Закон бернулли в авиации для детей. Принцип Бернулли

Течения идеальной несжимаемой жидкости уравнение Бернулли имеет вид

,

В последнем уравнении все члены имеют размерность давления , p - статическое давление ; - динамическое давление ; hρg - весовой давление.

Если такие уравнения записать для двух сечений течения, то получим:

Для горизонтальной течения средние члены в левой и правой части уравнения сокращаются и оно принимает вид:

есть в сложившейся горизонтальной течения идеальной несжимаемой жидкости в каждом ее сечении сумма статического и динамического давлений будет постоянной. Так, в тех местах течения, где скорость жидкости больше (узкие сечения), ее динамическое давление увеличивается, а статическое уменьшается. На этом явлении основано действие струйных насосов, эжекторов, расходомеров Вентури и Пико, пульверизаторов .

Уравнение Бернулли является следствием закона сохранения энергии . Если жидкость не идеальная, то ее механическая энергия рассеивается и давление вдоль трубопровода, по которому течет такая жидкость, падает. Для реальной вязкой жидкости в правой части уравнений, следует добавить величину потерь давления Δр вт на гидравлическое сопротивление движению.

Уравнение Бернулли широко применяют для решения многих гидравлических задач в нефтегазовой делу.


1. В технике и быту

2. Примеры применения закона Бернулли

Трубка Вентури применяется для определения скорости течения в трубах с помощью измерения давления в двух разных точках трубопровода и, таким образом, помогает предотвратить последствия кавитации . Трубка Вентури постепенно сужает диаметр трубопровода. Такой сужающее отверстие ограничивает поток жидкости, что приводит разность давлений в точках измерения (в начале сужения и в узкой части). Базируется данное измерение на эффекте Вентури, формулу для которого можно получить из уравнение непрерывности и закона Бернулли:

где S - площадь взаимодействия жидкости с поверхностью трубки,


2.1. Трубка Пито

Трубка Пито применяется для измерения разности давлений в двух точках, то есть с помощью этой трубки можно найти динамическое давление. Для жидкостей и газов играет роль манометра , один конец которого направлен навстречу потоку, а другой выступает из него и подключен к прибору, который измеряет давление. Имеет вид буквы "L". Если перед отверстием A скорость уменьшается до значения , То

При установке избыточного давления в трубке избыточное давление вычисляется по формуле

где - Коэффициент, - Скорость вихря.


2.2. Формула Торричелли

Закон Торричелли показывает, что при истечении идеальной нестискувальнои жидкости из щели в боковой стенке или на дне сосуда жидкость приобретает скорость тела, падающего с определенной высоты. С помощью этого можно вычислить максимальный уровень утечки жидкости из сосуда. Для подтверждения можно воспользоваться законом Бернулли, выведя из него формулу Торричелли: ρgh + p 0 = (pV 2) / 2 + p 0, где p0 - атмосферное давление, h - высота столба жидкости в сосуде, V - скорость истечения жидкости. Отсюда V = √ 2gh.


2.3. Пульверизатор

В пульверизаторе применяется главный следствие закона Бернулли: с ростом скорости происходит рост динамического давления и падение статического давления. В капилляры пульверизатора вдувается воздух или пар. Вдувание снижает атмосферное давление в капилляре, и жидкость из баллона пульверизатора под действием большего атмосферного давления поднимается капилляром. Там она раздробляется струей воздуха.

2.4. Водоструйный насос

Водоструйный насос - резервуар, в который впаяны две трубки. Под действием давления в первую трубку протекает вода, попадая затем в другую трубку. В суженной части первой трубки возникает уменьшен давление, меньше атмосферного. Поэтому в резервуаре создается напряжение. Трубку подсоединяют к резервуару, который проходит в сосуд, из которого необходимо откачать воздух.

2.5. Карбюратор

Карбюратор - устройство в системе питания карбюраторных двигателей внутреннего сгорания, который применяется для смешивания бензина и воздуха. При движении поршня в такте впуска давление в цилиндре понижается. При этом окружающий воздух всасывается цилиндром через воздушную трубу карбюратора - диффузор . В узкой части диффузора, где давление соответственно наименьший расположен распылитель, из которого вытекает топливо. Топливо измельчается струей воздуха на маленькие капли и образуется горючая смесь.


2.6. Осушение болот

Осушение болот по принципу закона Бернулли проводилось очень давно. До болота подводили каналы от ближайшей реки. Вследствие большой разницы давлений между водой болота и водой из канала вода из канала "впитывала" воду из болота.

2.7. Ракета

В конструировании ракет также применяется закон Бернулли. Для создания тяги в ракете используется топливо, которое сжигают в камере сгорания. Газы образуют реактивную струю, который ускоряется, проходя через специальное сужение - сопло . Именно сужение сопла и является основной причиной ускорения реактивной струи газов и увеличения реактивной тяги.

2.8. Свисток

Свисток представляет собой пример использования закона Бернулли в газоструменевих излучателях звуковых волн. Вихревой свисток представляет собой цилиндрическую камеру, в подается поток воздуха через тангенциально расположенную трубку. Образовавшийся вихревой поток поступает в выходную трубку меньшего диаметра, расположенной на оси. Там интенсивность вихря резко повышается и давление в его центре становится значительно ниже атмосферного. Перепад давления периодически выравнивается за счет прорыва газов из атмосферы в выходную трубку и разрушения вихря.


2.9. Диск Рэлея

Диск Рэлея - прибор для измерения колебательной скорости частиц в звуковой волне и силы звука. Представляет собой тонкую пластинку круглой формы, из слюды или металла, подвешенную на тонкую кварцевую нить. Обычно диск размещают под углом 45 ? к направлению колебаний частиц среды, поскольку такое расположение чутко колебаниям. При распространении звуковых волн диск возвращается перпендикулярно к направлению колебаний. Это происходит из-за того, что при обтекании пластинки давление по закону Бернулли больше в том месте, где скорость меньше. Силы давления уворюють крутящий момент, который уравновешивается за счет упругости нити. При этом диск устанавливается к направлению потока под углом больше, чем 45 ?. по углу поворота диска определяют силу звука. В постоянном потоке угол поворота диска Рэлея пропорциональна квадрату скорости, при звуковых колебаниях - квадрату амплитуды скорости, и этот угол не зависит от частоты.


3. Неправильное применение закона Бернулли

Подъемная сила самолета обусловлено специфическим строением крыла. До недавнего времени для объяснения причины подъемной силы крыла применяли закон Бернулли. Согласно закону Бернулли, объяснения подъемной силы самолета выглядит так: крыло имеет особое строение - снизу оно имеет прямое, а его верхняя часть закругленная. Это позволяет увеличить площадь верхней части крыла. Согласно закону Бернулли, с увеличением скорости давление уменьшается. А поскольку воздух преодолевает путь под крылом и над крылом за одинаковый промежуток времени, под крылом возникает область с увеличенным давлением, что приводит подъем самолета в воздух. Таким образом возникает подъемная сила.

Однако, согласно современным представлениям, подъемная сила крыла возникает не вследствие закона Бернулли. Движение воздушной массы перед крылом можно считать сплошным, он характеризуется одним показателем скорости. Когда воздушная масса контактирует с крылом, она разбивается на две части, которые, вследствие формы крыла, имеют разные скорости и это обуславливает разное давление. Однако это не может быть причиной подъемной силы, поскольку эти две воздушные массы обтекают соответствии верхнюю и нижнюю части крыла не за одинаковое время, поскольку, в отличие от прежних представлений, эти воздушные потоки не соединяются на конце крыла. Итак, большая длина верхней части крыла не означает большей скорости движения воздуха. Итак, хотя закон Бернулли и можно применить для воздушных масс, которые рассекаются крылом (большая скорость обуславливает меньшее давление), однако он один не объясняет подъемную силу крыла. Для полного объяснения следует применять теорему Жуковского.


Уравнение Бернулли для потока реальной жидкости, его физический смысл.

Уравнение Бернулли является следствием закона сохранения энергии для стационарного потока идеальной (то есть без внутреннего трения) несжимаемой жидкости:

Здесь — плотность жидкости, — скорость потока, — высота, на которой находится рассматриваемый элемент жидкости, — давление в точке пространства, где расположен центр массы рассматриваемого элемента жидкости, — ускорение свободного падения.

В реальных потоках жидкости присутствуют силы вязкого трения. В результате слои жидкости трутся друг об друга в процессе движения. На это трение затрачивается часть энергии потока. По этой причине в процессе движения неизбежны потери энергии. Эта энергия, как и при любом трении, преобразуется в тепловую энергию. Из-за этих потерь энергия потока жидкости по длине потока, и в его направлении постоянно уменьшается.

Из закона Бернулли следует, что при уменьшении сечения потока, из-за возрастания скорости, то есть динамического давления, статическое давление падает. Это является основной причиной эффекта Магнуса. Закон Бернулли справедлив и для ламинарных потоков газа. Закон Бернулли справедлив в чистом виде только для жидкостей, вязкость которых равна нулю. Для описания течений реальных жидкостей в технической гидромеханике (гидравлике) используют интеграл Бернулли с добавлением слагаемых, учитывающих потери на местных и распределенных сопротивлениях.

Уравнение Бернулли для потока реальной жидкости

Распределение скоростей:

Что такое трубка Пито и для чего она служит?

Трубка Пито - прибор для измерения скорости в точках потока. для измерения динамического напора текущей жидкости или газа. Представляет собой Г-образную трубку. Установившееся в трубке избыточное давление приближённо равно: , где p — плотность движущейся (набегающей) среды; V?- скорость набегающего потока; ξ — коэффициент.

Напорная трубка Пито подключается к специальным приборам и устройствам. Применяется при определении относительной скорости и объёмного расхода в газоходах и вентиляционных системах в комплекте с дифференциальными манометрами.

Применяется как составная часть трубки Прандтля в авиационных приёмниках воздушного давления для возможности одновременного определения скорости и высоты полёта.


Как перевести уравнение Бернулли из размерности длин в размерность давлений?

Уравнение Бернулли в форме напоров, м

Уравнение Бернулли в форме давлений, Па

Потери давления от первого сечения до второго.

Какие существуют режимы течения и как определяются границы существования этих режимов?

1. Ламинарный режим движения. Особенности - слоистый характер течения жидкости, отсутствие перемешивания, неизменность давления и скорости по времени.

2. Переходный режим.

3. Турбулентный режим течения. Заметны: вихреобразование, вращательное движение жидкости, непрерывные пульсации давления и скорости в потоке воды.

1. Ламинарным называется слоистое течение без перемешивания частиц жидкости и без пульсации скорости и давления. При ламинарном течении жидкости в прямой трубе постоянного сечения все линии тока направлены параллельно оси трубы, при этом отсутствуют поперечные перемещения частиц жидкости.

2. Турбулентным называется течение, сопровождающееся интенсивным перемешиванием жидкости с пульсациями скоростей и давлений. Наряду с основным продольным перемещением жидкости наблюдаются поперечные перемещения и вращательные движения отдельных объемов жидкости. 3. Переход от ламинарного режима к турбулентному наблюдается при определенной скорости движения жидкости. Эта скорость называется критической (Vкр=kv/d) .

Значение этой скорости прямо пропорционально кинематической вязкости жидкости v и обратно пропорционально диаметру трубы d .

4. Входящий в эту формулу безразмерный коэффициент k одинаков для всех жидкостей и газов, а также для любых диаметров труб. Этот коэффициент называется критическим числом Рейнольдса Reкр и определяется следующим образом:

Reкр = Vкрd/v = pVкрd/μ ≈ 2300-2320

Как вычисляется число Рейнольдса?

Критерий подобия Рейнольдса (число Рейнольдса) позволяет судить о режиме течения жидкости в трубе. Число (критерий) Рейнольдса Re - мера отношения силы инерции к силе трения

Re = Vd/v = pVd/μ, где μ-динамич.коэф.вязкости, v = μ/p,

При Re < Reкр = 2320 течение является ламинарным;

Re > 3800-4200 течение турбулентное.

Зависимости справедливы только для круглых труб.

При увеличении скорости растут силы инерции . Силы трения при этом больше сил инерции и до некоторых пор выпрямляют траектории струек

При некоторой скорости vкр:

Сила инерции Fи > силы трения Fтр, поток становится турбулентным

Уравнение Бернулли для установившегося движения идеальной жидкости, его физический смысл.

Приведем уравнения Эйлера к виду, удобному для интегрирования, умножив соответственно на dx, dy,

dz и сложив:

Получаем

С учетом, что

-полный дифференциал давления

Окончательное выражение:

Если жидкость находится только под действием силы тяжести и ее плотность неизменна, то

Окончательно

уравнение Бернулли для струйки идеальной жидкости

Уравнение Бернулли для установившегося движения вязкой жидкости.

Распределение скоростей:

1 - элементарная струйка; идеальная жидкость;

2 - реальная (вязкая) жидкость

При движении реальной вязкой жидкости возникают силы трения и вихри, на преодоление которых жидкость затрачивает энергию.

В результате полная удельная энергия жидкости в сечении 1-1 будет больше полной удельной энергии в сечении 2-2 на величину потерянной энергии

Здесь

V 1,2 - средняя скорость потока в сечениях 1,2;

hW1,2 = hпот 1-2 - потерянный напор потери напора между сечениями 1-2;

α1,2 - безразмерный коэффициент Кориолиса - отношение действительной кинетической энергии потока в данном сечении к кинетической энергии потока в том же сечении при равномерном распределении скоростей.

Таким образом, уровень первоначальной энергии, которой обладает жидкость в первом сечении, для второго сечения будет складываться из четырех составляющих: геометрической высоты, пьезометрической высоты, скоростной высоты и потерянного напора между сечениями 1-1 и 2-2
Скорость течения вязкой жидкости в длинной трубке : v = (ΔP / η) · R 2 / (8 · l) , где ΔP — разность давлений на концах трубки, η — вязкость жидкости или газа (сильно зависит от температуры), R — внутренний радиус трубки, l — её длина, l >> R .

Коэффициенты Кориолиса . Величина коэффициентов для ламинарного и турбулентного режимов течения.

Коэффициент Кориолиса - отношение действительной кинетической энергии потока в данном сечении к кинетической энергии потока в том же сечении при равномерном распределении скоростей.

Мощность элементарной струйки:

Для потока

Разделив полученное выражение на и учитывая, что (удельная мощность на 1 Н

веса жидкости = средний напор в сечении Нср ) получаем:

Здесь ? - коэффициент Кориолиса.

При равномерном распределении скоростей α =1 (элементарная струйка/идеальная жидкость),

при неравномерном α>1. V - средняя скорость в живом сечении .

- коэффициент Кориолиса для ламинарного режима.

- коэффициент Кориолиса для турбулентного режима (стремится к 1,0 при увеличении Re)

Рациональный выбор сечений для решения уравнения Бернулли.

Сечения выбираются всегда перпендикулярно направлению движения жидкости и должны располагаться на прямолинейных участках потока

Одно из расчетных сечений необходимо брать там, где нужно определить давление р , высоту z или скорость V , второе, где величины р , z , и V известны

Нумеровать расчетные сечения следует так, чтобы жидкость двигалась от сечения 1-1 к сечению 2-2

Плоскость сравнения 0-0 - любая горизонтальная плоскость. Для удобства её проводят через центр тяжести одного из сечений

Практическое применение уравнения Бернулли: трубка Пито.

Трубка Пито - прибор для измерения скорости в точках потока.

Составив уравнение Бернулли для сечений a-a и b-b , получим

.

Отсюда

Практическое применение уравнения Бернулли: расходомер Вентури.

а) Пренебрегая потерями напора и считая z1 = z2 , напишем уравнение Бернулли для сечений 1-1 и 2-2:

б) Из уравнения неразрывности

в) Из уравнения пьезометра

Решая совместно, получаем:

Энергетическое толкование уравнения Бернулли.

Энергетических характеристик жидкости. Суммарной энергетической характеристикой жидкости является её гидродинамический напор.

С физической точки зрения это отношение величины механической энергии к величине веса жидкости, которая этой энергией обладает. Таким образом, гидродинамический напор нужно понимать как энергию единицы веса жидкости. И для идеальной жидкости эта величина постоянна по длине. Таким образом, физический смысл уравнения Бернулли это закон сохранения энергии для движущейся жидкости .

Здесь с энергетической точки зрения (в единицах энергии, Дж/кг) gz удель-ная потенциальная энергия положения; rР/ удельная потенциальная энергия давления; gz + rР/ удельная потенциальная энергия; u 2 /2 удельная кинети-ческая энергия; и скорость элементарной струйки идеальной жидкости.

Умножив все члены уравнения на удельный вес жидкости g , получим:

gz - весовое давление, Па; P гидродинамическое давление, Па; иr 2 /2 — динамическое давление Па; Hg — полное давление, Па

Геометрическое толкование уравнения Бернулли.

Положение любой частицы жидкости относительно некоторой произвольной линии нулевого уровня 0-0 определяется вертикальной координатой Z . Для реальных гидравлических систем это может быть уровень, ниже которого жидкость из данной гидросистемы вытечь не может. Например, уровень пола цеха для станка или уровень подвала дома для домашнего водопровода.

Все слагаемые уравнения Бернулли имеют размерность длины и их можно изобразить графически.

Значения - нивелирную, пьезометрическую и скоростную высоты можно определить для каждого сечения элементарной струйки жидкости. Геометрическое место точек, высоты которых равны , называется пьезометрической линией . Если к этим высотам добавить скоростные высоты, равные , то получится другая линия, которая называется гидродинамической или напорной линией .

Из уравнения Бернулли для струйки невязкой жидкости (и графика) следует, что гидродинамический напор по длине струйки постоянен.

Линия полного напора и ее построение.

Физический смысл уравнения Бернулли.

Из закона Бернулли следует, что при уменьшении сечения потока, из-за возрастания скорости, то есть динамического давления, статическое давление падает. Это является основной причиной эффекта Магнуса. Закон Бернулли справедлив и для ламинарных потоков газа. Явление понижения давления при увеличении скорости потока лежит в основе работы различного рода расходомеров (например труба Вентури), водо- и пароструйных насосов. А последовательное применение закона Бернулли привело к появлению технической гидромеханической дисциплины — гидравлики.

Закон Бернулли справедлив в чистом виде только для жидкостей, вязкость которых равна нулю, то есть таких жидкостей, которые не прилипают к поверхности трубы. На самом деле экспериментально установлено, что скорость жидкости на поверхности твердого тела почти всегда в точности равна нулю (кроме случаев отрыва струй при некоторых редких условиях).

закон Бернулли объясняет эффект притяжения между телами, находящимися на границе потока движущейся жидкости (газа). Иногда это притяжение может создавать угрозу безопасности. Например, при движении скоростного поезда «Сапсан» (скорость движения более 200 км/час) для людей на платформах возникает опасность сброса под поезд.Аналогично «затягивающая сила» возникает при движении судов параллельным курсом: например, подобные инциденты происходили с лайнером «Олимпик».

Влияние эпюры скоростей в канале на удельную кинетическую энергию потока. Ее учет в уравнении Бернулли.

Кавитация, причины, условия возникновения, меры борьбы с кавитацией. Определение возможности кавитации с помощью уравнения Бернулли.

Кавитация - явление, возникающее в жидкости при высоких скоростях движения жидкости, т.е. при малых давлениях. Кавитация - нарушение сплошности жидкости с образованием паровых и газовых пузырей (каверн), вызванное падением статического давления жидкости ниже давления насыщенных паров этой жидкости при данной температуре.

p2 = pнп = f(t) - условие возникновения кавитации

Меры борьбы с кавитацией:

Снижение скорости жидкости в трубопроводе;

Уменьшение перепадов диаметров трубопровода;

Повышение рабочего давления в гидросистемах (наддув баков сжатым газом);

Установка всасывающего отверстия насоса не выше допускаемой высоты всасывания (из паспорта насоса);

Применение кавитационно-стойких материалов.

Запишем уравнение Бернулли для сечений 1-1 и 2-2 потока реальной жидкости:

. Отсюда

Правила применения уравнения Бернулли.

Выбираем два сечения потока: 1-1 и 2-2, а также горизонтальную плоскость отсчета 0-0 и записываем в общем виде уравнение Бернулли.

Плоскость сравнения 0-0 - любая горизонтальная плоскость. Для удобства её проводят через центр тяжести одного из сечений

Уравнение Бернулли является основным уравнением гидродинамики , устанавливающим связь между средней скоростью потока и гидродинамическим давлением в установившемся движении.

Рассмотрим элементарную струйку в установившемся движении идеальной жидкости. Выделим двумя сечениями, перпендикулярными к направлению вектора скоростиu , элемент длиной dl и площадью dF . Выделенный объем будет находиться под действием силы тяжести

и сил гидродинамического давления
.

Так как
, то
.

Учитывая, что в общем случае скорость выделенного элемента
, его ускорение

.

Применив к выделенному элементу весом
уравнение динамики
в проекции на траекторию его движения, получим

Учитывая то, что
и что при установившемся движении
, после интегрирования и деления на
получим полный напор потока в рассматриваемом сечении:

,

где - геометрический напор (высота), выражающий удельную потенциальную энергию положения частички жидкости над некоторой плоскостью отсчета, м,

- пьезометрический напор, выражающий удельную энергию давления, м,

- скоростной напор, выражающий удельную кинетическую энергию, м,

- статический напор, м.

Это и есть уравнение Бернулли. Трехчлен этого уравнения выражает напор в соответствующем сечении и представляет собой удельную (отнесенную к единице веса) механическую энергию, переносимую элементарной струйкой через это сечение.

Впрактике технических измерений уравнение Бернулли используют для определения скорости жидкости
.

Уравнение Бернулли можно получить еще и следующим образом. Представим себе, что рассматриваемый нами элемент жидкости является неподвижным. Тогда на основании основного уравнения гидростатики
потенциальная энергия жидкости в сечениях 1 и 2 будет

.

Движение жидкости характеризуется появлением кинетической энергии, которая для единицы веса будет равна для рассматриваемых сечений
и
. Полная энергия потока элементарной струйки будет равна сумме потенциальной и кинетической энергии, поэтому

.

Таким образом, основное уравнение гидростатики является следствием уравнения Бернулли.

Лекция №7

Уравнение бернулли для реальной жидкости

Уравнение Бернулли в установившемся движении идеальной жидкости имеет вид:

.

где - геометрический напор (высота), м,- пьезометрический напор, м,

- скоростной напор, м,
- статический напор, м.

В случае реальной жидкости полный напор для разных струек в одном и том же сечении потока не будет одинаковым, так как неодинаковым будет скоростной напор в разных точках одного и того же сечения потока. Кроме того, в виду рассеяния энергии из-за трения напор от сечения к сечению будет убывать.

Однако для сечений потока, взятых там, где движение на его участках плавно меняющееся, для всех проходящих через сечение элементарных струек будет постоянным статический напор

.

Если уравнение Бернулли для элементарной струйки распространить на весь поток и учесть потери напора на сопротивление движению, то получим

где α – коэффициент кинетической энергии, равный для турбулентного потока 1,13, а для ламинарного – 2; v – средняя скорость потока; h – уменьшение удельной механической энергии потока на участке между сечениями 1 и 2, проходящее в результате сил внутреннего трения.

Расчет дополнительного члена h в уравнении Бернулли является основной задачей инженерной гидравлики.

Графическое представление уравнения Бернулли для нескольких сечений потока реальной жидкости имеет вид:

Линия А, которая проходит по уровням в пьезометрах, измеряющих в точках избыточное давление, называетсяпьезометрической линией . Она показывает изменение отсчитанного от плоскости сравнения статического напора Н с по длине потока. Пьезометрическая линия отделяет область измерения потенциальной и кинетической энергии.

Полный напор Н уменьшается по длине потока (линия В – линия полного напора реальной жидкости).

Градиент напора по длине потока называется гидравлическим уклоном и выражается формулой

,

т.е. гидравлический уклон численно равен синусу угла между горизонталью и линией полного напора реальной жидкости.

Расходомер Вентури

Расходомер Вентури представляет собой устройство, устанавливаемое в трубопроводах и осуществляющее сужение потока – дросселирование. Расходомер состоит из двух участков – плавно сужающегося (сопла) и постепенно расширяющегося (диффузора). Скорость потока в суженном месте возрастает, а давление падает. В наибольшем и наименьшем сечениях трубы установлены пьезометры, показания которых позволяют определить перепад пьезометрического напора между двумя сечениями трубы и записать

.

В этом уравнении неизвестными являются v 1 и v 2 . Из уравнения неразрывности следует
, что позволяет определить скоростьv 2 и расход жидкости через трубу

,

где С – константа расходомера, учитывающая также и потери напора, так как определяется опытом.

Аналогично ведется расчет расходомерной шайбы, обычно выполняемой в виде кольца. Расход определяется по замеренной разности уровней в пьезометрах.

Уравнение Бернулли и уравнение неразрывности потока являются основными при расчете гидравлических систем.

Цели урока:

  • Изучить частный случай закона сохранения энергии в применении к объяснению зависимости давления от скорости движения жидкости и газа;
  • Сформулировать закон Бернулли;
  • Рассмотреть примеры его применения и проявления на практике.

Тип урока: комбинированный.

Оборудование: компьютер, мультимедийный проектор, экран, презентация к уроку.

Оборудование для демонстраций: весы, макет крыла самолета, небольшая воронка, теннисный шарик, воздуходувка (фен), демонстрационный манометр, таблички на магнитах с физическими формулами.

Оборудование для практических работ: стакан с водой, одноразовый шприц, два листа бумаги, бруски.

Ход урока

I. Организационный момент.

Тема, скорее название, нашего урока звучит не совсем обычно. Может быть кто-то из вас подумал: причем здесь физика? А действительно, причем здесь физика? А это и предстоит нам выяснить сегодня. В конце урока вы должны будете сами сформулировать правильно “физическую” тему. Я же скажу только, что эти объекты объединены одним и тем же законом, а именно, законом сохранения полной механической энергии. Работать вы будете на рабочих картах (приложение 1). Напишите свою фамилию на карте в правом верхнем углу.

II. Актуализация знаний.

Итак, начинаем.Раз уж я упомянула закон сохранения механической энергии, то давайте его вспомним.

1. Что утверждает закон сохранения полной механической энергии?
2. Что называется полной механической энергией?
3. Какая энергия называется кинетической? По какой формуле рассчитывается?
4. Какая энергия называется потенциальной? Формулы потенциальной энергии.

III. Основная часть. Изучение нового материала.

Сегодня на уроке мы будем говорить о применении закона сохранения для движущихся потоков жидкостей и газов. Движение жидкостей и газов разделяется на ламинарное и турбулентное. На дидактических картах (приложение 2) у вас есть их определения. Давайте прочитаем. Мы будем рассматривать ламинарное течение.

А начнем мы с вопроса:можно ли удержать шарик в вертикальной воронке, выдувая из нее воздух? Хорошо, давайте проверим это на опыте. Критерием любой истины является опыт. Мне нужен помощник, который выполнит этот несложный эксперимент. Оказывается, чтобы удержать шарик в воронке надо выдувать воздух. Кто же может объяснить этот “парадокс”? Тогда запишем первый вопрос в таблицу на рабочей карте. Почему при выдувании воздуха из воронки шарик удерживается в ней?

Продолжаем отвечать на вопросы. Что произойдет с листом бумаги, если подуть над ним? Расположите лист бумаги на уровне рта и с силой продуйте воздух. Что произошло с листом бумаги? А почему? Запишите в таблицу на рабочих картах и этот вопрос: почему поднялся листок?

Проведем еще один опыт. Наберите в шприц воды из стакана и, надавливая на поршень, выпустите ее (добейтесь, чтобы она вытекала непрерывной струёй). Сначала выполняет товарищ по парте, а сосед наблюдает. Потом поменяйтесь ролями. Обратите внимание на толщину вытекающей струи. Струя становится уже. А теперь надо объяснить увиденное. Есть какие-то предположения? Записываем в таблицу второй вопрос: почему струя вытекающей воды становится уже? К этим вопросам мы вернемся попозже.

Что ж, вопросов, наверно, пока достаточно. Пора искать ответы. Поможет в этом известный вам закон сохранения механической энергии и неизвестный пока закон Бернулли.

Рассмотрим ламинарное течение жидкости по трубе разного сечения.Посмотрите на слайд. Там, где сечение не меняется скорость тоже остается постоянной. Но одинакова ли скорость течения жидкости на различных участках? И где больше? А может кто-нибудь объяснить почему? (Так как жидкость несжимаема, то за одинаковый промежуток времени t через каждое из этих сечений должна пройти жидкость одного и того же объема. Но как жидкость, протекающая через первое сечение может “успеть” за то же время протечь через значительно меньшее сечение? Очевидно, что для этого при прохождении узких частей трубы скорость движения жидкости должна быть больше, чем при прохождении широких).

Покажите на рисунке 1 в рабочих картах векторы скоростей в различных участках. А теперь проверим как это получилось у меня (слайд). Значит, скорость зависит от сечения. Более того, зависимость эта обратно пропорциональна. Математически это выражается следующим соотношением, которое носит название уравнения неразрывности струи: VS= const, здесь – V скорость жидкости, S – площадь сечения трубы, по которой течет жидкость. Сформулировать этот закон можно так: сколько вливается жидкости в трубу, столько должно и выливаться, если условия течения не изменяются. Скорость в узких участках трубы должна быть выше, чем в широких.

Отсюда следует, что

Вывод: чем меньше площадь сечения, тем больше скорость.

Задача №1. Как и во сколько раз изменится кинетическая энергии жидкости, если сечение трубы уменьшить в 2 раза? (Ответ увеличится в 4 раза). А потенциальная энергия? Осторожно, ошибка!

Потенциальная энергия уменьшится, но необязательно в 4 раза!

(Например: 100 = 100, 100 = 10 + 90, 100 = 40 + 60)

С вопросом о скорости вы справились хорошо. А что скажете о давлении воды в разных частях? Если изменяется, то как? На рисунке 2 отметьте уровень воды в вертикальных трубках в зависимости от давления жидкости в горизонтальной трубе. А теперь посмотрим, на этот слайд . В узких местах трубы высота столбика жидкости меньше, чем в широких. О чем говорит разная высота воды? Оказывается, в узких местах трубы давление жидкости меньше, чем в широких. А почему?

При переходе жидкости из широкого участка в узкий скорость течения увеличивается, то это значит, что где-то на границе между узким и широким участком трубы жидкость получает ускорение. А по второму закону Ньютона для этого на этой границе должна действовать сила. Этой силой может быть только разность между силами давления в широком и узком участках трубы. В широком участке трубы давление должно быть больше, чем в узком. Этот вывод следует из закона сохранения энергии. Если в узких местах трубы увеличивается скорость жидкости, то увеличивается и ее кинетическая энергия. А так как мы условились, что жидкость течет без трения, то этот прирост кинетической энергии должен компенсироваться уменьшением потенциальной энергии, потому что полная энергия должна оставаться постоянной. Но это не потенциальная энергия “mgh”, потому что труба горизонтальная и высота h везде одинакова. Значит, остается только потенциальная энергия, связанная с силой упругости. Сила давления жидкости – это и есть сила упругости сжатой жидкости. В широкой части трубы жидкость несколько сильнее сжата, чем в узкой. Правда, мы только что говорили, что жидкость считается несжимаемой. Но это значит, что жидкость не настолько сжата, чтобы сколько-нибудь заметно изменился ее объем. Очень малое сжатие, вызывающее появление силы упругости, неизбежно. Оно и уменьшается в узких частях трубы.

Чтобы разобраться в причинах уменьшения давления в узких частях и увеличения в широких, используем закон сохранения энергии и математические навыки. Я начну, а вы будете помогать.

Работа сил давления, совершенная над элементом жидкости при его перемещении, равна:

здесь =V 1 и =V 2 – объемы жидкости, прошедшей за одно и тоже время через сечения 1 и 2. Подставим (2) в (1) и получаем:

Так как высота центра масс трубы не меняется, то h 1 = h 2 . Выберем нулевой уровень, проходящий через центр масс, тогда mgh 1 = mgh 2 = 0.

Так как жидкость практически несжимаема, то объемы ее, прошедшие за одно и тоже время равны, V 1 = V 2 (или ), поэтому обе части равенства можно разделить обе части на V.

Следовательно,

(*)

Таким образом, если скорость, например, увеличивается, то увеличивается первое слагаемое, значит, чтобы равенство выполнялось, на такую же величину второе слагаемое уменьшается, т.е. уменьшается давление.

Вывод: Чем больше скорость потока жидкости, тем меньше ее давление.

Зависимость давления от скорости течения называют эффектом, а уравнение (*) – законом Бернулли в честь автора, швейцарского ученого Даниила Бернулли, который, кстати, работал в С.Петербурге. Закон Бернулли для ламинарных потоков жидкости и газов является следствием закона сохранения энергии.

Убедимся на опыте, что полученный вывод справедлив и для газов. Для этого выполним еще практические задания (описание на дидактической карте).

1 Вариант. Возьмите в руки два листка бумаги и расположите их на расстоянии3– 4см друг от друга и продуйте несильно между ними воздух. Что наблюдаем? Почему? Между листочками давление уменьшилось, а снаружи осталось таким же. Повторите опыт, но подуйте теперь сильнее. Объясните этот результат.

2 Вариант. Положите листок на две книги, как показано на слайде. Продуйте воздух под листком сначала несильно, а потом сильнее. Объясните, что вы наблюдали.

Настало время для ответов на оставленные вами, но не забытые мною вопросы:

  • Почему при выдувании воздуха из воронки шарик удерживается в ней?
  • Почему поднялся листок?
  • Почему струя вытекающей воды становится уже?

Запишите ответы в таблицы.

Вот и настала очередь самолетов. Посмотрим видеофрагмент (Приложение 4).

Так почему же поднимается самолет? В чем причина возникновения подъемной силы?

Все дело в форме крыла и в угле атаки.

Убедимся на опыте (рисунок 1). Почему нарушилось равновесие весов?

Рисунок 1

Кстати сказать, у птиц крыло тоже имеет похожую форму.

Эффект Бернулли - это то, благодаря чему птицы и самолеты могут летать. Разрез крыла у них практически одинаковый: за счет сложной формы крыла создается разница обтекающих его сверху и снизу воздушных потоков, что позволяет телу подниматься вверх.

Формулу для расчета подъемной силы впервые получил наш соотечественник Николай Егорович Жуковский – “отец русской авиации”.

F = (P 2 – P 1)S = –(v 1 2 – v 2 2)S

Что касается белок – летяг, то они, конечно же не могут развить большую скорость и форма “крыльев” немножко другая, поэтому и подъемная сила у них невелика и возникает она в большой степени из-за угла наклона. Как и обычная белка, летяга большую часть жизни проводит на деревьях, но на землю спускается гораздо реже. Между передними и задними лапами у неё имеется кожная перепонка, которая позволяет планировать с дерева на дерево. Так белка-летяга преодолевает расстояние до 50–60 м по нисходящей параболической кривой. Для прыжка летяга забирается на верхушку дерева. Во время полёта её передние конечности широко расставлены, а задние прижаты к хвосту, образуя характерный треугольный силуэт. Меняя натяжение перепонки, летяга маневрирует, иногда изменяя направление полёта на 90°. Хвост в основном выполняет роль тормоза. Посадку на ствол дерева летяга обычно совершает по касательной, как бы сбоку. Перед посадкой принимает вертикальное положение и цепляется всеми четырьмя лапами, после чего сразу перебегает на другую сторону ствола. Этот маневр помогает ей уворачиваться от пернатых хищников.

Задача№2: В полете давление воздуха под крылом самолета 97,8 кН/м 2 , а над крылом 96,8 кН/м 2 . Площадь крыла 20 м 2 . Определить подъемную силу.

Решение: F = PS, где P = P 2 – P 1, тогда F = (P 2 – P 1)S, F =20 . 10 3 H

Ответ: 20кН

Задача №3. О “крученых мячах” вы прочитаете самостоятельно текст и ответьте на вопросы.

Эффект Магнуса.

  1. Почему движущиеся вращающиеся тела отклоняются от прямолинейной траектории?
  2. Почему давление на мяч с разных сторон различно?
  3. Почему относительная скорость воздушного потока различна по разные стороны мяча?

Можно привести еще множество примеров: бумеранг, летающие тарелки, водоструйный насос, распылители, карбюраторы, катера на подводных крыльях.

А вот посмотрите, какую опасность представляет уменьшение давления для морских судов. Поток воды между судами имеет меньшее давление, чем снаружи. Все моряки знают, что два судна, идущих рядом на больших скоростях сильно притягиваются друг к другу. Еще опаснее, когда один корабль идет за другим. Силы притяжения, возникшие из-за разности давлений, стремятся корабли развернуть. Задний корабль разворачивается сильнее переднего. Столкновение в таких случаях неизбежно.

Задача №4. Очень часто лоцманы жалуются на коварные мели, которые так и притягивают к себе суда. Почему мели на реках притягивают суда?

IV. Закрепление изученного материала

Контрольный тест.

1. Жидкость течет через трубу с переменным поперечным сечением. В каком сечении трубы скорость “v ” течения жидкости и ее давление “P” на стенках максимальна?

  • v и P максимальны в сечении 1;
  • v и P максимальны в сечении 2;
  • v максимальны в сечении 1, P – в сечении 2;
  • v максимальны в сечении 2, P – в сечении 1;
  • v и P одинаковы во всех сечениях.

2. В какой трубке уровень воды будет выше?

  • Во всех одинаково.

3. Что произойдет, если продувать струю воздуха между двумя шариками от пинг-понга, подвешенными на нитях (смотри рисунок)?

  • Останутся неподвижными;
  • Будут двигаться вместе вправо или влево;
  • Отклонятся друг от друга;
  • Приблизятся друг к другу.

Подводя итог нашего урока, вспомним еще раз основные законы и уравнения, с которыми познакомились на уроке:

  1. Уравнение неразрывности струи – какую зависимость и каких величин оно выражает?
  2. Закон Бернулли – что он утверждает?

V. Рефлексия. Подведение итогов урока.

А теперь настало время дать нашему уроку “физическое” название. Какие будут ваши предложения?

Закон Бернулли как следствие закона сохранения энергии. (Проявление и применение закона сохранения энергии для движущихся потоков жидкости и газов ).

VI. Домашнее задание.

Домашнее задание:

  1. Задачи № 404, 406, 409, 410 (Рымкевич А.П. Физика. Задачник. 10-11 классы.- М.: Дрофа, 2003)
  2. Домашняя практическая работа: Сделайте из тонкой бумаги цилиндр диаметром 3 см, длиной 20 см. Положите его на стол на наклонную плоскость. Пронаблюдайте за траекторией, по которой скатывается цилиндр. Объясните наблюдаемое явление.

Закон Бернулли Закон Бернулли Швейцарский учёный в области математики, механики, физиологии, медицины, академик (1725), иностранный почётный член Петербургской АН (1733). Один из основоположников теоретической гидродинамики. Вывел основное уравнение стационарного движения идеальной несжимаемой жидкости, находящейся под действием только сил тяжести. Разрабатывал кинетические представления о газах. ()




1. Что утверждает закон сохранения полной механической энергии? 2. Что называется полной механической энергией? 3. Какая энергия называется кинетической? По какой формуле рассчитывается? 4. Какая энергия называется потенциальной? Формулы потенциальной энергии.



При переходе жидкости из широкого участка в узкий скорость течения увеличивается, то это значит, что где-то на границе между узким и широким участком трубы жидкость получает ускорение. А по второму закону Ньютона для этого на этой границе должна действовать сила. Этой силой может быть только разность между силами давления в широком и узком участках трубы. В широком участке трубы давление должно быть больше, чем в узком. Этот вывод следует из закона сохранения энергии.


Сила давления жидкости – это и есть сила упругости сжатой жидкости. В широкой части трубы жидкость несколько сильнее сжата, чем в узкой. Правда, мы только что говорили, что жидкость считается несжимаемой. Но это значит, что жидкость не настолько сжата, чтобы сколько-нибудь заметно изменился ее объем. Очень малое сжатие, вызывающее появление силы упругости, неизбежно. Оно и уменьшается в узких частях трубы.


Если в узких местах трубы увеличивается скорость жидкости, то увеличивается и ее кинетическая энергия. А так как мы условились, что жидкость течет без трения, то этот прирост кинетической энергии должен компенсироваться уменьшением потенциальной энергии, потому что полная энергия должна оставаться постоянной. Но это не потенциальная энергия mgh, потому что труба горизонтальная и высота h везде одинакова. Значит, остается только потенциальная энергия, связанная с силой упругости.


Чтобы разобраться в причинах уменьшения давления в узких частях и увеличения в широких, используем закон сохранения энергии и математические навыки. Работа сил давления, совершенная над элементом жидкости при его перемещении, равна: Вывод: Чем больше скорость потока жидкости, тем меньше ее давление.


Зависимость давления от скорости течения называют эффектом, а уравнение – законом Бернулли в честь автора, швейцарского ученого Даниила Бернулли, который работал в Санкт-Петербурге. Закон Бернулли для ламинарных потоков жидкости и газов является следствием закона сохранения энергии. Здесь плотность жидкости,плотность скорость потока,скорость высота, на которой находится рассматриваемый элемент жидкости,высота давление в точке пространства, где расположен центр массы рассматриваемого элемента жидкости,давление ускорение свободного падения.ускорение свободного падения


Практические следствия Закон Бернулли объясняет эффект притяжения между телами, находящимися вблизи границ потоков движущихся жидкостей (газов). Иногда это притяжение может создавать угрозу безопасности. Например, при движении скоростного поезда «Сапсан» (скорость движения более 200 км/час) для людей на платформах возникает опасность сброса под поезд.





Встречные поезда. Скоростные поезда при встрече должны замедлить ход, иначе стекла в вагонах разобьются. Почему? В какую сторону при этом выпадают стекла: внутрь вагонов или наружу? Может ли случиться подобное, если поезда движутся в одном направлении? Будет ли вас притягивать к поезду или отталкивать от него, если вы окажетесь слишком близко от быстро идущего поезда? (Впереди быстро идущего поезда создается фронт высокого давления, а за ним - область низкого давления. Когда встречные поезда разъезжаются, стекла в вагонах могут быть выдавлены наружу, поскольку между поездами возникает область пониженного давления).





Осенью 1912 г океанский пароход "Олимпик" плыл в открытом море, а почти параллельно ему, на расстоянии сотни метров, проходил с большой скоростью другой корабль, гораздо меньший, броненосный крейсер "Гаук". Когда оба судна заняли положение, изображенное на рисунке, произошло нечто неожиданное: меньшее судно стремительно свернуло с пути, словно повинуясь неведомой силе, повернулось носом к большому кораблю и, не слушаясь руля, двинулось почти прямо на него. "Гаук" врезался носом в бок "Олимпика".Удар был так силен, что "Гаук" проделал в борту "Олимпика" большую пробоину. Случай столкновения двух кораблей рассматривался в морском суде. Капитана корабля "Олимпик" обвинили в том, что он не дал команду пропустить броненосец. Как вы думаете, что произошло? Почему меньший корабль, не слушаясь руля, пошел наперерез "Олимпику"?


Уравнение Бернулли считается одним из основных законов гидромеханики, он устанавливает связь между давлением в потоке жидкости и скоростью его движения в гидравлических системах: с увеличением скорости движения потока давление в нем должно падать. С его помощью объясняются многие гидродинамические эффекты.


Рассмотрим некоторые хорошо известные из них. Подъем и распыление жидкости в пульверизаторе (рис. 1) происходит благодаря пониженному давлению в струе воздуха, проходящему с большой скоростью над трубочкой, опущенной в сосуд с жидкостью. Подниматься жидкость вверх заставляет атмосферное давление, которое больше давления в струе воздуха.





Если подуть между двумя листами бумаги, касающимися друг друга (рис. 5), то они не разойдутся, как казалось бы, должно произойти, а, наоборот, прижмутся друг к другу. Листки двинутся друг к другу, хотя, казалось бы, вы вдунули между ними «больше» воздуха и они должны были раздвинуться. Но ведь вы выдуваете воздух между листками прочь, создавая здесь давление даже ниже, чем вокруг. Значит, давление воздуха между листками делается меньше, чем снаружи, и возникает сила, сводящая их вместе.


ОПЫТ С ШАРИКОМ К шарику от настольного тенниса прикрепите пластилином нитку длиной 4050 см и, держа шарик за нить, поднесите его к струе воды. Почему шарик притягивается и удерживается в струе? Когда из водопроводного крана течет струя воды, то она увлекает прилегающий слой воздуха. Когда шарик подносят к струе, происходит следующее: вблизи струи воздух движется с некоторой скоростью и давление здесь меньше, чем по другую сторону шарика. В итоге за счет разности давлений на шарик действует сила, прижимающая его к струе.






Ситуация 1. Ветер под зданием. В США был предложен проект жилого дома, в котором этажи, подобно мостам, "подвешиваются" между двумя мощными стенами, а пространство под домом остается открытым. Внешне такое здание выглядит весьма привлекательно, но оно абсолютно не пригодно для ветреных районов. Одно из таких зданий было выстроено на территории Массачусетского технологического института. И вот когда подули весенние ветры, скорость ветра под зданием достигла 160 км/ч. Чем вызвано столь сильное увеличение скорости ветра? (Ветер, попадающий на здание, частично прогоняется через нижний просвет. При этом скорость его возрастает).


В дождливую ветряную погоду, каждый из нас замечал, что раскрытые зонтики иногда "выворачиваются наизнанку" Почему это происходит? Аналогичное действие производит на крыши домов сильный ураган. (Поток воздуха, набегающий на изогнутую поверхность зонта, движется по руслу своеобразной сужающейся трубы с большей скоростью, чем воздух в нижней части, следовательно, давление снизу больше, чем вверху, и зонт выворачивается)


Его действие (закона Бернулли) можно наблюдать в повседневной жизни как только включаешь воду в душе, шторка врывается внутрь кабинки, потому что увеличение скорости воздуха и воды вызывает скачок в давлении. Разница давлений внутри и снаружи кабины приводит к тому, что шторку затягивает внутрь.


Опыт Для опыта изготовим цилиндр из плотной, но не толстой бумаги диаметром 5 см, длиной см. На цилиндр намотаем ленточку, один конец которой прикрепим к линейке. Резким движением вдоль горизонтальной поверхности стола сообщим цилиндру сложное движение (поступательное и вращательное). При большой скорости цилиндр поднимается вверх и описывает небольшую вертикальную петлю. Объясните, почему это происходит. Уравнение Бернулли объясняет такое поведение рулона (и закрученного мячика): вращение нарушает симметричность обтекания за счёт эффекта прилипания. С одной стороны бумажного цилиндра скорость потока больше (над цилиндром вектор скорости воздуха сонаправлен вектору скорости цилиндра), значит, давление там понижается, а под цилиндром вектор скорости воздуха антипараллелен вектору скорости цилиндра. В результате разности давлений возникает подъёмная сила, называемая силой Магнуса. Эта сила поднимает цилиндр вверх, а не по параболе.


Это явление носит название эффекта Магнуса, по имени ученого, открывшего и исследовавшего его экспериментально. Эффект Магнуса проявляется в таких природных явлениях, как образование смерчей над поверхностью океана. В месте встречи двух воздушных масс с разными температурами и скоростями возникает вращающийся вокруг вертикальной оси столб воздуха и несется вперед. В поперечнике такой столб может достигать сотен метров и несется со скоростью около 100 м/с. Из-за быстрого вращения воздух отбрасывается к периферии вихря и давление внутри него понижается. Когда такой столб приближается к воде, то засасывает ее в себя, представляя огромную опасность для судов.


Ситуация 6. В футболе одним из коварных ударов для вратаря считается так называемый "сухой лист". Похожий подрезанный удар - "сплин" применяют в теннисе и других играх с мячом. Предвидеть, куда направится такой крученый мяч, неопытному спортсмену довольно трудно. Объясните, почему так происходит. ("Виновата" во всем сила Магнуса, проявляющаяся при движении закрученного вдоль своей оси симметричного тела - мяча, цилиндра и т.п.).


К сожалению, великий Бернулли не знал о явлении эжекции. Эжектор одновременно с инжектором был изобретен во Франции инженером Анри Жиффаром в 1858 г, спустя столетие после публикации формулы Бернулли. Выходит, что Бернулли сделал своё открытие, опираясь на показания измерительного прибора, который измерял совсем не давление в потоке, а сумму статического давления и интенсивности эжекции. В потоке жидкости или газа нет места, где отсутствует движение среды, просто в одних местах оно является ламинарным, а в других - турбулентным, но эжекция проявляется и в том и в другом случае. Поэтому, такой "манометр" правильнее будет назвать -"эжектомером". Эжекция - - процесс подсасывания жидкости или газа за счет кинетической энергии струи другой жидкости или газа.


Эжектор, работая по закону Ньютона, использует первый поток частиц с высокой кинетической энергией для сноса по потоку частиц окружающей его среды, попадающих в первый поток под давлением этой же окружающей среды, что и создаёт в пространстве, окружающем сечение скоростного потока первой среды, пониженное давление, что в свою очередь, вызывает подсос в это пространство частиц другой среды. А статическое давление в первом потоке практически всегда больше, чем в пространстве окружающей среды.