Что такое антивитамины? Антивитамины.

Содержание статьи:

Витамины имеют важнейшее значение для организма. Некоторые вещества этой группы могут синтезироваться, но в основном они поступают извне. Человек может считать себя здоровым только в том случае, если в его рационе присутствует достаточное количество микронутриентов. В противном случае возможны различные проблемы. Не все люди знают, что такое антивитамины витаминов. Сегодня мы ответим на этот вопрос.

Антивитамины витаминов: что это?

Антивитаминами называют вещества, которым присущи свойства, затрудняющую работу витаминов. Заметим, что некоторые антивитамины с точки зрения структуры молекул практически аналогичны витаминам. Собственно благодаря этой особенности они и способны вытеснять полезные вещества из химических соединений. А вот на метаболизм эти вещества, ни какого влияния не оказывают.

Вероятно, следует напомнить, зачем организму нужны витамины. Они входят в состав всех ферментов, основной задачей которых является ускорение биохимических реакций. Безусловно, витамины обладают большим количеством положительных свойств, но многие ученые именно их участие в работе ферментативной системы считают основным.

Как уже говорилось выше, антивитамины способны встраиваться в молекулы ферментов, вытесняя из соединения полезные вещества. Данный процесс необратим и приводит к потере активности фермента. Ситуация напоминает ту, которая наблюдается в результате дефицита витаминов. Вполне очевидно, что при высокой концентрации антивитаминов наблюдаются те же симптомы, то и при гиповитаминозе.

Однако витаминов в организме достаточно, просто они не способны вступить в работу, так как были замещены в молекулах фермента. Мы сейчас рассмотрели первый вариант работы данной группы веществ, который ученые называют конкурентным. В других случаях работы антивитаминов схожесть их структуры с витаминами значения уже не имеет.

Более того, они могут обладать большими размерами, принадлежать к разным группам и отличаться механизмом работы. В любом случае, антивитамины затрудняют выполнения работы витаминов. Отметим некоторые виды «деятельности» антивитаминов:

  1. Блокируют процессы всасывания питательных веществ в кишечном тракте.
  2. Исключают витамины из метаболических процессов.
  3. Связывают микронутриенты.
  4. Нарушают процесс синтеза витаминов микрофлорой кишечного тракта.
  5. Ускоряют процессы утилизации микронутриентов.
  6. Разрушают витамины.
Следует заметить, что некоторые антивитамины могут работать сразу в нескольких направлениях. В любом случае, при их высокой концентрации наблюдаются симптомы авитаминоза (гиповитаминоза). Зная, что такое антивитамины витаминов, следует выяснить пути их проникновения в организм. Сегодня ученые точно знают, что эти вещества могут быть искусственными и натуральными. Зачастую они попадают в организм с пищей. Даже в полезных продуктах могут содержаться антивитамины в определенном количестве.

Это нормальная ситуация и пока ученые не могут сказать, зачем вообще антивитамины необходимы. Вполне возможно, что их ативитаминное воздействие является второстепенным, и они предназначены для чего-то полезного. Ученые сейчас не в состоянии дать вразумительный ответ на данный вопрос. Как мы уже говорили, содержание антивитаминов в продуктах питания чаще всего небольшое. Однако при однообразном рационе возможны проблемы. Мы уже выяснили, что такое антивитамины витаминов. Давайте познакомимся ближе с наиболее изученными веществами этой группы.

Тиаминаза


Вероятно, вы уже из названия вещества поняли, что оно связано с витамином тиамин (В1). Окончание -аза говорит нам о том, что данное вещество принадлежит к группе ферментов. Тиаминаза способна разрушать молекулы витамина в1. Ученые обнаружили данный фермент в некоторых видах морской и речной рыбы. Известно, что вещество содержится в некоторых породах рыб семейств корюшковых, карповых и сельдевых.

Избавиться от тиаминазы достаточно просто. Все ферменты являются белковыми соединениями и обладают способностью сворачиваться под воздействием высоких температур. Таким образом, после термообработки рыбы антивитамин потеряет свою активность. Логично предположить, что частое употребление указанных выше продуктов в сыром виде может привести к развитию гиповитаминоза тиамина. Известны случаи массового авитаминоза в Таиланде, так как жители этого государства часто употребляют рыбу в сыром виде.

В последнее время сыроядение становится популярным во многих странах мира. Заметим, что существует и растительный вид тиаминазы, содержащийся в рисе, картофеле, шпинате, вишне и т. д. Однако концентрация данного вещества в продуктах мала и в теории может представлять опасность только для фанатов сыроядения. Среди симптомов гиповитаминоза тиамина следует выделить радикулиты и невриты. Если вы страдаете этими недугами, самое время пересмотреть свой рацион, ведь все дело может заключаться в большом количестве тиаминазы.

Еще одно вещество, которое можно назвать антивитамином тиамина - оксиамин. Оно использует конкурентный путь воздействия, а появляется в процессе длительного кипячения кислых фруктов и ягод. Впрочем, ученые обнаружили окситиамин и в сырых кислых фруктах с ягодами. Таким образом, если вы летом готовите фруктово-ягодные запасы на зиму, то не стоит подвергать их длительной термической обработки. Наверняка на этот факт не обращают внимания на предприятиях пищевой промышленности.

Авидин


Это вещество является антивитаминов в отношении биотина. Напомним, что это второе название витамина Н. Авидин способен связывать молекулы полезного вещества и ускорять его утилизацию. Вещество входит в состав яичного белка и разрушается под воздействием температуры. Сегодня большинство людей опасается сальмонеллеза и в сыром виде яйца практически не употребляются.

Однако в последнее время высокой популярностью пользуются перепелиные яйца, которые в сыром виде, возможно полезны для иммунной системы. Точных научных доказательств этому факту нет, то многие доверяют всему, что пишут в сети. Безусловно, это личный выбор каждого человека, но мы не рекомендуем поступать так часто. В противном случае вы просто не будете получать витамин Н из этого продукта.

При термообработке биотин полностью сохраняет свою активность, в отличие от авидина, который разрушается. Хотя витамин Н синтезируется микрофлорой кишечного тракта, важно обеспечить его поставку извне. Это связано с тем, что многие проблемы с работой кишечника не имеют симптомов, и вы не может быть уверены, что совершенно здоровы. Среди симптомов гиповитаминоза биотина отметим сухость и нездоровый цвет кожного покрова, гипотонию, слабость в мускулах, ухудшение качества волос.

Аскорбиназа


Вы уже поняли, что это вещество является антивитамином аскорбиновой кислоты. Вещество присутствует практически во всех фруктах и овощах. Среди основных источников аскорбиназы следует отметить кабачки, огурцы и цветную капусту. Также к числу антивитаминов аскорбиновой кислоты следует причислить и хлорофилл. Напомним, что это пигмент, придающий зеленый цвет растениям.

Оба рассматриваемых нами антивитамина ускоряют окислительные реакции аскорбиновой кислоты, что приведет к полной утрате активности витамином. Однако основной вред аскорбиназа способна причинить при повреждении клеточных структур. Если фрукты либо овощи пострадали во время транспортировки, пострадали при падении, были порезаны и т. д.

К примеру, вы приготовили салат, который находился на протяжении от четырех до шести часов при комнатной температуре, то будет потеряно примерно 50 процентов аскорбиновой кислоты. Это говорит о том, что фрукты и овощи стоит резать непосредственно перед употреблением. Аналогичным образом следует поступать и при выжимании сока.

Если вы приготовили на зиму черную смородину с сахаром, то продукт в результате не потеряет аскорбиновую кислоту. Некоторое время может постоять и салат из помидоров без потери питательной ценности. Вы должны помнить, что витамин С более устойчив к высоким температурам в сравнении с аскорбиназой. Ужи при 100 градусах антивитамин полностью разрушается.

Среди симптомов гиповитаминоза аскорбиновой кислоты отметим кровоточивость десен, отеки и синяки на кожном покрове, шаткость зубов. Наверняка вам известны положительные свойства аскорбиновой кислоты. Этот витамин стал первым, который ученые активно изучали. В современной экологической обстановке он весьма ценен, так как обеспечивает защиту от интоксикации и замедляет процессы развития аллергических реакций.

Антивитамин А


В отношении ретинола антивитаминными свойствами могут обладать гидрогенизированные и перегретые жиры. Это говорит о том, что от употребления маргарина стоит отказаться. Отличным источником витамина А является рыба, которую не нужно подвергать длительной термообработке. Чтобы получить максимум пользу от даров моря, рыбу лучше запекать, а не жарить.

Мы рассказали о том, что такое антивитамины витаминов. Кроме этого вы сегодня познакомились с основными веществами, негативно влияющими на работу самых важных витаминов. Все рассмотренные выше вещества являются натуральными. Однако не стоит забывать, что медпрепараты также могут производить на организм антивитаминное воздействие.

Впервые об этом стало известно еще в сороковых годах, когда ученые изучали сульфаниламиды. Кроме этих препаратов наибольшую опасность с точки зрения антивитаминного воздействия представляют антибиотики. Они замедляют процессы усвоения витаминов К и группы В. Также практически все антибиотики вызывают гибель микрофлоры кишечного тракта, которая и синтезирует некоторые витамины.

В первую очередь это относится к веществам группы В. Очень сильными антивитаминными свойствами обладают препараты, предназначенные для лечения туберкулеза, скажем, циклосерин. Он способен нарушить процесс усвоения нескольких витаминов группы В, а также РР. Это лишь небольшая часть всех медпрепаратов, которые мешают микронутриентам выполнять свою работу, а ведь мы не говорили еще о бытовой химии. Однако мы не хотим призывать вас к отказу от использования этих веществ. Просто советуем проявить максимальную осторожность.

Больше о витаминах и антивитаминах:

April 18th, 2018

Все знают, что такое витамины, какая польза от них и где они содержатся в большом количестве. О них написано множество книг, статей и медицинских монографий. Но мало кто знает, что в природе существуют вещества, очень похожие на них, но имеющие абсолютно противоположные свойства.

Им дали название - антивитамины.

Несколько десятилетий назад химики пытались синтезировать и усилить биологические свойства витамина В9 (фолиевая кислота), который активизирует процессы кроветворения и участвует в биосинтезе белка. Но искусственный витамин В9 полностью утратил свою активность и приобрел другие свойства - получившееся соединение тормозило развитие раковых клеток, в скором времени его начали применять, как эффективное противоопухолевое средство.

Антивитамины - это химические соединения, схожие по своему строению на витамины, но являются их абсолютными антиподами. Их структура настолько похожа на структуру витаминов, что они полностью могут занимать место в структуре витаминных коферментов. Но при всём этом не могут выполнять функцию последних. Вследствие этого возникают перебои в течении биохимических процессов в организме человека. Если накапливается достаточно большое количество антивитаминов, то возможно полное нарушение обмена веществ.

Антивитамины, заняв нишу витаминов в организме человека, мешают выполнять им свои функции. Но так как и любое вещество, антивитамины имеют свои негативные и положительные стороны.
Негативные стороны антивитаминов:


  1. Образуя с витаминами или их рецепторами стойкие связи, полностью выключают их из обмена веществ.

  2. Блокируют всасывание витаминов поступающих извне.

  3. Катализируют процессы вывода витаминов из организма.

  4. Разрушают связи между молекулами в структуре витаминов, этим самым инактивируют их.

Положительные стороны антивитаминов:

  1. Антивитамины выступают регуляторами усвоения витаминов, так как, и те и другие могут находиться в одном продукте. Благодаря этому гипервитаминоз возникает очень редко.

  2. Существуют научно доказанные факты того, что антивитамины предотвращают некоторые заболевания. В будущем возможен синтез из них специфических лекарственных средств.

  3. Вещества, синтезированные из антивитаминов, влияют на функцию крови и используются как антикоагулянты.

  4. Один из самых положительных эффектов антивитаминов является торможение роста раковых клеток. Это вещество было синтезировано из витамина В9 (фолиевой кислоты), при попытке изменить его структуру.

Интересен тот факт, что у каждого витамина есть свой антивитамин, вследствие чего, может возникать “конфликт” витаминов. Так как, их в природе существует огромное количество, то перечислять всё не имеет смысла, можно остановиться лишь на некоторых из них.

Витамин С имеет антивитамин под названием аскорбатоксидаза. Этот фермент присутствует во многих фруктах и овощах. Также необходимо отметить, что у него есть еще один антипод - хлорофилл, который является веществом придающим овощам и фруктам зелёный цвет.

Аскорбатоксидаза и хлорофилл ускоряют окисление витамина С. Как пример, может быть представлено следующее: при нарезке свежих фруктов и овощей теряется до 50% полезных веществ на протяжении от 15 минут до 4-6 часов. Так что если нарезать фрукты и овощи, то лучше это делать непосредственно перед употреблением или лучше есть их в цельном виде.

Витамин В1 (тиамин) имеет свой антивитамин тиаминазу, который блокирует все полезные свойства вещества. Тиаминаза содержится в мясе некоторых рыб, поэтому увлекаться сырой рыбой, например, суши не стоит. Так как возможен риск развития авитаминоза В1. Избежать этого можно довольно просто, придав её термической обработке. Потому что при воздействии температуры антивитамины легко разрушаются.

Следующий хорошо известный представитель антивитаминов является - авидин. Его много содержится в сырых яичных белках. Вследствие употребления авидина не будет всасываться жизненно необходимый витамин Н (биотин), который находится в желтке. У здорового человека биотин синтезируется в кишечнике, точнее его микрофлорой. Но при малейших нарушениях функции кишечника, уровень биотина сильно снижается. Поэтому необходимо его поступление с пищей. Яйца необходимо есть только после предварительной термической обработки.

Витамин А (ретинол) относится к жирорастворимым витаминам, но несмотря на это плохо усваивается при чрезмерном употреблении кулинарных жиров, сливочного масла и маргарина. Поэтому при приготовлении блюд, с большим количеством витамина А, необходимо использовать небольшое количество жира.

Витамин РР (ниацин) также имеет свой антипод. Им является аминокислота лейцин. Если ежедневный рацион богат соей, фасолью, бурым рисом, грибами, грецкими орехами, говядиной и коровьим молоком, то возрастает риск развития гиповитаминоза ниацина. Кроме лейцина, у витамина РР есть ещё 2 антивитамина: индолилуксусная кислота и ацетил пиридин. Этих веществ много в кукурузе.

Антивитамином по отношению к витамину Е служат полиненасыщенные жирные кислоты, входящие в состав растительного и соевого масла, бобовых. Поэтому даже с полезными жирами нужно быть бдительным.

Самым популярным и самым употребляемым антивитамином аскорбиновой кислоты и витаминов группы В, является кофеин. Чтобы не заработать проблем со здоровьем и также употреблять свой любимый напиток, содержащий кофеин, необходимо употреблять его за час до еды или через полтора часа после неё.

Алкоголь является антивитаминным веществом для всех групп витаминов, но больше он “бьёт” по группе В, витаминах С и К.

Табак и то, что входит в состав современных сигарет является также антивитамином для всех полезных веществ, но больше для аскорбиновой кислоты. При выкуривании одной сигареты, человек теряет суточную дозу витамина С (25-100 мг).

Современные лекарственные препараты, а особенно антибиотики, являются сильнейшими антивитаминами для группы В, но также с легкостью могут уничтожать объём витаминов в организме любой их группы. Как пример, ацетилсалициловая кислота (аспирин) ускоряет вывод из организма витамина С в 2-3 раза.

Для того чтобы вести здоровый образ жизни, необходимы не только регулярные физические нагрузки, а рациональный и правильный подход к питанию. Особенно в условиях крупного города, где нехватка витаминов особенно остро выражена. Ведь без адекватного совмещения полезных веществ и физической нагрузки, вскоре можно заработать кучу хронических болезней и травм, что не сделает вашу жизнь лучше.

В настоящее время антивитамины принято делить на две группы: 1) антивитамины, имеющие структуру, сходную со структурой нативного витамина, и оказывающие действие, основанное на конкурентных взаимоотношениях с ним; 2) антивитамины, вызывающие модификацию химической структуры витаминов или затрудняющие их всасывание, транспорт, что сопровождается снижением или потерей биологического эффекта витаминов. Таким образом, термином «антивитамины» обозначают любые вещества, вызывающие независимо от механизма их действия снижение или полную потерю биологической активности витаминов.

Структуроподобные антивитамины (о некоторых из них уже упоминалось ранее) по существу представляют собой антиметаболиты и при взаимодействии с апоферментом образуют неактивный ферментный комплекс, выключая энзиматическую реакцию со всеми вытекающими отсюда последствиями.


Антивитамин В12

Помимо структуроподобных аналогов витаминов, введение которых обусловливает развитие истинных авитаминозов, различают антивитамины биологического происхождения, в том числе ферменты и белки, вызывающие расщепление или связывание молекул витаминов, лишая их физиологического действия. К ним относятся, например, тиаминазы I и II, вызывающие распад молекулы витамина В1, аскорбатоксидаза, катализирующая разрушение витамина С, белок авидин, связывающий биотин в биологически неактивный комплекс. Большинство этих антивитаминов применяют как лечебные средства со строго направленным действием на некоторые биохимические и физиологические процессы.

В частности, из антивитаминов жирорастворимых витаминов используются дикумарол, варфарин и тромексан (антагонисты витамина К) в качестве антисвертывающих препаратов. Хорошо изученными антивитаминами тиамина являются окситиамин, пири- и неопиритиамин, рибофлавина - атербин, акрихин, галактофлавин, изорибофлавин (все они конкурируют с витамином В2 при биосинтезе коферментов ФАД и ФМН), пиридоксина - дезоксипиридоксин, циклосерин, изоникотиноилгидразид (изониазид), оказывающий антибактериальное действие на микобактерии туберкулеза. Антивитаминами фолиевой кислоты являются амино- и аметоптерины, витамина В12 - производные 2-аминометилпропанол-В12, никотиновой кислоты - изониазид и 3-ацетилпиридин, парааминобензойной кислоты - сульфаниламидные препараты; все они нашли широкое применение в качестве противоопухолевых или антибактериальных средств, тормозя синтез белка и нуклеиновых кислот в клетках.

Витамины, это катализаторы биохимических процессов, которые, попадая в организм, превращаются в коферменты, вступают во взаимодействие со специфическими белками и ускоряют обмен веществ. При этом каждый фермент и соответствующий ему витамин специфичны, т.е. витамины могут встраиваться только в соответствующий им белок (фермент). А ферменты в свою очередь могут выполнять только определенную им функцию и не могут заменять друг друга.

Антивитамины имеют схожую структуру с соответствующими им витаминами. В организме превращаются в ложный кофермент и занимают место настоящего витамина. Специфические белки не замечают отличия и пытаются выполнять свои функции, но из-за антивитамина уже ничего не получается. Соответствующий ферменту биохимический процесс остановлен.


Специалисты не исключают, что возникший псевдофермент начинает играть свою не менее важную биохимическую роль. Например, подобные изменения структуры нарушают в микобактериях туберкулеза обменные процессы, в результате задерживают размножение и рост возбудителей заболевания. Подобные процессы наблюдаются и в действии противомалярийных препаратов. Но далеко не все антивитамины находят применение в медицинской практике. Химики синтезировали уже тысячи различных производных витаминов, некоторые из которых с антивитаминными свойствами, но большинство из них имеют слабую фармакобиологическую активность. Хотя вполне возможно, что именно антагонисты витаминов станут основным средством борьбы с заболеваниями.

В продуктах питания все вещества, в том числе витамины и антивитамины находятся в оптимальном соотношении - дополняют друг друга. С одной стороны, антивитамины являются естественным регулятором, т.е. соперничая с витаминами, они практически исключают гипервитаминоз, даже если дневная норма витаминов будет значительно превышена. С другой стороны, антивитамины участвуют в биохимических процессах, т.е. как и витамины, предотвращают некоторые заболевания. Поэтому если начать принимать дополнительные искусственные витамины, можно нарушить баланс. Витамины, как и другие препараты, следует принимать по назначению врача, когда уже произошли нарушения в ту или иную сторону (гипо или гипервитаминоз).

Источники:

История открытия витаминов

Ко второй половине 19 века было выяснено, что пищевая ценность продуктов питания определяется содержанием в них, в основном, следующих веществ: белков, жиров, углеводов, минеральных солей и воды.

Считалось общепризнанным, что если в пищу человека входят в определенных количествах все эти питательные вещества, то она полностью отвечает биологическим потребностям организма. Это мнение прочно укоренилось в науке и поддерживалось такими авторитетными физиологами того времени, как Петтенкофер, Фойт и Рубнер.

Однако практика далеко не всегда подтверждала правильность укоренившихся представлений о биологической полноценности пищи.

Практический опыт врачей и клинические наблюдения издавна с несомненностью указывали на существование ряда специфических заболеваний, непосредственно связанных с дефектами питания, хотя последнее полностью отвечало указанным выше требованиям. Об этом свидетельствовал также многовековой практический опыт участников длительных путешествий. Настоящим бичом для мореплавателей долгое время была цинга; от нее погибало моряков больше, чем, например, в сражениях или от кораблекрушений. Так, из 160 участников известной экспедиции Васко де Гама, прокладывавшей морской путь в Индию, 100 человек погибли от цинги.

История морских и сухопутных путешествий давала также ряд поучительных примеров, указывавших на то, что возникновение цинги может быть предотвращено, а цинготные больные могут быть вылечены, если в их пищу вводить известное количество лимонного сока или отвара.

Таким образом, практический опыт ясно указывал на то, что цинга и некоторые другие болезни связанны с дефектами питания, что даже самая обильная пища сама по себе еще далеко не всегда гарантирует отсутствие подобных заболеваний и что для предупреждения и лечения таких заболеваний необходимо вводить в организм какие-то дополнительные вещества, которые содержатся не во всякой пище.

Экспериментальное обоснование и научно-теоретическое обобщение этого многовекового практического опыта впервые стали возможны благодаря открывшему новую главу в науке исследованию русского ученого Николая Ивановича Лунина, изучавшего в лаборатории Г.А. Бунге роль минеральных веществ в питании.

Н.И. Лунин проводил свои опыты на мышах, содержавшихся на искусственно приготовленной пище. Эта пища состояла из смеси очищенного казеина (белок молока), жира молока, молочного сахара, солей, входящих в состав молока, и воды. Казалось, налицо были все необходимые составные части молока; между тем мыши, находившееся на такой диете, не росли, теряли в весе, переставали поедать даваемый им корм и, наконец, погибали. В то же время контрольная партия мышей, получавшая натуральное молоко, развивалась совершенно нормально. На основании этих работ Н.И. Лунин в 1880 г. пришел к следующему заключению: "... если, как вышеупомянутые опыты учат, невозможно обеспечить жизнь белками, жирами, сахаром, солями и водой, то из этого следует, что в молоке, помимо казеина, жира, молочного сахара и солей, содержатся еще другие вещества, незаменимые для питания. Представляет большой интерес исследовать эти вещества и изучить их значение для питания".

Это было важное научное открытие, опровергавшее установившееся положения в науке о питании. Результаты работ Н. И. Лунина стали оспариваться; их пытались объяснить, например, тем, что искусственно приготовленная пища, которой он в своих опытах кормил животных, была якобы невкусной.

В 1890 г. К.А. Сосин повторил опыты Н. И. Лунина с иным вариантом искусственной диеты и полностью подтвердил выводы Н.И. Лунина. Все же и после этого безупречный вывод не сразу получил всеобщее признание.

Блестящим подтверждением правильности вывода Н.И. Лунина стало установление причины болезни бери-бери, которая была особенно широко распространена в Японии и Индонезии среди населения, питавшегося, главным образом, полированным рисом.

Врач Эйкман, работавший в тюремном госпитале на острове Ява, в 1896 году подметил, что куры, содержавшиеся во дворе госпиталя и питавшиеся обычным полированным рисом, страдали заболеванием, напоминающим бери-бери. После перевода кур на питание неочищенным рисом болезнь проходила.

Наблюдения Эйкмана, проведенные на большом числе заключенных в тюрьмах Явы, также показали, что среди людей, питавшихся очищенным рисом, бери-бери заболевал в среднем один человек из 40, тогда как в группе людей, питавшихся неочищенным рисом, ею заболевал лишь один человек из 10000.

Таким образом, стало ясно, что в оболочке риса (рисовых отрубях) содержится какое-то неизвестное вещество, предохраняющее от заболевания бери-бери. В 1911 году польский ученый Казимир Функ выделил это вещество в кристаллическом виде (оказавшееся, как потом выяснилось, смесью витаминов); оно было довольно устойчивым по отношению к кислотам и выдерживало, например, кипячение с 20%-ным раствором серной кислоты. В щелочных растворах активное начало, напротив, очень быстро разрушалось. По своим химическим свойствам это вещество принадлежало к органическим соединениям и содержало аминогруппу. Функ пришел к заключению, что бери-бери является только одной из болезней, вызываемых отсутствием каких-то особых веществ в пище.

Несмотря на то, что эти особые вещества присутствуют в пище, как подчеркнул ещё Н.И. Лунин, в малых количествах, они являются жизненно необходимыми. Так как первое вещество этой группы жизненно необходимых соединений содержало аминогруппу и обладало некоторыми свойствами аминов, Функ (1912) предложил назвать весь этот класс веществ витаминами (лат. vita - жизнь, vitamin - амин жизни). Впоследствии, однако, оказалось, что многие вещества этого класса не содержат аминогруппы. Тем не менее, термин "витамины" настолько прочно вошел в обиход, что менять его не уже имело смысла.

После выделения из пищевых продуктов вещества, предохраняющего от заболевания бери-бери, был открыт ряд других витаминов. Большое значение в развитии учения о витаминах имели работы Гопкинса, Степпа, Мак-Коллума, Мелэнби и многих других учёных.

В настоящее время известно около 20 различных витаминов. Установлена и их химическая структура; это дало возможность организовать промышленное производство витаминов не только путём переработки продуктов, в которых они содержатся в готовом виде, но и искусственно, путём их химического синтеза.

Общее понятие об авитаминозах; гипо- и гипервитаминозы

Болезни, которые возникают вследствие отсутствия в пище тех или иных витаминов, стали называть авитаминозами. Если болезнь возникает вследствие отсутствия нескольких витаминов, её называют поливитаминозом. Однако типичные по своей клинической картине авитаминозы в настоящее время встречаются довольно редко. Чаще приходится иметь дело с относительным недостатком какого-либо витамина; такое заболевание называется гиповитаминозом. Если правильно и своевременно поставлен диагноз, то авитаминозы и особенно гиповитаминозы легко излечить введением в организм соответствующих витаминов.

Чрезмерное введение в организм некоторых витаминов может вызвать заболевание, называемое гипервитаминозом.

В настоящее время многие изменения в обмене веществ при авитаминозе рассматривают как следствие нарушения ферментных систем. Известно, что многие витамины входят в состав ферментов в качестве компонентов их простетических или коферментных групп.

Многие авитаминозы можно рассматривать как патологические состояния, возникающие на почве выпадения функций тех или других коферментов. Однако в настоящее время механизм возникновения многих авитаминозов ещё неясен, поэтому пока ещё не представляется возможности трактовать все авитаминозы как состояния, возникающие на почве нарушения функций тех или иных коферментных систем.

С открытием витаминов и выяснением их природы открылись новые перспективы не только в предупреждении и лечении авитаминозов, но и в области лечения инфекционных заболеваний. Выяснилось, что некоторые фармацевтические препараты (например, из группы сульфаниламидных) частично напоминают по своей структуре и по некоторым химическим признакам витамины, необходимые для бактерий, но в то же время не обладают свойствами этих витаминов. Такие "замаскированные под витамины" вещества захватываются бактериями, при этом блокируются активные центры бактериальной клетки, нарушается её обмен, и происходит гибель бактерий.

Источник: http://www.gettyimages.com

Витамины и антивитамины: двойники и соперники

Эти вещества могут свести на нет действие витаминов и привести к авитаминозу. А могут стать основным средством лечения многих болезней. Встречайте: антивитамины.


Эти вещества могут свести на нет действие витаминов и привести к авитаминозу. А могут стать основным средством лечения многих болезней. Встречайте: антивитамины.

Привычная ситуация: разрезали яблоко пополам - себе и ребенку. Вы свою половинку съели сразу, а ребенок мусолит, его часть яблока потихоньку темнеет. «Это же натуральная аскорбинка!» - увещеваете вы, но на самом деле витамина С там почти не осталось. Под воздействием света в яблоке вырабатывается аскорбиназа - вещество, сходное по химической структуре с витамином С, но обладающее противоположным действием. Оно вызывает окисление витамина С и его разрушение.

ДВЕ СТОРОНЫ ОДНОЙ МЕДАЛИ

Аскорбиновая кислота и аскорбиназа - самый яркий пример существования витаминов и антивитаминов. Такие вещества имеют схожую химическую структуру и абсолютно противоположные свойства.

В организме витамины превращаются в коферменты и вступают во взаимодействие со специфическими белками, таким образом регулируя различные биохимические процессы. Причем все роли расписаны заранее: витамин может встроиться лишь в соответствующий ему белок. Последний, в свою очередь, выполняет строго определенную функцию, не допуская никаких замен.

Антивитамины также превращаются в коферменты, только ложные. Специфические белки не замечают подмены и пытаются осуществлять привычные функции. Но это уже невозможно: действие витаминов может полностью или частично блокироваться, их биологическая активность снижается или вовсе сводится на нет. Процессы обмена веществ останавливаются.

Более того, сейчас уже известно, что антивитамины не просто тормозят биохимические процессы в организме. В некоторых случаях они изменяют химическую структуру витаминов , и тогда ложный кофермент начинает играть свою собственную биохимическую роль. В этом возможны и плюсы.

ИЗ МИНУСОВ В ПЛЮСЫ

Антивитамины открыли случайно, когда ученые пытались усилить биологические свойства витамина В9 (фолиевой кислоты), который активизирует процессы . Но в результате различных химических процессов витамин В9 преобразовался, утратил свои привычные свойства, зато приобрел новые - стал тормозить рост раковых клеток.

Также благодаря случаю был обнаружен и дикумарин - антагонист витамина К. Оба эти вещества участвуют в процессах кроветворения, только витамин К способствует свертываемости крови, а дикумарин нарушает ее. Теперь это его свойство используют для лечения соответствующих заболеваний. За последние десятилетия химики синтезировали сотни производных витаминов, и у многих были обнаружены антивитаминные свойства. Так, незначительно изменив химическую структуру пантотеновой кислоты, обеспечивающей клетки энергией, химики получили антивитамин В3, который оказывает успокаивающее действие.

Эксперименты на животных показали, что соевые бобы содержат белковые соединения, полностью разрушающие , кальций и фосфор, провоцируя развитие рахита. Но при нагревании соевой муки действие антивитаминов нейтрализуется. Применение этой антагонистической пары в медицине - вопрос времени.

ВИТАМИННЫЙ КОНФЛИКТ

Интересно, что подобные антиподы есть у всех витаминов. И рекомендации по правильному питанию просто обязаны учитывать возможные витаминные конфликты.

* Взять тот же витамин С, который содержится в большинстве свежих овощей и фруктов. Стоит нарезать салат и оставить его на некоторое время на столе либо выжать сок и оставить его в бокале, как в процессы вступает аскорбиназа. В результате теряется до 50% витамина С. Так что все это полезнее съедать сразу после приготовления.

* Витамин В1 (тиамин) отвечает за процессы роста и развития, помогает поддерживать работу сердца, нервной и пищеварительной систем. Но все его положительные свойства разрушает тиаминаза. Этого вещества много в сырых продуктах: в основном в пресноводной и морской рыбе, а также в рисе, шпинате, картофеле, вишне, чайном листе. Так что у фанатов есть риск заработать дефицит витамина В1.

* Сырая фасоль нейтрализует действие витамина Е, так же как и соя. Вообще именно в сырых продуктах особенно много антивитаминов.

* Еще один очень популярный антивитамин, о котором многие даже не догадываются, - это кофеин. Он мешает усвоению витаминов С и группы B. Чтобы разрешить этот конфликт, чай или кофе лучше пить через час-полтора после еды.

* Родственные имеют биотин (витамин Н) и авидин. Первый отвечает за здоровую кишечную микрофлору и стабилизирует уровень сахара в крови, второй препятствует его всасыванию. Оба вещества содержатся в яичном желтке, но авидин - лишь в сыром яйце (он разрушается при нагревании). Поэтому при диабете или проблемах с кишечной микрофлорой яйца нужно варить вкрутую, а не «в мешочек».

* Если в вашем рационе много , фасоли, сои, грецких орехов, шампиньонов и вешенок, коровьего молока и говядины, то возникает риск дефицита витамина РР (ниацина). Все названные продукты богаты его антиподом - аминокислотой лейцином.

* Витамин А (ретинол) хоть и относится к жирорастворимым, но плохо усваивается при избытке маргарина и кулинарных жиров. Когда готовите печенку, рыбу, яйца и другие продукты, богатые ретинолом, используйте минимальное количество жира, желательно оливкового или сливочного масла.

Антивитаминами называют вещества, которые различными способами нарушают биохимическое использование витаминов живой клеткой, что приводит к состоянию недостаточности какого-либо определенного витамина или группы витаминов. Развитие исследований в области химиотерапии, питания микроорганизмов, животных и человека, установление химической структуры витаминов создали реальные возможности для уточнения наших представлений об антагонизме веществ также в области витаминологии. Вместе с тем открытие антивитаминов способствовало более полному и углубленному изучению физиологического действия самих витаминов, так как применение в эксперименте антивитамина приводит к выключению действия витамина и соответствующим изменениям в организме; это в известной степени расширяет наши познания о функциях, которые тот или другой витамин несет в организме.

Антивитамины можно разделить на две основные группы.

  • К первой группе относятся химические вещества, которые инактивируют витамин путем его расщепления, разрушения или связывания его молекул в неактивные формы.
  • Ко второй группе относятся химические вещества структурно-подобные или структурно-родственные витаминам. Эти вещества вытесняют витамины из биологически активных соединений и, таким образом, делают их неактивными.

В результате действия антивитаминов обеих групп нарушается нормальное течение процесса обмена веществ в организме.

В качестве примера действия антивитаминов первой группы можно привести следующее. Как указывалось выше, определенная альбуминовая фракция сырого яичного белка, называемая авидином, обладает способностью связываться с витамином Н (биотином); при этом образуется биологически неактивное, т.е. уже не имеющее свойств витамина Н, вещество, называемое биотин-авидином. Это вещество не растворимо в воде и не всасывается кишечником, значит не может быть использовано организмом. Следовательно, авидин является антивитамином по отношению к биотину.

Другим примером могут служить различные "витаминазы", которые разрушают, расщепляют соответствующие витамины; так, термолабильный фермент тиаминаза разрушает витамин В 1 отделяя от его структуры два кольца - пиримидиновое и тиазольное.

Тиаминаза была выделена из сырых внутренностей рыб: карпа, форели, макрели, трески и сельди. Для человека реальную опасность в этом отношении представляют сырые моллюски, например устрицы, используемые в пищу в некоторых странах, так как они содержат тиаминазу.

Другой фермент - аскорбиназа - разрушает аскорбиновую кислоту, а фермент липоксидаза, содержащийся в некоторых соевых бобах, катализирует деструкцию каротина. Таким образом, ферменты - тиаминаза, аскорбиназа, липоксидаза - являются соответственно антивитаминами по отношению к тиамину, аскорбиновой кислоте, каротину.

Антивитамины второй группы, т. е. структурные аналоги витаминов могут оказывать существенное влияние на процессы обмена в организме. Развитие учения об антивитаминах было начато в исследованиях Woods и Fildes, которые на примерах антагонистического действия между сульфаниламидными препаратами и пара-аминобензойной кислоты разработали теорию, сущность которой заключается в следующем.

В каждом организме находятся вещества, которые входят в состав живой клетки и регулируют нормальный ход обменных реакций организма, поэтому данные вещества совершенно необходимы для организма. К ним относятся витамины, гормоны, аминокислоты, минеральные соединения. Однако известно большое число химически родственных веществ (большей частью изготовленных искусственно), которые не обладают биологически активными свойствами, а, наоборот, во многих случаях ограничивают или совершенно уничтожают действие витаминов, т. о. обладают антагонистическим действием. По отношению к витамину эти вещества являются антивитаминами. Антагонизм между витамином и антивитамином может иметь конкурирующий и неконкурирующий характер. При конкурирующем антагонизме родственные по своей химической структуре вещества - антивитамины - вытесняют витамины из их соединений со специфическими ферментами.

Примером конкурирующего антагонизма являются взаимоотношения между пара-аминобензойной кислотой и сульфаниламидами.

Известно, что пара-аминобензойная кислота является для ряда микроорганизмов важным метаболитом и образует в качестве коэнзима со специфическим белком фермента биологически активную ферментную систему. Сульфаниламиды, обладающие химической структурой, сходной с пара-аминобензойной кислотой, вытесняют ее из этой ферментной системы, замещают собой и в результате образуют с теми же специфическими белками ферментов новые системы, однако уже биологически неактивные. Этим объясняется бактериостатическое действие сульфаниламидов на некоторые бактерии.

При добавлении к культуре бактерий, выращиваемых на определенной среде сульфаниламидов, наблюдается остановка или задержка роста бактерий. Если после этого к "инактивированным" бактериям добавить пара-аминобензойную кислоту, то рост бактерий возобновляется. Таким образом, проявляется, по-видимому, конкурентное действие между витамином и антивитамином за обладание биологически активными ферментными системами. При этом следует учитывать, что если микроорганизмы способны сами синтезировать в достаточном количестве пара-аминобензойную кислоту, то бактериостатического действия на них сульфаниламидов не проявляется. Этим, возможно, объясняется тот факт, что некоторые микробы не чувствительны к сульфаниламидным препаратам. Аналогичными антагонистическими свойствами обладают амид никотиновой кислоты и пиридин-3-сульфоновая кислота (также ацетил-3-пиридин), тиамин и пиритиамин и многие другие.

Некоторые антивитамины обладают слабым антагонистическим действием по отношению к витаминам. Так, упомянутая пиридин-3-сульфоновая кислота оказывает слабое бактериостатическое действие на золотистого стафилококка, рост которого стимулируется никотиновой кислотой или ее амидом. Другой антивитамин - ацетил-3-пиридин, наоборот, обладает выраженным антагонистическим действием по отношению к никотиновой кислоте. В опытах, проводимых на собаках и мышах, введение ацетил-3-пиридина вызывало у животных отчетливые симптомы РР-витаминной недостаточности, которые предупреждались или ликвидировались при дополнительном введении препаратов никотиновой кислоты. В наблюдениях Aykroyd и Swaminathan (цит. по С.М. Рыссу) было подтверждено, что содержащийся в некоторых злаках ацетил-3-пиридин может вызывать пеллагру у людей. В этом наблюдении одна группа лиц, получавшая определенную диету без злаков и 5 мг никотиновой кислоты, не заболевала пеллагрой. Другая группа получала к той же диете 15 мг никотиновой кислоты с добавлением злаков и заболевала пеллагрой. Из злаков был выделен ацетил-3-пиридин, который является аналогом никотиновой кислоты и действовал в качестве фактора, провоцировавшего развитие пеллагры.

Другой антивитамин - пиритиамин - производное тиамина (в котором тиазоловое кольцо замещено пиридиновой группировкой), при добавлении к пище вызывает явления B 1 -авитаминоза. При дополнении витамина В 1 к диете, содержащей пиритиамин, явления В 1 -авитаминоза не развиваются; вместе с тем витамин В 1 излечивал животных, у которых в результате введения пиритиамина развивался тяжелый B 1 -авитаминоз. Из других химических аналогов витамина В 1 , которые способны также действовать как антивитамины, следует указать на окситиамин, хлордиметилтиамин и бутилтиамин, которые представляют собой модификацию тиаминового кольца и соединения, в которых тиазоловое кольцо замещено пиридиновым, более или менее видоизмененным.

Установлено, что ауэромицин и террамицин, химическая формула которых близка к рибофлавину, способны замещать этот витамин в реакциях обмена и, таким образом, инактивировать его действие и вызывать гипо- или арибофлавиноз.

Существует ряд антивитаминов, которые угнетают действие рибофлавина, обладая сходной с ним химической структурой, например изорибофлавин, диэтилрибофлавин, дихлорорибофлавин и др. Вместе с тем некоторые вещества с противомалярийным действием, в особенности акрихин, хинин и близкие им соединения, хотя и не обладают структурным сходством с рибофлавином, все же угнетают его влияние на рост некоторых бактерий. Обнаружено, что акрихин и хинин угнетают активность рибофлавиновых энзимных систем, что позволяет предположить наличие и в этом случае конкурентных взаимоотношений между упомянутыми противомалярийными веществами и витамином В 2 . Возможно, что в данном случае проявляется другая форма антагонизма (неконкурентная). Некоторые вещества угнетают ферментные системы, которые способствуют фосфорилированию рибофлавина (например, монойодуксусная кислота, рибофлавин-5-фосфорная кислота и др.). Существует предположение, что антивитаминные свойства акрихина и хинина зависят от этого свойства.

Известны также антивитамины пиридоксина - 4-дезоксипиридоксаль, 5-дезоксипирндоксаль и метаоксипиридоксаль.

Ряд противотуберкулезных препаратов, представляющих собой гидразид изоникотиновой кислоты и его производные (тубазид, фтивазид, салюзид, метазид и др.), обладает антагонистическими свойствами по отношению к пиридоксину. Вызываемое этими препаратами побочное действие устраняется введением витамина В 6 . Имеются данные (Makino) об антагонистическом действии пиримидиновой части тиамина на пиридоксин. Введение этого вещества вызывает явления тяжелой интоксикации, ведущей к гибели животных. Это токсическое действие устраняется, если животным ввести пиридоксин. Особенно сильным антагонистом пиридоксальфосфата является фосфорилированный пиримидин.

Структурным аналогом аскорбиновой кислоты является глюкоаскорбиновая кислота, которая инактивирует ее. Мыши, как известно, не нуждаются в витамине С (он синтезируется у них в организме) и не болеют цингой. Однако введение мышам с пищей глюкоаскорбиновой кислоты вызывает у животных цингу, излечиваемую аскорбиновой кислотой.

Примером неконкурирующего антагонизма может служить следующее. Для абсорбции витамина В 12 необходим внутренний антианемический фактор Касла. Обнаружено, что свинец угнетает активность этого фактора. Вследствие блокирования фактора Касла у экспериментальных животных при введении свинца развивается сначала гипохромная, а затем гиперхромная анемия, т. е. В 12 -авитаминоз. Введение витамина В 12 в короткий срок восстанавливает у животных нормальный состав крови (при одновременном прекращении дачи свинца). Аналогичный антагонизм наблюдается между свинцом и фолиевой кислотой.

Другим примером неконкурирующего антагонизма являются витамин К и дикумарин. Первый, как известно, повышает способность крови свертываться, второй, наоборот, снижает эту способность крови. Оба свойства этих антагонистов - витамина и антивитамина - широко используются в медицинской практике.

Познание веществ, которые способны различными методами нарушать нормальную функцию витаминов в живой клетке, привело к более глубокому пониманию межуточного обмена у человека. Выяснение вопросов, относящихся к проблеме антиметаболитов, открывает большие перспективы в медицинской практике - возможность изыскания и получения новых химических веществ, специфически действующих при определенных патологических состояниях.