Диффузная лимфоидная ткань. Лимфоидная ткань лимфоидные органы

Параллельно велись исследования другой системы организма, напрямую не связанной с лактацией, но тем не менее играющую колоссальную роль в защите внутренней среды организма от внешних воздействий. Исследование кишечника, а более конкретно - лимфоидной ткани желудочно-кишечного тракта ведется достаточно давно: с середины прошлого века в лимфоидной ткани кишечника выделяли такие компоненты, как кишечные лимфожелезистые комплексы.

Это округлые скопления (диаметром 0,5-5 ми) трубчатых ветвящихся желез, или крипт, окруженные лимфоидной тканью. Их общее количество во всей ободочной кишке было 325-791, причем в первом сегменте их количество колебалось от 2 до 15, во II пятой части - 31-216, в III пятой части - 17-243, в IV пятой части - 122-155 и в последней (задней) пятой части - 62-215. Авторы обнаруживали их макроскопически, они видны при просвечивании кишечной стенки, особенно после снятия серозной оболочки. По диаметру и клеточному составу (главные и бокаловидные энтеро- циты) эти железы были сходны с кишечными криптами, и, пробуравливая мышечный слой слизистой, они открывались либо в кишечные железы, либо самостоятельно на поверхность слизистой оболочки. Располагались такие железистые скопления субмукозы в кишечной стенке без определенного порядка.

Предполагается, что они образуются из зачатков обыкновенных кишечных желез путем впячивания последних в подлежащую подслизистую оболочку в утробном периоде.

Агрегированные лимфатические узелки тонкого кишечника встречаются в тощей и подвздошной кишках всех домашних животных, а у собаки, кроме того, и в дуоденуме. Обычное место их локализации - антимезентериальная стенка кишечника, а у собаки и кошки наряду с этим и вблизи брыжеечного края кишки. Некоторая асимметрия в виде правостороннего парамедиального расположения агрегированных узелков наблюдается в каудальной части тонкой кишки свиньи.

Это явление объясняется некоторым отклонением от вертикального расположения брыжейки и кишечника. Полагают, что в организме живой свиньи правая сторона кишечной стенки имеет право-вентральное расположение, и что вследствие этого в случае неполного наполнения кишечной трубки большая часть всасывающей поверхности образуется правой половиной кишечной стенки. Здесь же всасываются и более многочисленные патогенные агенты, попадающие в лимфатические узелки.

В слизистой толстой кишки встречаются многочисленные одиночные лимфатические узелки; агрегированные же узелки отмечаются редко, ограничиваясь при этом у крупного рогатого скота и лошади верхушкой слепой кишки и у жвачных и свиньи - окружностью илеоцекального отверстия. У жвачных, кроме того, находится постоянно одна узелковая пластинка в конце начального завитка ободочной кишки. У лошади более тесное скопление лимфатических узелков обычно отмечается также в области тазового изгиба большой ободочной кишки. На месте узелков слизистая либо слегка приподнята, либо углублена; в углублениях железы обычно отсутствуют. Лимфоидная ткань толстой кишки наиболее развита у свиньи.

Большое количество лимфоидных клеток встречается в ретикулярной ткани. Она очень богата различными клеточными элементами - фибробластами, плазмоцитами, макрофагами, лимфоцитами, эозинофилами и недифференцированными клетками.

Совокупность названных клеток совместно с межклеточным веществом стромы составляет мощный барьер для различных микроорганизмов и любых антигенных веществ содержимого кишечника, на что, впрочем, указывает и значительно менее развитая клеточная популяция у стерильных животных. В наибольшем количестве встречаются фибробласты (в кишечнике мыши их из всего клеточного состава стромы слизистой в среднем 45,57%); в виде уплощенных клеток они образуют под базальной мембраной непрерывный слой. Плазматические клетки находятся весьма часто в контакте с макрофагами, от которых они, вероятно, получают необходимую информацию для окончательной дифференциации. Лимфоциты чаще всего располагаются близ кровеносных капилляров. Вблизи сосудов располагаются и лабро- циты, которые, однако, в большем количестве многочисленно встречаются в субмукозе. Часть гранулоцитов и лимфоцитов подвергается беспрерывной эмиграции через эпителиальный покров, особенно в тонком кишечнике. В содержимом кишечника они разрушаются, выделяя при этом бактерицидные вещества, оказывающие избирательное действие на естественную микрофлору кишечника. Общее количество тех или иных клеток зависит от вида животного, его возраста, от функционального состояния органа и т. д.

Меж- и подкриптальная строма слизистой всюду пронизана сетью аргирофильных волокон. Эластические и (особенно) коллагеновые волокна встречаются в незначительном количестве. Отмечаются в межкриптальной строме и некоторые гладкомышечные клетки, а в ворсинках они являются обычными структурными и функциональными элементами. Эластические и коллагеновые волокна сопровождают в первую очередь кровеносные сосуды, а сеть аргирофильных волокон в более сгущенном виде окружает кишечные крипты. Эластические волокна более развиты у плотоядных животных.

Из наиболее изученных животных самое большое количество свободных клеточных элементов слизистой пищеварительного тракта наблюдается у свиньи, а самое маленькое - у лошади и плотоядных. Наиболее богатой свободными клетками является тонкая кишка. В тонкой кишке показатели количества плазматических клеток и лимфоцитов взаимно противоположны. На уровне кишечных крипт количество плазматических клеток часто достигает 100 и более, но в ворсинках в несколько раз уменьшается, а количество лимфоцитов между криптами, наоборот, менее значительное, но повышается в ворсинках. Количество блуждающих клеток тесно связано с характером желез данной области и с их функциональным состоянием. Это особенно наглядно обнаруживается при сравнении количества свободных клеток между дуоденальными криптами и соединительной тканью дуоденальных желез. С другой стороны, количество мигрирующих клеток весьма тесно связано с характером корма данного вида животного.

У новорожденного ягненка в собственном слое слизистой встречаются только единичные лимфоциты и гранулоциты; плазматические клетки появляются после рождения, и они достигают своего максимума (около 120 клеток в поле зрения микроскопа при 600-кратном увеличении) к 5-6-месячному возрасту, а лимфоциты в 2-летнем возрасте, причем их число достигает 400 и более. У взрослой овцы в наибольшем и наиболее постоянном количестве встречаются лимфоциты; за ними следуют плазматоциты, наибольшее число которых отмечается в дуоденуме. Во всей пищеварительной системе самым высоким является общее количество свободных клеток в lamina propria мукозы тонкого кишечника. Количество гранулоцитов колеблется в значительной степени, причем эти колебания зависят не от возраста овцы, а от функционального состояния данного органа.

Кроме этого, указывается на большое количество рассеянных лимфоидных клеток, так называемых глобулярных лейкоцитов - округлых внутриэпителиальных клеток, содержащих в своей цитоплазме шаровидные оксифильные зернышки (глобулы). Они встречаются как в покровном, так и в железистом (криптальном) эпителии всего желудочно- кишечного тракта позвоночных (Kent, 1949); описаны они также в трахее, мочевом пузыре и в половых органах. Впервые глобулярные лейкоциты были описаны в 1920 г. Вейлом. Их почти постоянная локализация в эпителиальной ткани оправдывает их описание рядом с различными видами эпителиальных клеток кишечника.

На мощное развитие лимфоидной системы указывалось достаточно давно. Лимфатическое русло кишечной стенки состоит из взаимно связанных собственно-слизистого, подслизистого, межмышечного и подсерозного сплетений лимфатических капилляров и сосудов. Эти сплетения более детально изучены у кошки в тонком кишечнике и в толстой кишке. Разделение интрамурального лимфатического русла на лимфатическую сеть, образованную лимфатическими капиллярами, и сплетения, формируемые лимфатическими сосудами, у кошки выражены нерезко. Эта сеть состоит (в толстой кишке) из полигональных петель, образованных из лимфатических сосудов, содержащих клапаны, и капилляров. При этом стволики слепо начинающихся коротких лимфатических капилляров могут впадать непосредственно в лимфатические сосуды, не образуя капиллярной сети.

В тонком кишечнике лимфатическая сеть мукозы располагается между криптами и у корней ворсинок. В последние открываются центральные млечные сосуды - своеобразные лимфатические капилляры шириной от 5 до 10 мкм и длиной до 600 мкм. В подслизистой оболочке залегают три вида капиллярных лимфатических сетей, тесно связанных друг с другом и образованных капиллярами различного диаметра. Мелкие петли, образованные капиллярами, обрамляются петлями крупнопетлистой сети. Ближе к брыжеечному краю из капилляров крупнопетлистой сети формируются собирательные лимфатические сосуды, которые прободают циркулярный мышечный слой и сливаются с собирательными лимфатическими сосудами межмышечного сплетения или самостоятельно поступают в толщу брыжейки. В межмышечном сплетении внутри крупнопетлистой сети (состоящей из сосудов диаметром 30-45 мкм) лежат мелкие петли из более тонких (15-30 мкм) капилляров.

Собирательные и отводящие лимфатические сосуды кишечной стенки снабжены клапанами. Каждый из лимфатических узелков также окружен сетью лимфатических капилляров.

Утверждение некоторых других авторов о том, что млечные сосуды ворсинок являются артефактами, в естественных условиях не существующими лимфатическими капиллярами, не соответствует результатам исследований большинства современных авторов. Млечные капилляры ворсинок выстланы плоским эпителием, окутанным снаружи ретикулярными волокнами и гладкомышечными пучками. Микрокапли жира переносятся в просвет капилляра с помощью пинодитарного транспорта. Среди факторов, воздействующих на ток хилуса, абсорбированного из кишки, видную роль играют ослабление и сокращение мышечного слоя слизистой оболочки кишечника. В стенке тонкой кишки кошки и собаки различают две различных системы лимфатических сосудов: одна отводит лимфу в состоянии покоя, а другая включается лишь в случае повышенного образования лимфы.

Однако до недавнего времени все-таки оставалось не выясненным, проникают ли клетки молозива через кишечную стенку или нет и если да, то каким образом. Ответ на этот вопрос был получен в 2002 г. Tuboly S., Nelson D. L. изучали кишечное поглощение молозивных лимфоидных клеток.

Опыт проводился на 23 поросятах (от 4 свиноматок) и 17 ягнятах. От молозива и крови маток лимфоидные клетки были изолированы с помощью Фиколл-Пака и маркированы технецием. Через 7 часов после рождения клеточные суспензии объемом 10 мл каждая (поросята: 10 (7) клеток, ягнята: 5 х 10 (7) клеток) были введены после лапаротомии непосредственно в желудок или в тощую кишку через носоглоточный зонд. Замороженные срезы двенадцатиперстной кишки, тощей кишки и образцов лимфатического узла животных были исследованы авторадиографией.

Было обнаружено, что лимфоидные клетки, присутствующие в молозиве поросенка и ягненка, от их собственной матери были поглощены через пищеварительный тракт и через лимфатические сосуды транспортировались к брыжеечным лимфатическим узлам. Электронная микроскопия показала, что поглощение происходит межклеточно. Моло- зивные клетки от другой матки (не собственная мать поросенка), т. е. аллогенные клетки, лимфоидные клетки, изолированные от крови, и пастеризованные молозивные лимфоидные клетки не были поглощены. Иммунизация овец и их ягнят анатоксином столбняка демонстрирует, что поглощенные лимфоидные клетки остаются иммунологически активными, и могут передавать иммунную информацию к ягнятам.

Итак, во всяком случае для двух видов млекопитающих передача иммунной информации посредством клеточных компонентов доказана. Кишечная стенка, таким образом, представляет собой своеобразный контрольно-пропускной пункт со своей сложной системой регуляции и частично автономной системой иммунных органов.

Если обратиться к более ранним источникам, то можно узнать, что лимфатическая система детеныша проводит своеобразную подготовку лимфоидной ткани к приему иммунной информации. Во всяком случае об этом может говорить давно установленный факт: у поздних плодов в слизистой желудочно-кишечного тракта появляются зернистые формы лейкоцитов: эозинофилы и нейтрофилы. Они раньше появляются и в большом количестве концентрируются в тонком отделе кишечника, особенно в подвздошной кишке. Здесь же у поздних плодов овец и свиней появляются глыбчатые лейкоциты. Их образование начинается с проникновения лимфоцитов из соединительной ткани слизистой в пространства между эпителиальными клетками основания ворсинок и крипт. У таких лимфоцитов протоплазма теряет базофильные свойства и начинает вырабатывать специфические эозинофильные гранулы, значительно увеличивающиеся в размерах. Гранулы часто свободно лежат между эпителиальными клетками. Тогда же было обнаружено и явление ухода лимфоцитов из межэпителиального пространства в соединительную ткань слизистой. Плазматические же клетки появляются в слизистой кишечника овец и свиней до рождения, а у крупного рогатого скота - после рождения, что связано, очевидно, с поступлением молозива, содержащего значительное количество иммуноглобулинов.

Таким образом, для некоторых сельскохозяйственных животных вопрос передачи иммунитета посредством лейкоцитов молозива оказался более или менее выясненным. Что касается других двух видов домашних животных, то тут гораздо меньше информации имеется по механизмам передачи иммунитета посредством молозива у хищных домашних животных. Несмотря на то, что они относятся к млекопитающим, у них могут оказаться какие-либо видовые особенности.

В вопросах передачи иммунитета нельзя забывать о других путях транспортировки иммуноактивного материала, например, о трансплацентарном. Давно известно о наличии разных видов плацент и о их различной проницаемости для иммунноактивных компонентов. Однако подробно корреляция между клеточным составом молозива, его цитопрофилем и типом плаценты, характерной для этого животного, практически не обсуждалась. Достаточно четкая связь между составом первых порций молозива и продолжительностью периода лактации рассмотрена нами у приматов (Скопичев В. Г., Гайдуков С. Н., 1991). Конечно, прогнозирование продолжительности периода лактации у мелких хищников, таких как собаки и кошки, значительной хозяйственной необходимости не имеет, однако подобные данные могли бы оказаться весьма полезными при промышленном получении молока, например, от коров.

Согласно современным представлениям иммунная система как неотъемлемая часть организма участвует в подготовке молочной железы к периоду лактации. Причем участие клеточных элементов иммунной системы в формировании молочной железы настолько велико, что подавление деятельности регионарного лимфатического узла (источника лимфоидных клеток) существенно нарушает морфологические процессы и подготавливает развитие структуры альвеолы. В молозивный период в молочной железе наблюдается значительное увеличение клона Т-лимфоцитов и плазматических клеток. Причем рост количества плазматических клеток может наблюдаться у ряда животных и в течение молочного периода (Скопичев В. Г., Гайдуков С. Н., 1991). Кроме того, наблюдается увеличение количества фракций нейтрофилов, моноцитов. В момент проведения нами исследований были обнаружены делящиеся лимфоциты, что способствует увеличению численности их фракций.

С момента выделения с молозивом клеточные элементы и иммуноглобулины попадают в желудочно-кишечный тракт новорожденного и включаются в его механизмы формирования иммунной защиты. Временной диапазон передачи материнских антител млекопитающих различен. И по этому признаку их можно разделить на три большие группы: а) послеродовая передача материнских антител, сюда можно отнести всех копытных (жвачных, лошадей и свиней); б) группа с предродовой передачей антител - морская свинка, кролик, человек; в) группа животных, обладающих пред- и преимущественно послеродовой передачей - собака, мышь и крыса. У собак и мышевидных грызунов передача антител продолжается в молочный период лактации. Материнские антитела могут попадать в кровообращение плода до рождения через сосуды желточного мешка или плаценту, а после рождения - с молозивом через стенку кишечника и служить ему, как и взрослым особям, для защиты против внедряющихся в организм возбудителей. Пассивная передача материнских антител плодам в утробный период во многом определяется типом плаценты.

Эпителиохориальная (у моногастричных копытных) и синдесмохориальная (у жвачных животных) плаценты состоят из шести слоев и не пропускают антитела; эндотелиохориальная плацента (у плотоядных) состоит из четырех слоев, и антитела проходят через нее ограниченно; гемохориальная плацента (у приматов, грызунов) устроена из трех слоев и пропускает полностью или частично антитела; гемоэндотелиальная плацента (у морских свинок, кроликов на поздней стадии беременности) имеет один слой, и через нее полностью проходят антитела матери. Однако и здесь проницаемость плаценты для разных классов иммуноглобулинов различна. Иммуноглобулины классов IgA, IgE и IgM практически не проходят через плаценту, а из иммуноглобулинов класса G фракция IgGi проходит лучше, чем IgG 2 .

Плацента и сама вырабатывает вещества, регулирующие отношения матери и плода, в том числе гормоны (хо- риотропинальный соматотропин, гонадотропин, лютотропин, тиротропин, кортикотропин, эстрогены, прогестероны и др.) Кроме того, плацента синтезирует и воспринимает огромное количество ростостимулирующих факторов (интерлейкин-1, интерлейкин-2, КСФ) и ростоингибирующими (ФНО-а, ТРФ-Р, интерлейкин-б, интерферон). При этом ФНО-а повышает резистентность к ЕК-клеткам, ИЛ-6 активирует клетки супрессоры (Т-супрессоры). Интерфероны (ИФ-а и ИФ-р), блокируя процессы пролиферации эффекторных лимфоцитов, защищают плод от иммунного цитолиза. Известно, что плацента блокирует проникновение антител матери в кровеносное русло плода. Ранее мы отмечали, что в плаценте были обнаружены специфические F-рецепторы почти к всем четырем классам иммуноглобулинов. Именно поэтому у большинства животных не наблюдается гемолитической болезни. Однако с другой стороны, именно в этой ситуации возрастает роль послеродовой передачи иммунитета. Ранее авторами были сделаны попытки обнаружить факты проникновения клеток из молозива в организм детеныша. Для этих целей было решено использовать естественную метку клеток самок - половой хроматин. Метод основан на исследовании структурного образования в ядрах клеток - Х-хроматина. Интенсивность окраски Х-хроматина выше, чем других участков хроматина ядра; тельце Х-хроматина, кроме того, выделяется при любой его форме четкими контурами.

При этом методе в ядерных клетках у самок обнаруживается включение - половой хроматин, в клетках самцов он не обнаруживается. Для исключения лейкоцитов детенышей- самок в качестве подопытных были оставлены только детеныши-самцы. После выпаивания молозива проводилось изъятие крови и из внутренних органов (селезенка, лимфатические узлы, печень) приготавливалась лейкоцитарная взвесь, которая и шла в дальнейшее исследование. Далее нашей задачей были оценка свойств молозивных лейкоцитов травоядных и плотоядных животных и оценка их влияния на клеточный иммунитет у этих разных групп животных.

Функциональное состояние лейкоцитов могло, по нашему мнению, оказаться одним из ключей к разгадке их роли в трансколостральной передаче иммунитета. Влияние молозива на иммунную систему потомства очень хорошо изучено для гуморальных факторов, таких как иммуноглобулины и немного хуже для клеточного компонента. Однако исследования иммунного статуса были все-таки включены для полноты картины изменений в клеточном иммунитете детенышей в течение молозивного периода.

В процессе передачи иммунитета большое значение имеет и состояние иммунной системы реципиента. В нашем случае исходя из данных, представленных в обзоре литературы, большое значение необходимо придавать лимфоидной ткани (MALT), связанной со слизистыми, и в частности, лимфоидной ткани (GALT), связанной с кишечником, как регионарному представителю иммунной системы и ее форпосту на пути молозивных клеток. Для более детального изучения лимфоидной ткани, связанной с кишечником, было проведено гистологическое исследование кишечника кошек (котят) до рождения и в течение молозивного периода.

Проводилось выделение лимфоцитов из крови и молозива с целью исследования их биохимических и иммунологических свойств. Оценка фагоцитоза in vitro производится в соответствии с фазами реакции: через 30 минут и 2 часа. Поглотительная способность клеток оценивается по двум показателям: процент фагоцитоза, количество фагоцитов на 100 нейтрофилов через 30 минут и через 2 часа инкубации (в процентах), ФИ - среднее число микробов на 1 фагоцит через 30 минут и 2 часа инкубации. О последней фазе фагоцитоза - переваривании - судят по коэффициентам процента фагоцитоза и ФИ (отношение соответствующих показателей, изученных через 2 часа контакта, к тем же показателям через 30 минут). Фагоцитоз считается завершенным при коэффициентах менее 1.

Комплекс представляет собой систему органов и тканей, паренхима которых содержит клетки мезенхимального происхождения. В него входят: костный мозг , тимус , селезенка , лимфатические узлы , лимфоидная ткань кишечника и соединительная ткань .

Функциональные клетки лимфоидной системы представлены лимфоцитами , макрофагами , антигенпрезентирующими клетками и в некоторых тканях эпителиальными клетками. Все эти клетки функционируют в составе либо обособленных органов, либо диффузных образований.

Лимфоидные органы относят либо к первичным (центральным), либо ко вторичным органам. Первичные лимфоидные органы - это красный костный мозг и тимус.

Функциональное назначение комплекса - обеспечение кроветворения ( миелопоэза) и формирование клеток иммунной системы ( лимфопоэза). Среди органов и тканей комплекса имеются истинно лимфоидные образования, в которых происходит только лимфопоэз (тимус, лимфатические узлы, лимфоидная ткань кишечника) и "смешанные" образования, где представлены как лимфо-, так и миелопоэз (костный мозг, селезенка).

Именно в первичных органах формируется репертуар специфичностей лимфоцитарных антигенраспознающих рецепторов , и лимфоциты приобретают таким образом способность распознавать любые антигены , с которыми организм может столкнуться в течение жизни. Далее эти клетки подвергаются отбору на толерантность (ареактивность) к аутоантигенам , после чего уже в периферических лимфоидных органах или образованиях распознают только чужеродные антигены.

В тимусе, кроме того, T-клетки "учатся" распознавать собственные молекулы MHC . Вместе с тем известно, что некоторые лимфоциты развиваются вне первичных органов.

Из первичных органов лимфоциты мигрируют для выполнения своих функций по кровеносному руслу в периферическую лимфоидную ткань - лимфатические узлы, селезенку и лимфоидную ткань слизистых оболочек ( пейеровы бляшки , миндалины). Это движение лимфоцитов от центральных органов иммунной системы на периферию является главным миграционным путем. Кроме того имеется путь рециркуляции. Лимфатические сосуды, дренирующие тело, собирают внеклеточную жидкость - лимфу - вместе с рассеянными по телу лимфоцитами и переносят ее в лимфатические узлы. После некоторого времени пребывания в лимфатических узлах лимфоциты собираются в выносящих эфферентных лимфатических сосудах. Из них лимфоциты попадают в основной лимфатический сосуд - грудной проток, откуда вновь возвращаются в кровоток через левую подключичную вену ( рис. 6.1 и рис. 6.2).

Таким образом, лимфоциты относятся к той категории клеток, которые широко распространены в организме. И в теле человека и позвоночных животных они сгруппированы в три типа объединений ( рис. 6.14). Различные типы организации лимфоцитов обеспечивают наиболее эффективное проявление лимфоидной системы при встрече с чужеродным антигеном.

Иммунный ответ на антигены , поступающие в организм через слизистые оболочки, начинается с примирования лимфоцитов , главным образом в пейеровых бляшках.

Разные лимфоидные органы защищают различные системы организма: селезенка отвечает на антигены, циркулирующие в крови; лимфоузлы реагируют на антигены, поступающие по лимфатическим сосудам; лимфоидная ткань слизистых оболочек защищает слизистые оболочки.

Лимфоциты в большинстве не оседлые, а циркулирующие клетки; они постоянно мигрируют из кровотока в лимфоидные органы и вновь поступают в кровоток.

In vivo сложные клеточные взаимодействия, составляющие основу иммунной реакции, происходят в периферических, или вторичных, лимфоидных органах , к которым относятся лимфатические узлы , селезенка и скопления диффузной лимфоидной ткани в слизистых оболочках дыхательных, пищеварительных и мочеполовых путей.

Вторичные лимфоидные ткани заселены клетками ретикулярного происхождения , а также макрофагами и лимфоцитами , предшественниками которых служат стволовые клетки костного мозга. Стволовые клетки дифференцируются в иммунокомпетентные T- и B- лимфоциты. При этом слизистых покровах организма , представляет собой самый первый барьер на пути инфекции, защитное действие которого основано на секреции IgA.

Взаимодействие между вторичными лимфоидными органами и остальными тканями организма осуществляется с помощью рецикулирующих лимфоцитов , которые переходят из крови в лимфатические узлы, селезенку и другие ткани и обратно в кровь по основным лимфатическим путям.

Через слизистые оболочки в организм с наибольшей вероятностью поступают экзогенные потенциально агрессивные субстанции. Выделяют 3 основные системы органов, контактирующих с внешней средой -- пищеварительная, дыхательная и урогенитальная, а также малые протоки экзокринных желез -- слюнных, слезных, сальных, потовых. Наибольшая нагрузка при этом ложится на пищеварительный тракт. Все эти наиболее уязвимые для биологической агрессии поверхности организма имеют хорошо развитое «иммунологическое оснащение». Иммунологический аппарат слизистых оболочек представлен как организованными тканевыми структурами, так и диффузной лимфоидной тканью.

К лимфатическим образованиям, ассоциированным со слизистыми оболочками, относятся миндалины, одиночные (солитарные) фолликулы и сгруппированные лимфатические узелки (пейеровы бляшки) пищеварительного тракта, а у птиц такие образования имеются и по ходу воздухоносных путей. Они образованы диффузно рассеянными лимфоцитами и их скоплениями в виде лимфатических узелков, строение которых аналогично лимфатическим узелкам других лимфопоэтических органов. Локализуются лимфатические узелки в собственной пластинке слизистой оболочки, эпителиальный покров которой характерен для того органа, где находятся эти образования.

Различают афферентный и эфферентный разделы лимфоидной ткани слизистых оболочек. Первый, ответственный за прием и обработку иммунологической информации, включает преимущественно организованные лимфоидные структуры. Эфферентное звено включает диффузные элементы лимфоидной ткани. Структурированную лимфоидную ткань обозначают как ассоциированную со слизистыми оболочками (MALT -- Мucosa-associated lymphoid tissue). Лимфоидные структуры всегда присутствуют в пищеварительном тракте и с меньшим постоянством -- в других слизистых оболочках. Ранее полагали, что поступление антигенов во внутреннюю среду организма связано исключительно с нарушением целостности барьеров. Однако недавно было установлено, что чужеродные молекулы и агенты в норме непрерывно поступают в организм через слизистые оболочки. Их транспорт осуществляют специализированные клетки эпителия -- М-клетки (от microfold). М-клетки присутствуют в составе фолликулярного эпителия, который выстилает внутреннюю поверхность слизистой оболочки над местами расположения лимфоидных фолликулов или пейеровых бляшек. Эти клетки покрывают значительную часть поверхности лимфоидных структур слизистых оболочек (около 10% поверхности пейеровых бляшек).

Микроскладки, давшие название этим клеткам, увеличивают поглощающую поверхность. М-клетки лишены слоя слизи, покрывающего другие эпителиальные клетки слизистых оболочек. Основное назначение М-клеток состоит в активном транспорте антигенного материала (включая микробные тела) из полости органа в лимфоидные структуры. Механизм транспорта пока неясен, но он не имеет отношения к MHC-зависимому процессингу антигенов. М-клетки имеют форму колокола, вогнутая часть которого обращена в сторону лимфоидных фолликулов, причем к М-клеткам непосредственно примыкает купол (dome) пейеровых бляшек или единичных фолликулов -- пространство, в котором расположены Т- и В-лимфоциты -- преимущественно клетки памяти. Несколько глубже в куполе, наряду с этими клетками, присутствуют макрофаги и дендритные клетки.

Одна из разновидностей соединительной ткани, в которой размещена система макрофагов и лимфоцитов, называется лимфоидной. Она может быть представлена в виде отдельных органов, а может просто являться функционирующей частью тела. Встречается ткань лимфоидная в таких органах, как костный мозг и селезенка, лимфатические узлы и вилочковая железа. В них она является функционирующей паренхимой.

В слизистой оболочке некоторых органов тоже встречаются скопления лимфоидной ткани — бронхи, мочевыводящие пути, почки, кишечник и другие.

Функции

Во всех без исключения защитных реакциях основное участие принимает лимфоидная ткань. Содержащиеся в ней лимфоциты, макрофаги и бласты, плазматические клетки, тучные клетки и лейкоциты защищают организм от вторжения инородных клеток и убирают поврежденные клетки самого организма. За формирование клеток иммунной системы отвечают лимфатические узлы, и ткань (лимфоидная) кишечника.

Если через поврежденную кожу попадает бактерия или вирус, в ближайшем к месту проникновения лимфатическом узле включается реакция защиты, выделяются клетки лимфоидного ряда и макрофаги, которые и перемещаются вместе с лимфой и кровью в место обнаружения «чужака». В случае массовой атаки, когда силами одного лимфатического узла справиться не удается, включается вся система иммунитета.

Строение

Лимфоидная ткань чаще всего представляет собой поддерживаемые в сетке из ретикулярных волокон свободные клетки. Сеть может быть более густой по составу (образует плотную ткань) или рыхлой (с пространствами, где свободно могут перемещаться свободные клетки). Сами волокна образованы из III типа коллагена.

Места скопления

В местах наибольшей вероятности попадания чужеродных организмов размещаются большие скопления лимфоидной ткани. Знакомые всем миндалины — это лимфоидная ткань глотки, размещенная на границе с полостью рта. Они бывают глоточные, небные, трубные и гортанные. Совокупность всех миндалин и областей и есть лимфоидная ткань носоглотки.

Ее функция очень важна для нашего здоровья, ведь она обезвреживает попадающие через рот и нос микробы. А вместе с органами, содержащими лимфоидную ткань, обеспечивает образование нужного количества лимфоцитов для целого организма.

Кроме прочего, лимфоидная ткань в горле взаимодействует с эндокринными железами (надпочечниками, щитовидкой, тимусом, поджелудочной), образуя тесную связь "гипофиз - кора надпочечника - лимфатическая ткань" до полового созревания ребенка.

Что такое гипертрофия

У ребенка от трех до десяти лет может развиться гипертрофия лимфоидной ткани миндалин, при этом функционирование ее не нарушается. Только с началом пубертатного периода гипертрофированная ткань начинает уменьшаться.

Точно неизвестно, с чем связан этот процесс, но предположительные причины — воспаление глотки или инфекция, различные эндокринные нарушения. Гипертрофия может привести к частым воспалениям или патологическим изменениям в ушах, носу, гортани.

Если нарушается носовое дыхание, ослабляется вентиляция легких. Позже это приводит к изменению состава крови — гемоглобин и количество эритроцитов понижается, а лейкоциты увеличиваются в количестве. Далее начинают нарушаться функции ЖКТ, щитовидной железы, надпочечников. Нарушение всех процессов приводит к задержке в росте и половом развитии ребенка.

Что такое гиперплазия

Термин "гиперплазия" пришел к нам из греческого языка и обозначает сверхобразование. По своей сути это патология, при которой клетки начинают интенсивно размножаться, увеличивая объем ткани.

  1. Инфекционная. Иммунный ответ на любую инфекцию приводит к выработке лимфоцитов и макрофагов в быстром режиме, это вызывает разрастание лимфоидной ткани.
  2. Реактивная. Бактерии и микробы попадают в лимфоузел, там скапливаются продукты их жизнедеятельности, выделяемые ими токсины, вызывая, в свою очередь, активное выделение клеток-макрофагов.
  3. Злокачественная. В этот патологический процесс могут быть вовлечены любые клетки лимфатического узла, что приводит к изменению его размера, формы и структуы.

Ткань лимфоидная — одна из важнейших составляющих иммунной системы нашего организма. Она помогает предотвратить многие болезни еще до попадания инфекции внутрь вместе с пищей и воздухом. Выполняет она и другие функции, механизм которых так до конца и не изучен.

Иногда лимфоидная ткань воспаляется, и появляются такие заболевания, как аппендицит, тонзиллит и многие другие (в зависимости от места локализации ткани лимфоидной). Очень часто в таких случаях врачи прибегают к хирургическим методам лечения, проще говоря, удаляют пораженный участок или орган. Так как все функции лимфоидных образований изучены не до конца, нельзя стопроцентно утверждать, что такое удаление не наносит вреда человеческому организму.

ЛИМФОИДНАЯ ТКАНЬ (лат. lympha чистая вода, влага + греч, eidos вид; син. лимфатическая ткань ) - морфофункциональный комплекс лимфоцитов и макрофагов, располагающийся в клеточно-волокнистой соединительнотканной основе и составляющий функционирующую паренхиму лимфоидных органов; Л. т. неразрывно связана с гемопоэтической тканью.

К лимфоидным органам, являющимся органами иммуногенеза, относят вилочковую железу (см.), лимфатические узлы (см.), селезенку (см.), лимфоидные элементы костного мозга (см.) и скопления лимфоидной ткани по ходу жел.-киш. тракта. Лимфоидные органы в отношении функции иммуногенеза разделяют на первичные и вторичные. Так, вилочковую железу относят к центральным органам системы иммуногенеза (формирование клеточной системы иммунитета), а белую пульпу селезенки, лимф, узлы и скопления Л. т. в слизистой оболочке пищеварительного тракта - к вторичным, или периферическим, органам иммуногенеза.

Основные этапы эволюции Л. т. достаточно очерчены. У беспозвоночных Л. т. отсутствует. У круглоротых (миног) впервые обнаруживается предшественник вилочковой железы, имеющий вид небольших лимфоидных скоплений в эпителии окологлоточной бороздки. У этих животных установлена способность к иммунному ответу по типу реакции гиперчувствительности замедленного типа и реакции отторжения аллотрансплантата. У примитивных хрящевых рыб обнаруживается селезенка, Л. т. в кишечнике, почках, половых железах, в периваскулярной соединительной ткани. У осетровых рыб появляются плазматические клетки, т. е. способность к выработке специфических антител. Амфибии и рептилии отличаются появлением красного костного мозга, очагов лимфоидного кроветворения в печени. У птиц одновременно с концентрацией лимфоидных элементов в области клоакального органа - фабрициевой сумки - возникают зачаточные лимф, узлы (см. Лимфатическая система).

Все лимфоидные органы млекопитающих, в т. ч. и человека, состоят из соединительнотканной основы, представленной коллагеновыми и аргирофильными волокнами, в к-рых располагаются постоянные (стабильные) клеточные элементы Л. т. и непрерывно мигрируют другие клетки. Основными клеточными элементами Л. т. являются лимфоциты (см.), макрофаги (см.), плазматические клетки (см.), фибробласты, эндотелиальные и ретикулярные клетки. Лимфоциты и их производные, входящие в так наз. лимфоидную систему, и система макрофагов, лежащие в фиброретикулярной ткани, составляют основу Л. т. (так наз. макрофагально-фагоцитарная система). В 1970 г. Ван-Фюрт (R. van Furth) и соавт, предложили данную функц, систему назвать лимфоретикулогистиоцитарной системой.

Ретикулярные клетки, образующие ретикулярные волокна, по морфологии (на уровне световой микроскопии) не отличаются от фибробластов соединительной ткани (см.). Совр, исследования по гистогенезу кроветворной ткани привели к необходимости пересмотра представлений о ретикулярной клетке. Различные авторы рассматривают ее по-разному. А. Я. Фриденштейн и К. С. Лалыкина (1973) полагают, что ретикулярные клетки стромы вторичных лимфоидных органов (механоциты) образуются из специальных стволовых клеток, отличающихся от стволовых клеток крови. Ретикулярные клетки разных органов, несмотря на морфол, сходство, различаются по направленности дифференцировки: ретикулярные клетки из культур костного мозга при обратной пересадке в организм образуют кость, а из культур селезенки- ретикулярные волокна. И. Н. Кокорин (1970) и соавт, считают, что ретикулярные клетки селезенки являются полипотентными клетками стромы этого органа. Можно предположить, что ретикулярные клетки объединяют несколько типов клеток: гистиоциты, соответствующие макрофагам, моноциты, фибробласты, а также так наз. дендритические и интердигитирующие клетки.

Еще в 1927 г. А. А. Максимов, критикуя концепцию ретикулоэндотелиальной системы (см.), указывал на различия в происхождении, морфологии и функции эндотелиальных клеток сосудов и ретикулярных клеток. Затем было установлено наличие разных предшественников этих клеток и подтверждены их функц, различия. Показано, что эндотелиоциты сосудов, фибробласты и ретикулярные клетки относятся к слабофагоцитирующим элементам: окрашивание их при введении витального красителя (особенно в больших дозах) происходит в основном в результате пиноцитоза (см.), а не фагоцитоза. Оказалось, что в клиренсе крови участвуют преимущественно макрофаги печени (купферовские клетки) и макрофаги красной пульпы селезенки, но не эндотелиоциты и не ретикулярные клетки.

Для обозначения морфофункциональной системы различных клеток лимфоидного и плазматического рядов, участвующих в процессах иммуногенеза, ряд авторов ранее применяли термин «лимфоидно-макрофагальная система». Этим термином объединялись в единую функц, систему лимфоциты, моноциты, так наз. полибласты, макрофаги воспалительного экссудата, а также плазматические клетки - непосредственные продуценты антител.

Устойчивый уровень процесса физиол. регенерации в первичных лимфоидных органах человека устанавливается в конце эмбрионального периода, во вторичных - в раннем постнатальном периоде.

В процессе функционирования происходит распад и гибель лимфоидных клеток и элементов стромы, число их непрерывно возмещается пролиферацией, дифференцировкой и миграцией клеток.

Наиболее демонстративны возрастные изменения в вилочковой железе, максимальная масса к-рой (30-40 г) приходится на пубертатный период, затем она быстро подвергается инволюции; отмечается нарастание числа лаброцитов (тучных клеток), количество плазматических клеток сначала увеличивается, затем они исчезают, уменьшается количество эпителиоцитов; возникает жировое замещение паренхимы. Нередко после 30 лет лишь микроскопическое исследование позволяет обнаружить в области вилочковой железы небольшие скопления лимфоцитов и эпителиоцитов, заложенных в жировую или фиброзную основу.

Изменения в лимфоидных органах у пожилых людей служат отражением сниженной иммунной реактивности.

Факторы, регулирующие процессы физиол, и репаративной регенерации в первичных и вторичных лимфоидных органах, выяснены частично: соматотропный гормон, кальцитонин, вазопрессин и другие гормоны усиливают пролиферацию клеток первичных лимфоидных органов, гормоны коркового вещества надпочечников подавляют лимфоцитопоэз в селезенке и лимф, узлах; в эксперименте пассивное введение антител тормозит пролиферацию клеток при действии антигена. Установлен гуморальный фактор (тимозин), вырабатываемый вилочковой железой, способствующий пролиферации тимоцитов и образованию О-антигенов на поверхности стволовых клеток костного мозга, мигрирующих в вилочковую железу. Однако окончательно не выявлен фактор, влияющий на лимфоцитопоэз (см. Лейкопоэтины). Не ясны факторы, обусловливающие рост вилочковой железы в постнатальном периоде и инволюцию ее у взрослых организмов. Вместе с тем установлено, что для созревания тимоцитов необходим прямой контакт с чрезвычайно своеобразной ретикулоэпителиальной стромой вилочковой железы. А. Я. Фриденштейн (1973) высказал предположение, что различия в ответе на повреждающее воздействие первичных и вторичных лимфоидных органов могут быть связаны с разницей в характере и происхождении их стромы. Т. А. Рожнова (1971), Борам (К. Borum, 1969) экспериментально установили, что репаративная регенерация в вилочковой железе происходит лишь в тех случаях, когда повреждающее воздействие (облучение, кортизонотерапия, резекция и др.) существенно не нарушает целости стромы. При этом в вилочковую железу мигрируют лимфоидные клетки костного мозга, за счет пролиферации к-рых и происходит регенерация органа, однако его масса уже не достигает нормальной величины.

Репаративная регенерация вторичных лимфоидных органов (селезенки и лимф, узлов) обусловлена не только пролиферацией репопулирующих клеток из костного мозга и вилочковой железы, но и размножением сохранившихся клеток органов. Г. В. Харлова (1975) допускает, что скорость и полнота регенерации вторичного лимфоидного органа зависят от соотношения и созревания в нем Т- и В-лимфоцитов. Показано, что лимфоциты принимают участие в регенеративных процессах не только в лимфоидных органах, но и в печени, легких, коже, почках.

Функц, значение Л. т. определяется ее важнейшей ролью в иммунных реакциях. Процесс выработки антител осуществляется клетками Л. т. Высказывается вполне обоснованное предположение, что Т- и В-лимфоциты путем обратной связи могут контролировать иммунный ответ и деление стволовых клеток. Нек-рые исследователи полагают, что утрата способности Т-лимфоцитов к такому контролю может явиться причиной аутоиммунных заболеваний, а также является одним из возможных условий развития злокачественного новообразования.

Защитная реакция организма на воздействие чужеродных веществ (экзо- и эндогенных) в значительной мере определяется функц, состоянием Л. т., с к-рой связана специфическая (иммунологическая) резистентность (см. Иммунитет). Появляются доказательства большого значения Л. т. не только в иммунных реакциях, но и в неспецифической резистентности организма (см.). Как показали исследования П. Д. Горизонтова (1976), повышение резистентности организма при стрессе характеризуется усилением костномозгового кроветворения, увеличением миграции клеток Л. т. в костный мозг в первые часы после воздействия чрезвычайного раздражителя - так наз. лимфоидный пик. Появление при этом Т-лимфоцитов в костном мозге рассматривается исследователями как свидетельство роли вилочковой железы в неспецифической резистентности организма.

Предполагается, что при неблагоприятных воздействиях распад клеток Л. т. обеспечивает трофическую функцию, т. к. при этом продукты обмена (в частности, нуклеопротеиды) реутилизируются в зонах повреждения тканей, чем компенсируется неблагоприятное воздействие. Бернс (D. W. Bernes, 1962) и соавт, высказали мнение о том, что недостаточность Л. т. и уменьшение ее трофической функции играют важную патогенетическую роль при так наз. болезнях истощения, в т. ч. и при раневом истощении, описанном И. В. Давыдовским.

Заболевания, связанные с поражением Л. т., обычно диагностируются по данным биопсий лимф, узлов (за исключением лейкозов, дисгаммаглобулинемий и аутоиммунных процессов). К заболеваниям Л. т. относятся гипоплазия лимф, узлов- редкое состояние, отражающее иммунную недостаточность; реактивная гиперплазия лимф, узлов, возникающая при воспалительных процессах и активации иммунных реакций как первичного, так и вторичного характера (см. Иммуноморфология , Иммунопатология). Решение вопроса о характере так наз. воспалительного компонента (появление эозинофилов, нейтрофилов, плазматических и эпителиоидных клеток) нередко представляет значительные трудности.

Особую группу патол, процессов Л. т. составляют злокачественные новообразования (см. Гемобластозы , Гистиоцитозы , Лимфогранулематоз , Лимфома , Миеломная болезнь).

Библиогр.: Горизонтов П. Д. Лимфоидная ткань и неспецифическая резистентность организма, Арх. патол., т. 38, № 3, с. 3, 1976, библиогр.; Пестова И. М. Краткий очерк эволюции лимфоидной ткани и её иммуноклеточной реактивности у позвоночных, Арх. анат., гистол, и эмбриол., т. 70, № 3, с. 26, 1976, библиогр.; Структура и функция лимфоидной ткани в онто- и филогенезе, под ред. Е. А. Вагнера и др., Пермь, 1976; Харлова Г. В. Регенерация лимфоидных органов у млекопитающих, М., 1975, библиогр.; Саг г J. The line structure of the mammalian lymphoreticular system, Int. Rev. Cytol., y. 27, p. 283, 1970, bibliogr.; он же, The macrophage - a review of ultrastructure and function, L.- N. Y., 1973; G o 1 d s t e i n A. L., Slater F. D. a. White A. Preparation, assay and partial purification of thymic lymphocytopoietic factor (thymosin), Proc, nat. Acad. Sci. (Wash.), v. 56, p. 1010, 1966; Kyriazis A. A. a. Ester-1 y J. R. Fetal and neonatal development of lymphoid tissues, Arch. Path., v. 91, p. 444, 1971; M a x i m o w A. Bindegewebe und blutbildene Gewebe, Handb, mikr. Anat. Menschen, hrsg. v. W. Mollendorff, Bd 2, T. 1, S. 232, B. 1927; Mononuclear phagocytes m immunity, infection and pathology, ed. by R. van Furth, Oxford, 1975.