительный эффект при добавлении к стандартной терапии L-apгининa в дозе 6 г/сут. Прием препарата в дозе 12 г/ сут способствует снижению уровня диастолического артериального давления. В рандомизированном двойном слепом плацебо-контролируемом исследовании доказано позитивное влияние L-apгининa на гемодинамику и способность к выполнению физической нагрузки у пациентов с артериальной ЛГ, принимавших препарат перорально (по 5 г на 10 кг массы тела 3 раза в сутки). Установлено значительное повышение концентрации L-цитpyллинa в плазме крови таких больных, указывающее на усиление продукции NO, а также снижение на 9% среднего легочного артериального давления. При ХСН прием L-apгининa в дозе 8 г/сут на протяжении 4 нед способствовал повышению толерантности к физической нагрузке и улучшению ацетилхолинзависимой вазодилатации лучевой артерии.

В 2009 г. V. Bai еt аl. представили результаты метаанализа 13 рандомизированных исследований, выполненных в целях изучения эффекта перорального приема L-apгининa на функциональное состояние эндотелия. В этих исследованиях изучали эффект L-apгининa в дозе 3-24 г/сут при гиперхолестеролемии, стабильной стенокардии, заболеваниях периферических артерий и ХСН (длительность лечения — от 3 дней до 6 мес). Метанализ показал, что пероральный прием L-apгининa даже короткими курсами существенно увеличивает выраженность ЭЗВД плечевой артерии по сравнению с показателем при приеме плацебо, что свидетельствует об улучшении функции эндотелия.

Таким образом, результаты многочисленных исследований, проведенных на протяжении последних лет, свидетельствуют о возможности эффективного и безопасного применения L-аргинина как активного донатора NO с целью устранения ЭД в при ССЗ.

Коноплева Л.Ф.