Осложнения нейротрофические. Симптомокомплексы повреждений различных отделов спинного мозга

Нарушение нервной трофики. Нейродистрофический процесс

Трофика клетки и дистрофический процесс. Трофика клетки - комплекс процессов, обеспечивающих ее жизнедеятельность и поддержание генетически заложенных свойств. Расстройство трофики представляет собой дистрофию, развивающиеся дистрофические изменения составляют дистрофический процесс.

Нейродистрофический процесс. Это развивающееся нарушение трофики, которое обусловлено выпадением или изменением нервных влияний. Оно может возникать как в периферических тканях, так и в самой нервной системе. Выпадение нервных влияний заключается: 1) в прекращении стимуляции иннервируемой структуры в связи с нарушением выделения или действия нейромедиатора; 2) в нарушении секреции или действия комедиаторов - веществ, которые выделяются вместе с нейромедиаторами и играют роль нейромодуляторов, обеспечивающих регуляцию рецепторных, мембранных и метаболических процессов; 3) в нарушении выделения и действия трофогенов. Трофогены (трофины) - вещества различной, преимущественно белковой природы, осуществляющие собственно трофические эффекты поддержания жизнедеятельности и генетически заложенных свойств клетки. Источником трофогенов являются: 1) нейроны, из которых трофогены поступают с антероградным (ортоградным) аксоплазматическим током в клетки-реципиенты (другие нейроны или иннервируемые ткани на периферии); 2) клетки периферических тканей, из которых трофогены поступают по нервам с ретроградным аксоплазматическим током в нейроны (рис. 21-3); 3) глиальные и шванновские клетки, которые обмениваются с нейронами и их отростками трофическими веществами. Вещества, играющие роль трофогенов, образуются также из сывороточных и иммунных белков. Трофическое воздействие могут оказывать некоторые гормоны. В регуляции трофических процессов принимают участие пептиды, ганглиозиды, некоторые нейромедиаторы.

К нормотрофогенам относятся различного рода белки, способствующие росту, дифференцировке и выживанию нейронов и соматических клеток, сохранению их структурного гомеостаза (например, фактор роста нервов).

В условиях патологии в нервной системе вырабатываются трофические вещества, вызывающие устойчивые патологические

Рис. 21-3. Трофические связи мотонейрона и мышцы. Вещества из тела мотонейрона (МН), его мембраны 1, перикариона 2, ядра 3 транспортируются с антероградным аксоплазматическим током 4 в терминаль 5. Отсюда они, а также вещества, синтезируемые в самой терминали 6, поступают транссинаптически через синаптическую щель (СЩ) в концевую пластинку (КП) и в мышечное волокно (МВ). Часть неиспользованного материала поступает обратно из терминали в тело нейрона с ретроградным аксоплазматическим током

7. Вещества, образующиеся в мышечном волокне и концевой пластинке, поступают транссинаптически в обратном направлении в терминаль и далее с ретроградным аксоплазматическим током 7 в тело нейрона - к ядру

8, в перикарион 9, к мембране дендритов 10. Некоторые из этих веществ могут поступать из дендритов (Д) транссинаптически в другой нейрон через его пресинаптическое окончание (ПО) и из этого нейрона далее в другие нейроны. Между нейроном и мышцей происходит постоянный обмен веществами, поддерживающими трофику, структурную целостность и нормальную деятельность обоих образований. В этом обмене принимают участие глиальные клетки (Г). Все указанные образования создают регионарную трофическую систему (или трофический контур)

изменения клеток-реципиентов (патотрофогены, по Г.Н. Крыжановскому). Такие вещества синтезируются, например в эпилептических нейронах - поступая с аксоплазматическим током в другие нейроны, они могут индуцировать у этих нейронов-реципиентов эпилептические свойства. Патотрофогены могут распространяться по нервной системе, как по трофической сети, что является одним из механизмов распространения патологического процесса. Патотрофогены образуются и в других тканях.

Дистрофический процесс в денервированной мышце. Синтезируемые в теле нейрона и транспортируемые в терминаль с аксоплазматическим током вещества, выделяются нервным окончанием и поступают в мышечные волокна (см. рис. 21-3), выполняя функцию трофогенов. Эффекты нейротрофогенов видны из опытов с перерезкой двигательного нерва: чем выше произведена перерезка, т.е. чем больше сохранилось трофогенов в периферическом отрезке нерва, тем позднее наступает денервационный синдром. Нейрон вместе с иннервируемой им структурой (например, мышечным волокном) образует регионарный трофический контур, или регионарную трофическую систему (см. рис. 21-3). Если осуществить перекрестную реиннервацию мышц с разными исходными структурно-функциональными характеристиками (реиннервация «медленных» мышц волокнами от нейронов, иннервировавших «быстрые» мышцы, и наоборот), то реиннервированная мышца приобретает в значительной мере новые динамические характеристики: «медленная» становится «быстрой», «быстрая» - «медленной».

В денервированном мышечном волокне возникают новые трофогены, которые активируют разрастание нервных волокон (sprouting). Указанные явления исчезают после реиннервации.

Нейродистрофический процесс в других тканях. Взаимные трофические влияния существуют между каждой тканью и ее нервным аппаратом. При перерезке афферентных нервов возникают дистрофические изменения кожи. Перерезка седалищного нерва, который является смешанным (чувствительным и двигательным), вызывает образование дистрофической язвы в области скакательного сустава (рис. 21-4). С течением времени язва может увеличиться в размерах и охватить всю стопу.

Классический опыт Ф. Мажанди (1824), послуживший началом разработки всей проблемы нервной трофики, заключается в перерезке у кролика первой ветви тройничного нерва. В результа-

те такой операции развивается язвенный кератит, вокруг язвы возникает воспаление, и со стороны лимба в роговицу врастают сосуды, которые в ней в норме отсутствуют. Врастание сосудов является выражением патологического растормаживания сосудистых элементов - в дистрофически измененной роговице исчезает фактор, который тормозит в норме рост в нее сосудов, и появляется фактор, который активирует этот рост.

Дополнительные факторы нейродистрофического процесса. К факторам, участвующим в развитии нейродистрофического процесса, относятся: сосудистые изменения в тканях, нарушения гемо- и лимфомикроциркуляции, патологическая проницаемость сосудистой стенки, нарушение транспорта в клетку питательных и пластических веществ. Важным патогенетическим звеном является возникновение в дистрофической ткани новых антигенов в результате изменений генетического аппарата и синтеза белка, образуются антитела к тканевым антигенам, возникают аутоиммунный и воспалительный процессы. В указанный комплекс патологических процессов входят также вторичное инфицирование язвы, развитие инфекционных повреждений и воспаления. В целом нейродистрофические поражения тканей имеют сложный многофакторный патогенез (Н.Н. Зайко).

Генерализованный нейродистрофический процесс. При повреждениях нервной системы могут возникать генерализованные формы нейродистрофического процесса. Одна из них проявляется в виде поражения десен (язвы, афтозный стоматит), выпадения зубов, кровоизлияния в легких, эрозии слизистой и кровоизлияния в желудке (чаще в области привратника), в кишечнике, особенно в

области буагиниевой заслонки, в прямой кишке. Поскольку такие изменения возникают сравнительно регулярно и могут иметь место при разных хронических нервных повреждениях, они получили название стандартной формы нервной дистрофии (А.Д. Сперанский). Часто указанные изменения возникают при повреждении высших вегетативных центров, в частности, гипоталамуса (при травмах, опухолях), в эксперименте при наложении стеклянного шарика на турецкое седло.

Все нервы (двигательные, чувствительные, вегетативные), какую бы функцию они ни выполняли, являются одновременно трофическими (А.Д. Сперанский). Нарушения нервной трофики составляют важное патогенетическое звено болезней нервной системы и нервной регуляции соматических органов, поэтому коррекция трофических изменений является необходимой частью комплексной патогенетической терапии.

ПАТОЛОГИЯ НЕЙРОНА

Представляемые в данном ЖЖ обзорные статьи по кортизолу и депрессии были выполнены мной в процессе работы в МНПЦ Психоневрологии (бывш. Клиника Неврозов им. Соловьева), но в связи с экстренным увольнением из этой организации я не успела их опубликовать в официальной медицинской прессе. Данные тексты от первого до последнего слова написаны мной. Их появление где-либо в печати без упоминания моего авторства - это воровство.

Депрессия - одна из ведущих проблем современной медицины
Депрессия признана Всемирной Организацией Здравоохранения одной из 10 важнейших проблем, имеющих международное значение . Помимо негативного влияния на качество жизни, депрессия сопряжена с риском развития целого ряда заболеваний и повышенной смертностью. Так, в многочисленных исследованиях продемонстрирована связь между депрессией и высоким риском ишемической болезни сердца и инфаркта миокарда . В исследованиях исходов хирургических вмешательств депрессия является независимым неблагоприятным прогностическим фактором в течение послеоперационного периода у хирургических больных, и сопряжена с высоким риском осложнений у таких пациентов . Важно, что адекватное лечение депрессии приводит к снижению смертности и заболеваемости у пациентов с депрессией .

Риск неврологических заболеваний также выше у пациентов с депрессией в 2 – 3 раза по сравнению с общей популяцией. В целом ряде исследований было показано, что у пациентов с депрессией чаще развивается эпилепсия , болезнь Паркинсона , инсульты , черепно-мозговые травмы , болезнь Альцгеймера . Повышенный риск неврологических заболеваний у пациентов с депрессией согласуется с данными современных нейровизуализационных исследований, указывающих на характерность дефицита объёма серого и белого вещества головного мозга для таких больных . При этом, по данным исследования J.L. Phillips с соавтор. (2012), на фоне лечения антидепрессантами объём мозга у пациентов с депрессией увеличивается, и данная тенденция коррелирует с улучшением психического статуса.

Симптомы депрессии
Депрессия характеризуется устойчивым подавленным настроением, снижением интереса к миру, неспособностью получать удовольствие, пониженной активностью. Характерными проявлениями депрессии являются ощущения тоски или пустоты, самоуничижение, безразличие, плаксивость. В целом ряде экспериментальных исследований была показана склонность пациентов с депрессией негативно воспринимать нейтральные или даже позитивные стимулы и/или ситуации . В частности, пациенты с депрессией достоверно чаще воспринимают нейтральное выражение лица на портретах как выражение печали или гнева .

В то же время, вегетативные, соматические и психомоторные проявления депрессии могут существенно варьировать. В современной классификации депрессивных расстройств принято выделять два подтипа депрессии. Меланхолическая депрессия характеризуется классическим симптомокомплексом вегетативно-соматических расстройств, включая бессонницу и пониженный аппетит со снижением веса. Атипичная депрессия проявляется противоположными расстройствами: гиперсомнией и повышенным аппетитом с увеличением веса. Несмотря на свое название, атипичная депрессия встречается с той же частотой (15-30%), что и «чистая» меланхолическая депрессия (25-30%), при этом для большинства пациентов характерен смешанный паттерн депрессивных расстройств . Более того, паттерн депрессивных расстройств может меняться у одного и того же пациента на протяжении жизни. В целом, «атипичный» паттерн депрессивных расстройств характерен для более тяжело протекающих депрессивных расстройств и чаще встречается у женщин .

Хотя для обоих типов депрессии характерна психомоторная заторможенность, в ряде случаев депрессия может сопровождаться психомоторным возбуждением (ажитированная депрессия). Следует также отметить, что депрессивные расстройства у лиц, злоупотребляющих психоактивными веществами, также имеют особенности, в частности для таких пациентов не характерны чрезмерное чувство вины и самоуничижение. Важно, что в большинстве современных исследований подтипы депрессии не выделяются и, соответственно, несовпадение результатов сходных по дизайну исследований может определяться различиями в пропорциях депрессии разного типа.

Депрессия сопряжена с перенапряжением систем стрессорного ответа
В настоящее время общепризнанно, что негативные последствия депрессии связаны с перенапряжением физиологических систем стрессорного ответа. В стрессовой ситуации происходит мобилизация всех необходимых ресурсов организма, и основными триггерами такой мобилизации являются активация симпато-адреналовой вегетативной системы (быстрый компонент стрессорного ответа) и активация гипоталамо-гипофизарно-надпочечниковой оси (медленный компонент стрессорного ответа) . Классическими компонентами стрессорного ответа являются повышение артериального давления, учащение сердечного ритма, повышение концентрации глюкозы и повышение скорости коагуляционных процессов в крови . Стрессорный ответ включает также существенные изменения в клеточном и белково-липидном составе периферической крови . Таким образом, мобилизация ресурсов в ответ на острый стресс приводит к переходу организма на особый режим функционирования, обозначаемый в соответствующей литературе как состояние «аллостаза» [Судаков, Умрюхин, 2009; Dowd et al., 2009; Morris et al., 2012], противопоставляемый режиму «гомеостаза», при котором преобладают восстановительные метаболические процессы.

Затяжной стресс приводит к адаптивным, а затем и патологическим изменениям в организме, обозначаемым термином «аллостатическая нагрузка» [Судаков, Умрюхин, 2009; Dowd et al., 2009; Morris et al., 2012]. Чем длительнее хронический стресс и, соответственно, больше напряжены системы стрессорного ответа, тем более выражены такие биологические маркеры аллостатической нагрузки как повышение систолического и диастолического артериального давления, абдоминальное ожирение, повышение концентрации общего холестерина и снижение концентрации холестерина высокой плотности, снижение толерантности к глюкозе и повышение уровня гликозилированного гемоглобина, повышение суточного кортизола, адреналина и норадреналина в моче . Длительное пребывание огранизма в состоянии «аллостаза» сопровождается повреждением тканей и органов в том числе и в связи с недостаточностью метаболических процессов, направленных на поддержание гомеостаза.

Отрицательные эмоции являются неотъемлемой составляющей ответа нервной системы на стрессирующие стимулы и события [Судаков, Умрюхин, 2009]. Даже на фоне умеренных повседневных стрессорных нагрузок происходят закономерные изменения в эмоциональной сфере. Так в исследовании N. Jacobs с соавтор. (2007) было показано, что на фоне повышения уровня бытового стресса (выполнение неинтересной и требующей усилий работы и т.д.) снижается уровень положительных эмоций и возрастает уровень отрицательных эмоций и возбуждения. В исследовании T. Isowa с соавтор. (2004) стрессорные нагрузки также приводили к достоверному повышению уровня ситуационной тревоги и физическому и умственному утомлению у здоровых испытуемых.

В последние годы значительная часть исследований неблагоприятных последствий острого и хронического стресса, а также депрессии была сфокусирована на роли гипоталамо-гипофизарно-надпочечниковой системы как одного из ведущих медиаторов стрессорного ответа . Из всех гормонов данной системы в наибольшей степени изучены эффекты кортизола как в связи с широтой его регуляторных влияний на структуры и функции организма, так и из-за доступности его измерений. В настоящем аналитическом обзоре литературных данных мы суммировали наиболее важные результаты исследований влияния кортизола на функции и нейротрофические процессы в центральной нервной системы как в физиологических условиях, так и в условиях хронического стресса и у пациентов с депрессией и/или тревожными расстройствами.


Особенности регуляции секреции кортизола при депрессии
Аномалии функционирования гипоталамо-гипофизарно-надпочечниковой системы у больных депрессией изучались в многочисленных исследованиях . В целом, у больных c депрессией значительно чаще регистрируются отклонения в суточном ритме секреции кортизола, гиперактивность и/или сниженная реактивность гипоталамо-гипофизарно-надпочечниковой системы по сравнению с нормальным контролем. Тем не менее, первоначальные надежды на высокую специфичность и чувствительность тестов, оценивающих функции гипоталамо-гипофизарно-надпочечниковой системы, как метода диагностики депрессии не оправдались. На данном этапе также не было получено однозначных подтверждений различий функционирования гипоталамо-гипофизарно-надпочечниковой системы при меланхолическом и атипичном типах депрессии .

Гиперкортизолемия в утренние часы характерна как для пациентов с депрессией, так и для здоровых испытуемых, предрасположенных к развитию депрессии . Примерно у 50% пациентов с депрессией гиперкортизолемия выявляется также в вечернее время . Исследование содержания кортизола в волосах также указывает на характерность хронической гиперкортизолемии для пациентов с депрессией .

По данным различных исследований, отсутствие ингибирующего влияния дексаметазона на концентрацию кортизола выявляется в среднем у 30-60% пациентов с депрессивным расстройством . Частота положительной дексаметазоновой пробы варьирует в зависимости от тяжести депрессивных расстройств. Так, в исследовании, включавшем амбулаторных пациентов с депрессией, частота положительного результата дексаметазонового теста составляла всего лишь 12%, в то время как в популяциях пациентов с психотическими формами депрессии отсутствие ингибирующего влияния дексаметазона регистрировалось в 64 – 78% случаев . Данный тест не является высоко специфичным для депрессии, как предполагалось ранее, и может демонстрировать сходные результаты на фоне голодания или других стрессогенных событий . Отсутствие ингибирующего влияния дексаметазона на секрецию кортизола трактуется исследователями как проявление резистентности глюкокортикоидных рецепторов .

Назначение кортиколиберина чаще индуцирует гиперпродукцию АКТГ с последующей гиперкортизолемией у пациентов с депрессией по сравнению со здоровым контролем, что также указывает на чрезмерную активацию гипоталамо-гипофизарно-надпочечниковой системы у таких больных . По данным некоторых исследований, эта тенденция в большей степени характерна для атипичной депрессии по сравнению с меланхолической . В последние годы стала активно использоваться модифицированная дексаметазоново-кортиколибериновая проба, когда после введения дексаметазона в 23 часов накануне, после определения уровня кортизола на следующие сутки назначается кортиколиберин с измерением уровня кортизола в течение нескольких последующих часов .

В настоящее время исследуется гипотеза о постепенной модификации функционирования гипоталамо-гипофизарно-надпочечниковой системы по мере увеличения продолжительности депрессивного расстройства . Экспериментальные исследования на животных указывают на преимущественное значение кортиколиберина как индуктора секреции АКТГ – кортизола в острой фазе заболевания с последующим переходом к преимущественно вазопрессиновую регуляцию активности гипоталамо-гипофизарно-надпочечниковой системы в хронической стадии заболевания. Таким образом, у пациентов с продолжительной депрессией и вазопрессин-индуцируемой гиперкортизолемией сохраняется возможность острого стрессорного ответа с дальнейшим увеличением секреции кортизола на фоне острой активации кортиколибериновой регуляции секреции АКТГ.

Наличие двух независимых друг от друга систем регуляции секреции АКТГ – кортизола, по мнению исследователей, объясняет несоответствие результатов исследований в этой области, в настоящее время оценивающих преимущественно активность кортиколиберинового звена . Авторы рекомендуют оценивать длительность и тяжесть депрессивного расстройства, тип депрессии (меланхолический, атипичный), а также индивидуальные характеристики пациентов как ковариаты функционирования гипоталамо-гипофизарно-надпочечниковой системы у пациентов с депрессией.

Учитывая данные о неблагоприятном эффекте гиперкортизолемии на выраженность депрессивных переживаний, предпринимались попытки оценить эффективность блокады глюкокортикоидных рецепторов как метода лечения депрессии . Предварительные данные подобных исследований свидетельствуют о необходимости учета состояния гипоталамо-гипофизарно-надпочечниковой системы до начала лечения, поскольку индивидуальные эффекты блокады глюкокортикоидных рецепторов существенно варьируют от значительного улучшения до значительного ухудшения эмоциональных расстройств.

В целом ряде исследований была выявлена дисфункция гипоталамо-гипофизарно-надпочечниковой оси также у пациентов с тревожными расстройствами . Однако, результаты исследований в этой области противоречивы: часть исследований показала чрезмерную гиперактивность гипоталамо-гипофизарно-надпочечниковой оси при тревожных расстройствах, в то время как в других исследованиях были выявлены достоверно более низкие показатели концентрации кортизола или меньшие изменения концентрации кортизола в ответ на стрессорную нагрузку у пациентов с тревожными расстройствами по сравнению с контролем.
В частности, для популяций пациентов с посттравматическим стрессовым расстройством характерны более низкие показатели концентрации кортизола в крови по сравнению с контролем . По данным ряда исследований, ситуация меняется на протяжении заболевания, для острого периода после стрессового события характерна гиперкортизолемия, в хронической фазе постстрессового расстройства выявляется гипофункция гипоталамо-гипофизарно-надпочечниковой оси. Исследования концентрации кортизола в волосах у пациентов с тревожными расстройствами также указывают на характерность хронически пониженного уровня кортизола для таких пациентов .

Кортизол, нейротрофические факторы и нейрогенез
Синтез нейротрофических факторов в структурах гиппокампа, в первую очередь BDNF (brain-derived neurotrophic factor), снижается на фоне хронического стресса . Данные экспериментальных исследований последовательно указывают на сильное негативное влияние глюкокортикоидов на синтез BDNF в гиппокампе с одной стороны, и усиление синтеза BDNF на фоне хронического назначения антидепрессантов .

В экспериментальных исследованиях было показано, что хронический стресс приводит к выраженным изменениям межнейрональных синаптических связей в гиппокампе, амигдалах, медиальной префронтальной коре со снижением длины и количества отростков дендритов на 16 - 20% . Кроме того, хронический стресс в экспериментальных условиях приводил к снижению нейрогенеза (в норме в гиппокампе взрослой крысы ежедневно рождаются и выживают в течение месяца 9 тыс. нейронов) . Активность микроглиальных клеток также меняется на фоне хронического стресса . Большинство исследователей связывают данные нейроморфологические изменения с неблагоприятными эффектами гиперкортизолемии.

Действительно, хроническое назначение фармакологических глюкокортикоидов приводит к снижению пролиферации и созревания нейронов , а концентрация эндогенных глюкокортикоидов при хроническом стрессе коррелирует с морфологическими изменениями олигодендроцитов мозолистого тела . Укорочение и снижение ветвистости дендритов в гиппокампе и префронтальной коре также регистрировалось после введения синтетических и естественных кортикостероидов в исследованиях на животных .

Гиперкотизолемия ускоряет процессы старения в нервной системе, проявляющиеся снижением количества нейронов и их аксонов, а также снижением плотности кортикостероидных рецепторов . Кроме того, глюкокортикоиды усиливают аккумуляцию бета-амилоида в астроцитах, что может ускорять формирование амилоидных бляшек, характерных для болезни Альцгеймера .

В то же время, данные ряда исследований указывают на позитивное влияние небольших доз кортикостероидов, активирующих минералкортикоидные рецепторы, на нейрогенез . Сходное положительное влияние стимуляции минералокортикоидных рецепторов продемонстрировано в отношении синтеза BDNF . Кроме того, в ряде экспериментальных исследований продемонстрировано усиление нейрогенеза на фоне двухнедельного курса антидепрессантов .

Гиперкортизолемия, нейротрофические изменения и когнитивные нарушения
Гипотрофические изменения в центральной нервной системе в условиях хронического стресса изучались в многочисленных экспериментальных исследованиях . В наибольшей степени изучены неблагоприятные эффекты хронического стресса в отношении структур гиппокампа . В последнее время было продемонстрировано развитие гипотрофии на фоне хронической стрессирующей стимуляции в структурах префронтальной коры и амигдал .
У пациентов с синдромом Кушинга также были выявлены уменьшение объёма гиппокампа и снижение результативности в тестах памяти по сравнению со здоровым контролем . При этом успешное лечение синдрома Кушинга приводит к увеличению структур гиппокампа и улучшению результативности в тестах памяти . Помимо нарушений памяти для пациентов с синдромом Кушинга характерны эмоциональная нестабильность, депрессия, тревога, импульсивность . Следует отметить, что гипертрофия надпочечников с тенденцией к хронической гиперкортизолемией является типичным проявлением хронического стресса [Судаков, Умрюхин, 2009].

Обратная корреляция между выраженностью гиперкортизолемии и объёмом эпизодической памяти продемонстрирована у пациентов с депрессией, при болезни Альцгеймера, а также в популяциях относительно здоровых пожилых людей . В исследовании D.L. Mu с соавтор. (2013) у кардиохирургических пациентов с гиперкортизолемией в первый послеоперационный день была зарегистрирована большая выраженность когнитивных нарушений через неделю после операции по сравнению с контрольной группой с нормальными показателями кортизола.
Прогрессирующее снижение эпизодической памяти с параллельным уменьшением объёма структур гиппокампа у относительно здоровых пожилых людей с гиперкортизолемией было зарегистрировано в лонгитудинальных исследованиях . Кроме того, гиперактивность гипоталамо-гипофизно-адреналовой системы в виде повышенной концентрации АКТГ на фоне стрессирующих событий и увеличенного объёма гипофиза в сочетании с уменьшенным объёмом гиппокампа характерна для популяций с высоким риском развития психотических расстройств .
Синтетические глюкокортикоиды в нормальных условиях хуже проникают через гематоэнцефалический барьер по сравнению с естественными . Тем не менее, существенные нейропсихиатрические проблемы возникают приблизительно у 6% пациентов, получающих кортикостероиды .
Справедливости ради следует отметить, что синдром Аддисона также характеризуется когнитивными нарушениями. Таким образом, неблагоприятное значение имеют как повышенная, так и сниженная активность глюкокортикоидной системы .

Генетические и средовые факторы, модифицирующие эффекты гиперкортизолемии
Индивидуальная чувствительность к эффектам гиперкортизолемии существенно варьирует, и данная вариативность определяется как генетическими, так и средовыми факторами . Важно, что генетический полиморфизм генов глюкокортикоидных и минералокортикоидных рецепторов, а также гена фермента 11β-гидроксистероид-дегидрогеназа-1 встречается относительно редко особенно в азиатских популяциях, что свидетельствует об очень высокой значимости данных генов для нормального функционирования организма . В нескольких исследованиях, изучавших связь полиморфизма генов глюкокортикоидных или минералокортикоидных рецепторов с психиатрическими расстройствами, была продемонстрирована большая частота депрессии у носителей целого ряда аллелей глюкокортикоидных и реже минералокортикоидных рецепторов .

Важно, что стрессогенные факторы во время развития в детском возрасте способны влиять на экспрессию генов глюкокортикоидных рецепторов посредством метилирования (или ацетиляции) ДНК последних, что в дальнейшем существенно влияет на экспрессию данных генов . В частности, было показано, что материнская забота приводит к повышению количества глюкокортикоидных рецепторов, что в свою очередь повышает чувствительность к обратной связи в гипоталамо-гипофизарно-надпочечниковой системе . Несмотря на тот факт, что метилирование ДНК – обратимый процесс , наследование метилированного ДНК возможно, что обеспечивает эпигенетическую передачу характеристик активности гипоталамо-гипофизарно-надпочечниковой системы, как минимум, следующему поколению .

Полиморфизм генов рецептора к кортикотропинлиберину и полиморфизм гена нейротрофического фактора BDNF также способны модифицировать риск развития депрессии на фоне стрессовых событий и, возможно, эффекты гиперкортизолемии. Так, приблизительно 30% популяции имеют аллель Val66Met, и для таких людей характерны повышенный риск депрессии в сочетании с меньшим объемом гиппокампа и эпизодической памяти .

Нейропротективным эффектом обладает также нейростероид дегидроэпиандростерон (ДГЭА) . ДГЭА имеет самую высокую концентрацию в крови по сравнению со всеми остальными стероидами, и его концентрация снижена у пациентов с депрессией. По мнению J. Herbert (2013) более важное прогностическое значение в отношении неблагоприятных эффектов гиперкортизолемии имеет не абсолютное значение концентрации кортизола, а соотношение кортизола и ДГЭА, при этом автор указывает на перспективность изучения ДГЭА как потенциального блокатора нейротрофических изменений на фоне гиперкортизолемии.

Литература

Судаков К.В., Умрюхин П.Е. Системные основы эмоционального стресса. М.: ГЭОТАР-Медиа, 2010.

Aden P, Paulsen RE, Mæhlen J, Løberg EM, Goverud IL, Liestøl K, Lømo J. Glucocorticoids dexamethasone and hydrocortisone inhibit proliferation and accelerate maturation of chicken cerebellar granule neurons. Brain Res. 2011 Oct 18;1418:32-41.

Aiello G, Horowitz M, Hepgul N, Pariante CM, Mondelli V. Stress abnormalities in individuals at risk for psychosis: a review of studies in subjects with familial risk or with "at risk" mental state. Psychoneuroendocrinology. 2012 Oct;37(10):1600-13.

Ballmaier M., Toga A.W., Blanton R.E., Sowell E.R., Lavretsky H., Peterson J., Pham D., Kumar A. Anterior cingulate, gyrus rectus, and orbitofrontal abnormalities in elderly depressed patients: an MRI-based parcellation of the prefrontal cortex. Am. J. Psychiatry 2004; 161: 99 – 108.

Bell-McGinty S., Butters M.A., Meltzer C.C., Greer P.J., Reynolds C.F., Becker J.T. Brain morphometric abnormalities in geriatric depression: long-term neurobiological effects of illness duration. Am J Psychiatry 2002; 159: 1424-1427.

Berardelli R, Karamouzis I, D"Angelo V, Zichi C, Fussotto B, Giordano R, Ghigo E, Arvat E. Role of mineralocorticoid receptors on the hypothalamus-pituitary-adrenal axis in humans. Endocrine. 2013 Feb;43(1):51-8.

Carney R.M., Freedland K.E., Veith R.C. Depression, the autonomic nervous system, and coronary heart disease. Psychosom. Med. 2005; 67 Suppl. 1: S29-33.

Charmandari E, Chrousos GP, Lambrou GI, Pavlaki A, Koide H, Ng SS, Kino T. Peripheral CLOCK regulates target-tissue glucocorticoid receptor transcriptional activity in a circadian fashion in man. PLoS One. 2011;6(9):e25612.

Chen YF, Li YF, Chen X, Sun QF. Neuropsychiatric disorders and cognitive dysfunction in patients with Cushing"s disease. Chin Med J (Engl). 2013 Aug;126(16):3156-60.

Cremers H.R., Demenescu L.R., Aleman A., Renken R., van Tol M.J., van der Wee N.J.A., Veltman D.J., Roelofs K. Neuroticism modulates amygdala-prefrontal connectivity in response to negative emotional facial expressions. Neuroimage 2010; 49: 963-970.

Dowd JB, Simanek AM, Aiello AE. Socio-economic status, cortisol and allostatic load: a review of the literature. Int J Epidemiol 2009;38:1297-1309.

Dubovsky AN, Arvikar S, Stern TA, Axelrod L. The neuropsychiatric complications of glucocorticoid use: steroid psychosis revisited. Psychosomatics. 2012 Mar-Apr;53(2):103-15.

Dunlap KD, Jashari D, Pappas KM. Glucocorticoid receptor blockade inhibits brain cell addition and aggressive signaling in electric fish, Apteronotus leptorhynchus. Horm Behav. 2011 Aug;60(3):275-83.

Fann JR, Burington B, Leonetti A, Jaffe K, Katon WJ, Thompson RS. Psychiatric
illness following traumatic brain injury in an adult health maintenance organization
population. Arch Gen Psychiatry 2004;61:53–61.

Faravelli C, Sauro CL, Godini L, Lelli L, Benni L, Pietrini F, Lazzeretti L, Talamba GA, Fioravanti G, Ricca V. Childhood stressful events, HPA axis and anxiety disorders. World J Psychiatr 2012; 2(1):13-25.

Geerlings MI, Schoevers RA, Beekman AT, et al. Depression and risk of cognitive
decline and Alzheimer"s disease. Results of two prospective community-based
studies in The Netherlands. Br J Psychiatry 2000;176:568–75.

Gilabert-Juan J, Castillo-Gomez E, Pérez-Rando M, Moltó MD, Nacher J. Chronic stress induces changes in the structure of interneurons and in the expression of molecules related to neuronal structural plasticity and inhibitory neurotransmission in the amygdala of adult mice. Exp Neurol. 2011 Nov;232(1):33-40.

Goyal T.M., Idler E.L., Krause T.J., Contrada R.J. Quality of life following cardiac surgery: impact of the severity and course of depressive symptoms. Psychosom. Med. 2005; 67(5); 759-65.

Grant N, Hamer M, Steptoe A. Social isolation and stress-related cardiovascular, lipid, and cortisol responses. Ann Behav Med 2009;37:29-37.

Gur R.C., Erwin R.J., Gur R.E., Zwil A.S., Heimberg C., Kraemer H.C. Facial emotion discrimination: II. Behavioral findings in depression. Psychiatry Research 1992; 42: 241-51.

Осложнения нейротрофические. Повреждения спинною мозга сопровождаются значительной перестройкой функционирования различных тканей и органов, что включается в представление о травматической болезни спинного мозга. Особенно грубые нейротрофические нарушения (НН) возникают в тех тканях и органах, которые получают вегетативную иннервацию из поврежденных сегментов позвоночника - из так называемых вегетативных спинальных центров.

Существенные нейротрофические нарушения возникают в тканях, оказавшихся ниже уровня повреждения спинного мозга. Они не получают адекватную эфферентную иннервацию. Из них не поступает и афферентная импульсация в высшие отделы ЦНС (в ядра гипоталамуса, кору головного мозга), в результате чего нарушается обратная связь с периферией и они лишаются возможности оказывать оптимальную нейрогуморальную регуляцию деятельности указанных тканей.

Нейротрофические нарушения при позвоночно-спинномозговой травме обусловленны также спинальным шоком, который включает рефлекторный аппарат в сегментах спинного мозга, расположенных ниже повреждения и на 2-3 сегмента выше его. Известно, что продолжительные и выраженные нейротрофические нарушения наблюдаются при длительном спинальном шоке, который поддерживается в связи с неустраненным источником раздражения поврежденного мозга.

Особенно грубые нейротрофические нарушения бывают при анатомическом перерыве спинного мозга. Для этого вида поражения характерны так называемые твердые отеки нижних конечностей, гнойно-некротические и язвенные формы колитов, энтероколитов и гастритов, острые желудочно-кишечные кровотечения, нередко приводящие таких больных к смерти, пиелонефриты, циститы. Указанные нейротрофические осложнения позвоночно-спинномозговой травмы (ПСМТ) настолько характерны для анатомического перерыва спинного мозга, что используются в качестве дифференциально-диагностических критериев.

Менее грубые нейротрофические нарушения наблюдаются также при других формах ПСМТ. Нейротрофические изменения в миокарде, наклонность к деструктивным формам пневмонии, дисфункция печени, поджелудочной железы, желудка, кишечника - все эти расстройства должны учитываться клиницистом и соответствующим образом корригироваться медикаментозной терапией. Нужно помнить, что у больных с ПСМТ имеется тенденция к камнеобразованию и в желчных, и в мочевыводящих путях. Этому способствует нарушение эвакуации их содержимого, а также местные нейротрофические нарушения. Поэтому таким больным необходимо назначать не только заместительную терапию, но и средства, препятствующие камнеобразованию.

Влияние нервной системы на реакции метаболизма (а через них - на характер и интенсивность функционирования и пластических процессов) различных органов и тканей (в том числе самих нервных образований) осуществляется либо самим фактом иннервации (регуляция функциональной активности и кровоснабжения иннервируемых структур), либо при помощи механизмов нейротрофического контроля.

Антиноцицептивная система

Концепция нейротрофического контроля заключается в постулировании взаимного регулирования функционального состояния как элементов нервной системы (нейронные пути и сети), так и иннервируемых ими ненервных структур (например, мышечных). Это реализуется при помощи воздействий, отличающихся от присущих нервной системе стандартных механизмов (распространение ПД по аксонам → секреция нейромедиатора в синаптическую щель → взаимодействие нейромедиатора с его рецепторами на постсинаптической мембране → постсинаптический электрогенез).

Механизмы нейротрофического контроля. Нейродистрофический процесс.

В рамках концепции нейротрофического контроля рассматривается несколько возможных механизмов его реализации.

Изменение импульсной активности в аксонах (частота ПД, интервалы между ними). Предполагается, что паттерны (от англ. pattern - образец) импульсов имеют информационное значение и изменяют проницаемость мембран клеток для ионов.

Образование специальных нейротрофических факторов («трофогенов»), транспортируемых по отросткам нервных клеток, секретируемых в синаптическую щель и взаимодействующих с постсинаптическими партнёрами.

Изменение величины ПП, ПД и,как следствие, уровня функционирования постсинаптического партнёра (старая идея атрофии органа от неупотребления).
Сохранение интактной синаптической передачи - состояния иннервированности . Развитие денервационного синдрома после повреждения нерва или блокады аксонного транспорта в нём является серьёзным следствием нарушения этого механизма.

Вероятные механизмы влияния нервной системы на обмен веществ в клетках.

Нейродистрофический процесс

Нарушение трофической функции нервной системы составляет патогенетическую основу нейродистрофического процесса. Нейродистрофический процесс может возникать как в периферических органах и тканях, так и в самой нервной системе. В типичном варианте нейродистрофический процесс развивается при денервационном синдроме.

Денервационный синдром.

Проявления денервационного синдрома (на примере денервации скелетной мышцы) представлены на рисунке.

Дисферментоз. Происходят изменения нормального спектра ферментов в клетке, их экспрессии, активности, появления или исчезновения изоферментов.
- «Эмбрионизация» обмена веществ. Реакции метаболизма приобретают свойства и признаки, характерные для ранних этапов развития организма (например, снижение активности процессов окисления, доминирование реакций анаэробного гликолиза, активация пентозного цикла).
- Ультраструктурные изменения клеточных элементов (прежде всего - мембран). При электронно-микроскопических исследованиях находят признаки набухания и разрушения крист митохондрий, лабилизации мембран лизосом, нарушения селективной проницаемости плазмолеммы.

Дистрофии и дисплазии различного характера вследствие нарушений экспрессии отдельных генов и расстройств метаболизма.

Действие аутоагрессивных AT, Т-клеток, макрофагов.

Гиперсенситизация денервированных структур к недостающему нейромедиатору. Так, в скелетных мышечных волокнах увеличен синтез рецепторов ацетилхолина. Рецепторы встраиваются не только в плазмолемму области постсинаптической мембраны, но и по всей поверхности мышечного волокна.

Типовые расстройства в постсинаптических структурах при нарушении аксонного транспорта.

Нарушения нейротрофической регуляции других органов при их денервации выражены в меньшей степени. При этом отмечается инертность механизмов гуморального контроля. Это сужает диапазон компенсаторных возможностей денервированного органа, особенно в условиях его функциональной нагрузки или повреждения. Такие же особенности наблюдаются и в трансплантированных органах (сердце, почки, печень).

Существенно, что при денервации снижается резистентность денервированного органа или ткани к повреждающим факторам: инфекции, механической травме, температурным и другим воздействиям.

Деафферентация.

Нейтрофические расстройства возникают не только при денервационном синдроме. Они развиваются при повреждении и афферентных структур нервной системы. Так, деафферентация, вызванная перерезкой чувствительного нерва, может приводить к не менее выраженным трофическим нарушениям в органе, чем его эфферентная денервация.
Нейродистрофические процессы являются компонентом практически всех форм патологии человека, обусловленных как функциональными расстройствами, так и органическими повреждениями нервной системы. Они проявляются не только изменениями функциональной активности органов, но и грубыми отклонениями в их структуре (атрофией, эрозиями, изъязвлениями, малигнизацией).

===============================================================================

Нейродистрофический процесс

Нейродистрофический процесс возникает в разных органах и тканях (в том числе и в самой нервной системе) в результате выпадения или нарушения различных нервных влияний со стороны афферентных, ассоциативных и эфферентных нейронов (их тел и отростков) соматической и автономной нервной системы.

В основе нейродистрофического процесса лежат следующие изменения.

Возникают расстройства синтеза, секреции и/или действия нейромедиаторов, комедиаторов (веществ, выделяющихся вместе с нейромедиаторами и играющих роль нейромодуляторов, которые обеспечивают регуляцию рецепторных и мембранных эффектов и участвуют в регуляции метаболических процессов) и трофогенов (макромолекулярных веществ, главным образом пептидов, осуществляющих собственно трофические влияния на нервные клетки и иннервируемые ими ткани). Трофогены (трофины, нейротрофические факторы) образуются главным образом в нейронах (поступают в клетки-мишени, движутся антероградным способом с аксоплазматическим током нейрона), глиальных и шванновских клетках, а также в клетках-мишенях тканей и органов (движутся ретроградным способом). Трофогены могут образовываться из белков крови и клеток иммунной системы. Они обеспечивают не только разнообразные синаптические, но и несинаптические межклеточные взаимодействия, индуцируют трофико-плас-тические и структурные процессы, дифференцировку, рост, развитие как нейронов, так и различных иннервируемых ими клеточно-тканевых структур.

Могут образовываться патотрофогены (вещества, образующиеся как в нейронах, так и в периферических тканях различных эффекторных структур). Патотрофогены индуцируют устойчивые патологические изменения в регулируемых нейронами исполнительных клеточно-тканевых структурах. Обычно они возникают при значительных, грубых повреждениях не только нейронов, но и регулируемых ими тканей, сопровождающихся нарушениями их структурных, метаболических и физиологических процессов. Нейродистрофический процесс усиливается при возникновении расстройств гемо- и лимфоциркуляции, энергетического и пластического видов обмена и различных трофических нарушений, возникающих как при органических (необратимых) повреждениях разных структур нейронов и нервных центров, так и при функциональных (обратимых) их изменениях (например, при неврозах).

==============================================================

Нейродистрофический процесс - это комплекс трофических нарушений в органах и тканях, возникающий при повреждении периферических нервов или других структур нервной системы. Особенно тяжелые нарушения развиваются при повреждении афферентных волокон и нервов.

Нейродистрофический процесс характеризуется следующими признаками :

1) структурными нарушениями - развитием язв на коже и слизистых оболочках, атрофией мышц, дистрофическими изменениями тканей, явлениями дегенерации и гибели клеток; 588

2) функциональными изменениями - повышением чувствительности денервированных структур к действию гуморальных факторов (закон Кеннона);

3) расстройствами обмена веществ - угнетением активности одних ферментов и повышением активности других, активацией биохимических процессов, характерных для эмбрионального периода развития.

В патогенезе нейрогенной дистрофии, развивающейся при травме периферического нерва, главную роль играют следующие факторы (по Н.Н.Зайко).

1. Прекращение поступления информации от денервированного органа в нервный центр (регионарный узел, спинной или головной мозг) и отсутствие корригирующих трофических влияний по сохранившимся нервам.

2. Прекращение выработки нервом нейрогормонов, в том числе и тех, которые приносятся к клетке посредством аксоплазматического тока.

3. Патологическая импульсация из центральной культи перерезанного нерва, усугубляющая нарушение функции нервных центров и возникшие на периферии нарушения обмена.

4. Проведение патологической импульсации перерезанным чувствительным нервом в обратном направлении (антидромно).

5. Изменения генетического аппарата клетки в денервированном органе и нарушение синтеза белков, приводящие к появлению веществ антигенной природы. Иммунная система при этом отвечает реакцией отторжения.

6. Неадекватные реакции, чаще всего повышенные, на биологически активные вещества, лекарственные препараты и другие гуморальные воздействия (закон денервации Кеннона). Например, после перерезание блуждающего нерва мышечная оболочка желудка становится более чувствительной к влиянию нервных медиаторов. Кроме того, в ней наблюдаются необычные изменения обмена веществ в ответ на действие некоторых гормонов.

7. Травмирующие воздействия среды (механическая травма, инфекция), способствующие более быстрому развитию трофических нарушений в денервированных тканях.

=======================================================

МЕСТНЫЕ ФАКТОРЫ

Из комплекса местных факторов, влияющих на состояние тканей пародонта, следует выделить: зубные отложения, микрофлору зубной бляшки, неравномерные нагрузки на ткани пародонта, аномалии прикуса, травматическую окклюзию, несанированную полость рта, неполноценные пломбы (супраконтакт, нависающий край пломбы или искусственной коронки), дефекты пртезирования, ортодонтические аппараты, вредные привычки, неправильное расположение уздечек губ и языка, физические воздействия (ожог, ионизирующее излучение), химические вещества (кислоты, щёлочи).

Зубные отложения. Развитие воспалительных изменений в пародонте является следствием повреждающего влияния зубной бляшки.

Различают мягкие неминерализованные – пелликула, зубная бляшка, белое вещество(мягкий зубной налёт, пищевые остатки) зубные отложения и твердые минерализованные - зубной над- и поддесневой камень зубные отложения.

Пелликула – это приобретенная тонкая органическая пленка, пришедшая на смену кутикуле. Пелликула свободна от бактерий, она является производным слюнных гликопротеинов, которые избирательно адсорбируют на поверхности эмали. Пелликула является мембраной, которая придаёт эмали избирательную проницаемость. Механизму образования пелликулы способствуют электростатические силы (силы Ван- дер- Ваальса), обеспечивающие крепкую связь поверхности гидроксиапатитов эмали зубов с положительно заряженными компонентами слюны или десневой жидкости.

Зубная бляшка представляет собой мягкое аморфное гранулированное образование, скапливающееся на зубах, пломбах, протезах. Она плотно прилипает к их поверхности и отделяется только путем механической очистки.

В малых количествах бляшка не видна, но когда ее скапливается много, она приобретает вид массы серого или желто-серого цвета. Бляшка образуется в равной степени на верхней и нижней челюстях, больше - на вестибулярных поверхностях боковых зубов и язычных поверхностях нижних фронтальных зубов.

Зубная бляшка состоит главным образом из пролиферирующих микроорганизмов, эпителиальных клеток, лейкоцитов и макрофагов. Она на 70% состоит из воды, в сухом остатке 70% составляют микроорганизмы, остальное - межклеточный матрикс. Матрикс в свою очередь состоит из комплекса гликозаминогликанов, в котором главными компонентами являются углеводы и протеины (примерно по 30% каждый), липиды (15%), а остальное составляют продукты жизнедеятельности бактерий бляшки, остатки их цитоплазмы и клеточной мембраны, пищи и производные слюнных гликопротеинов. Главными неорганическими компонентами матрикса бляшки являются кальций, фосфор, магний, калий и в малых количествах натрий.



Зубная бляшка - это в основном высокоупорядоченное бактериальное образование, кото-рое характеризуется прогрессирующим ростом и довольно прочно присоединяется к твердым тка-ням зубов. Начинает формироваться зубная бляшка уже через 2ч после чистки зубов. Она образуе-тся и созревает в течение непродолжительного времени – до трёх недель.

В процессе формирования зубной бляшки различают три основные фазы:

1-я фаза – формирование пелликулы, которая покрывает поверхность зуба.

2-я фаза – первичное микробное обсеменение.

3-я фаза – вторичное микробное обсеменение и сохранение бляшки.

Первичное микробное обсеменение происходит уже в первые часы образования пеликулы. Первичный покрывающий пелликулу слой составляют Act. viscosus и Str. sanguis, за счёт наличия у них специальных адгезивных молекул, с помощью которых эти микроорганизмы избирательно прикрепляются к аналогичным адгезивным очагам на пелликуле. У Str. sanguis такими адгезивными участками являются молекулы декстрана, у Act. viscosus – это белковые фимбрии, которые прикрепляются к белкам пролина на пелликуле. Сначала микроорганизмы присоединяются и прикрепляються к поверхности пелликулы, затем начинают размножаться и образовывать колонии. При вторичной микробной колонизации появляються новые пародонтопатогенные микроорганизмы: Prevotella intermedia, Fusobacteria nucleatum, Porphyromonas gingivalis, Capnocytophaga saprofytum. В течение нескольких дней происходит увеличение кокков(их популяций) и возрастания количества грамотрицательных штаммов: кокков, палочек, веретенообразных бактерий(спирилл и спирохет). Стрептококки составляют приблизительно 50% бактериальной флоры бляшки. Важную роль в возникновении зубной бляшки играют микроорганизмы, способные ферментировать (синтезировать) углеводы с образованием полисахаридов, декстранов, леванов, характеризующихся адгезией к твердым тканям зубов. Эти продукты формируют сетчатую структуру зубной бляшки.

По мере развития зубной бляшки изменяется и её состав. Сначала преобладают аэробные микроорганизмы, позже – по мере созревания бляшки – анаэробные.

В последние годы многие учёные рассматривают зубную бляшку как биоплёнку. Сущность нового похода состоит в следующем: в соответствии с очерёдностью внедрения микроорганизмов в состав бляшок последними её заселяют нитевидные и веретенообразные формы, выделяющие экзополисахариды, которые образуют вязкую субстанцию. Таким образом, все входящие в состав бляшки микробы оказываются изолированными от других микробных ассоциаций. В таком состоянии эта биоплёнка (или бляшка) имеет прямой доступ к питанию, а значит, к размножению и реализации своего повреждающего потенциала на прилежащие мягкотканные образования (в частности, на клетки соединительного эпителия). Более того, входя в состав биоплёнок, бактерии обретают новые свойства за счёт обмена генной информацией между колониями, в частности приобретают большую вирулентность и в то же время резистентность к антибактериальным воздействим.

Состав зубных бляшек сильно варьирует у разных индивидуумов. Одна из причин-это разное поступление с пищей углеводов, которые способствуют накоплению в бляшке органических кислот.

По мере роста и организации бляшки в ней возрастает количество микроорганизмов примерно до 70-80 % ее массы.

Зрелая бляшка имеет довольно организованную структуру и состоит из: 1) приобретенной пелликулы, обеспечивающей связь бляшки с эмалью; 2) слоя палисадникообразно размещенных волокнистых микроорганизмов, которые оседают на пелликулу; 3) густой сетки волокнистых микроорганизмов, в которых имеются колонии других видов микробов; 4) поверхностного слоя коккоподобных микроорганизмов.В зависимости от расположения по отношению к десневому краю различают наддесневые (коронковые и маргинальные) и поддесневые бляшки. Поддесневую бляшку подразделяют на 2 части: связанную с зубом и связанную с эпителием. Бактерии из поддесневой бляшки, связанной с эпителием, могут легко проникать в соединительную ткань десны и альвеолярной кости.

Бактерии бляшки используют питательные вещества (легкоусвояемые углеводы -сахарозу, глюкозу, в меньшей степени - крахмал) для образования компонентов матрикса, состоящего в основном из полисахаридно-протеинового комплекса. В очень незначительных количествах в бляшке содержатся неорганические вещества, в основном кальций и фосфор, следы магния, калия и натрия.. Скорость образования бляшки зависит от характера питания, гигиенического состояния полости рта, свойств слюны, но в среднем для созревания бляшки необходимо около 30 дней. По мере роста бляшка распространяется под десну, вызывая раздражение тканей пародонта, повреждение эпителия и развитие воспаления подлежащих тканей. Выделяемые микроорганизмами бляшки эндо- и экзотоксины оказывают токсическое действие на ткани пародонта, нарушают клеточный обмен, вызывают вазомоторные расстройства, сенсибилизацию тканей пародонта и организма в целом.

Микроорганизмы бляшки в результате активного выделения разнообразных ферментов (гиалуронидаза, хондроитинсульфатаза, протеазы, глюкуронидаза, коллагеназа) обладают выраженной протеолитической активностью). Эти ферменты, вызывают деполимеризацию гликозаминогликанов, белков тканей пародонта, и в первую очередь коллагена, способствуют развитию микроциркуляторных нарушений в пародонте.

Повышенному образованию зубных бляшок способствуют ротовое дыхание, курение, мягкая консистенция пищи, чрезмерное потребление легкоусвояемых углеводов, неудовлетворительная гигиена полости рта.

Белый вещество (мягкий зубной налет) - это поверхностное приобретенное образование на зубах, покрывающее пелликулу.неимеющее постоянной внутренней структуры которая наблюдается в бляшке. Его раздражающее действие на десну связано с бактериями и продуктами их жизнедеятельности. Он представляет собой желтое или серовато-белое мягкое и липкое отложение, менее плотно прилегающее к поверхности зуба, чем зубная бляшка. Наибольшее количество зубного налета находится у шеек зубов, в межзубных промежутках, на контактных поверхностях и на щечных поверхностях коренных зубов. Налет довольно легко снимается ватным тампоном, струей воды, зубной щеткой и стирается при пережевывании твердой пищи.

В основном налет состоит из конгломерата пищевых остатков (пищевого дебриса), микроорганизмов, постоянно слущивающихся эпителиальных клеток, лейкоцитов и смеси слюнных протеинов и липидов. Зубной налет содержит неорганические вещества - кальций, фосфор, натрий, калий, микроэлементы - железо, фтор, цинк и органические компоненты - белки, углеводы, протеолитические ферменты. Основную массу зубного налета составляют микроорганизмы: в 1 мг налета их может содержаться до нескольких миллиардов.

Интенсивность образования и количество зубного налета зависят от многих факторов: количества и качества пищи, вязкости слюны, характера микрофлоры, степени очищения зубов, состояния тканей пародонта. При повышенном употреблении углеводов скорость образования налета и его количество увеличиваются.

Механизм образования зубного налета:

1. стадия – образование пелликулы (толщина от 1до 10 мкм);

2. стадия - адсорбция на поверхности пелликулы протеинов, микроорганизмов и эпителиальных клеток;

3. стадия - зрелой зубной бляшки (толщина до 200 мкм);

4. стадия - переход мягкого зубного налета в зубной камень. Это происходит в том случае, когда в зрелом зубном налёте создаются условия анаэробиоза, происходит изменение состава микроорганизмов (смена аэробов анаэробами), снижение продукции кислоты и увеличение pH, накопление Са и его отложение в виде фосфорнокислых солей.

Пищевые остатки – это четвертый слой неминерализованных зубных отложений. Частички пищи располагаются в ретенционных пунктах. При употреблении мягкой пищи, остатки ее подвергаются брожению, гниению, а получаемые при этом продукты способствуют метаболической активности микроорганизмов зубной бляшки.

Зубной камень. Со временем в зубной бляшке повышается концентрация неорганических веществ, и она становится матрицей для образования зубного камня. Преобладающий в бляшке кальция фосфат импрегнирует ее коллоидную основу, изменяя соотношение между гликозаминогликанами, микроорганизмами, слущенным эпителием, лейкоцитами.

Зубной камень преимущественно локализуется в пришеечной области зубов (вестибулярная, язычная поверхность) ретенционных пунктах, на поверхности зубов прилегающих к выводным протокам слюнных желез, под маргинальным краем десны.

В зависимости от локализации относительно десневого края различают наддесневой и поддесневой зубной камень. Они отличаются механизмом образования, локализацией, твёрдостью и влиянием на развитие патологических процессов в полости рта. Минеральные компоненты (кальций, фосфор, магний, карбонаты, микроэлементы) проникают в наддесневой зубной камень из ротовой жидкости, а в поддесневой - из сыворотки крови. Примерно 75% из них составляет фосфат кальция, 3% карбонат кальция, остальное - фосфат магния и следы разных металлов. В основном неорганическая часть зубного камня имеет кристаллическую структуру и представлена гидроксиапатитом. В зависимости от количества минеральных веществ изменяется консистенция зубного камня, при 50-60% минеральных соединений - мягкая, 70-80% - средняя, более 80%- твердая.

Органическую основу зубного камня составляет конгломерат протеин-полисахаридного комплекса, десквамированных эпителиальных клеток, лейкоцитов и различных видов микроорганизмов. Значительную часть составляют углеводы, представленные галактозой, глюкозой, глюкуроновой кислотой, протеины и аминокислоты.

В строении зубного камня выделяют поверхностную зону бактериального налета без признаков минерализации, промежуточную зону с центрами кристаллизации и зону собственно зубного камня. Наличие большого количества бактерий (их ферментативне свойства) в зубном камне объясняет его выраженное сенсибилизирующее, протеолитическое и токсическое действие, что способствует развитию микроциркуляторных нарушений в пародонте и вызывает деструкцию соединительной ткани.

По структурным признакам твердые зубные отложения делятся на: кристаллически-зернистые, концентрически-скорлуповидные и колломорфные.

Наддесневой зубной камень (слюнной) встречается чаще, образуется вследствие минерализации мягких зубных отложений. Он обычно белого или беловато-желтого цвета, твердый или глинообразной консистенции, легко обнаруживается при осмотре. Цвет часто зависит от курения или пищевых пигментов. Существует несколько теорий образования наддесневого зубного камня: слюнная, коллоидная, микробная.

Поддесневой зубной камень располагается под маргинальной десной, в десневых пародонтальных карманах, на цементе корня. Он обычно не виден при визуальном обследовании. Для его обнаружения необходимо зондирование. Он плотный и твердый, темно-коричневого цвета и плотно прикреплен к поверхности зуба. Поддесневой зубной камень образуется в результате коагуляции белковых и минеральных веществ сыворотки крови и воспалительногоэкссудата в пародонте.

Зубной камень (особенно поддесневой) оказывает выраженное механическое повреждающее действие на пародонт, способствует развитию местного С-гиповитаминоза. В его составе обнаружены окислы металлов (ванадия, свинца, меди), оказывающие выраженное токсическое действие на пародонт. На поверхности зубного камня всегда имеется определенное количество неминерализованных бляшек, которые являются важнейшими раздражителями тканей пародонта и во многом определяют характер патогенного действия зубного камня. Механизм повреждающего действия зубного камня на пародонт в значительной мере связан с действием микрофлоры, содержащейся в нём.

Микрофлора. В полости рта постоянно проживает около 400 штаммов разнообразных микроорганизмов, но только около 30 из них могут рассматриваться как условно-патогенные для тканей пародонта.

Микроорганизмы значительно варьируют по способности прикрепляться к различным поверхностям в полости рта. Так, Streptococcus mutans, S. sanguis, штаммы Lastobacillus, Actinomyces viscosus охотно прикрепляются к эмали зубов. Streptococcus salivarius, Actinomyces naeslundii населяют спинку языка, тогда как Bacteroides и спирохеты обнаруживаются в десневых бороздах и пародонтальных карманах. Такие виды микроорганизмов, как Streptococcus mutans, S.sanguis, S.mitis, S.salivarius, штаммы Lactobacillus, обладают способностью образовывать внеклеточные полимеры из пищевых углеводов. Эти экстрацелллярные полисахариды нерастворимы в воде и значительно усиливают адгезию микроорганизмов, а следовательно, и зубной бляшки к поверхности зубов. Они приклеиваются к поверхности пелликулы и в дальнейшем друг к другу, обеспечивая рост бляшки.

Кроме плотно прикреплённой к зубу бляшки существуют рыхлые микробные скопления на стенках внутри кармана. Роль зубной бляшки и неприкреплённых микроорганизмов в развитии патологического процесса неодинакова: доминирует влияние бляшки, но в ряде случаев именно рыхло прикреплённые микроорганизмы играют значительную роль в течении агрессивных форм пародонтита и в наступлении фазы обострения.

В полости рта имеется значительное количество различных факторов, подавляющих рост микрофлоры. В первую очередь это слюна, которая содержит такие вещества как лизоцим, лактопероксидазу, лактоферрин. Иммунные компоненты, такие как IgA, секретируются слюнными железами и попадают в полость рта препятствуя прикреплению микроорганизмов к поверхности твердых тканей зубов и клеточным мембранам.

Базальная мембрана также рассматривается как довольно мощный барьер на пути проникновения микроорганизмов, но при нарушении ее целости бактерии сравнительно легко проникают в глубь тканей пародонта. Входными воротами для микрофлоры являются нарушение целости (изъязвление) прикрепления эпителия борозды к твердым тканям зубов.

Ткани пародонта полноценно функционируют при наличии равновесия между резистентностью организма человека и вирулентностью бактерий. Некоторые виды микроорганизмов имеют способность преодолевать защиту хозяина и проникать в пародонтальный карман и даже в соединительную ткань десны. Бактерии могут повреждать ткани хозяина посредством прямого действия своих токсинов, ферментов, токсических продуктов метаболизма или же опосредованно путем стимулирования ответных реакций хозяина, при которых происходит повреждение его же тканей пародонта.

Микробная популяция, которая формируется на поверхности зубов в виде бляшек, значительно отличается от микроорганизмов, обнаруживаемых на поверхности слизистой оболочки полости рта. Микроорганизмы, проникающие в полость рта, вначале контактируют со слюной или с поверхностями, покрытыми слюной. Поэтому они легко смываются ею, если не имеют способности адгезии к поверхности зубов. Следовательно, адгезивность рассматривается как важное свойство и основной фактор условно-патогенной микрофлоры полости рта. Если возникают какие-либо изменения в организме хозяина или собственно в микроорганизмах, находящихся в симбиозе, это приводит к значительному нарушению среды обитания микробов в полости рта. Возникшие новые условия требуют адаптации организма хозяина и микробов, поэтому обычно полость рта заселяется новыми штаммами микроорганизмов, более приспособленными к сложившимся условиям. Такой феномен носит название бактериальной наследственности и занимает важное место в патогенезе гингивитов и пародонтитов.

Имеется достаточное количество наблюдений, подтверждающих специфичность комплекса микроорганизмов, которые связаны с данным заболеванием или наиболее часто выделяются при различных видах заболеваний пародонта человека, различном течении генерализованного пародонтита. Это происходит несмотря на довольно различные причины возникновения заболеваний и, по-видимому, отображает определенные, более или менее одинаковые условия, которые возникают в это время в пародонте

Микробиологическими исследованиями при этом определяется комплекс наиболее часто высеваемых из пародонтальных карманов микроорганизмов.

Это позволило составить своего рода классификацию пародонтальных микробных комплексов.

Различают: красный, зеленый, желтый, пурпурный, оранжевый микробные комплексы.

Красный комплекс (P. gingivalis, B.forsitus, T. denticole). Сочетание этих микроорганизмов отличается особым агрессивным воздействием на пародонт.

Присутствие этого комплекса обусловливает сильную кровоточивость десен и быстрое течение деструктивных процессов в пародонте.

Зеленый комплекс (Е. corrodent, Capnocytophaga spp., A. actinomycetemcomitans). Основным фактором вирулентности A. actinomycetemcomitans является лейкотоксин, вызывающий лизис нейтрофилов. Это сочетание микробов может явиться причиной как заболеваний пародонта, так и прочих поражений слизистой оболочки полости рта и твердых тканей зубов.

Желтый комплекс (S. mitis, S. israilis, S. sanguis).

Пурпурный комплекс (V. parvula, A. odontolyticus).

Оранжевый комплекс (P. nigrescen, Prevotella intermedia, P. micros, С. rectus + Campylobacter spp.). Prevotella intermedia продуцирует фосфолипазу А, нарушает целостность мембран эпителиальных клеток, является активным продуцентом гидролитических протеаз, расщепляющих белки пародонтальных тканей и тканевой жидкости на полипептиды, вырабатывает протеолитические ферменты, поэтому играет главную роль в образовании пародонтальных абсцессов.

Эти три комплекса также способны вызывать поражения пародонта и другие заболевания полости рта.

Выделение этих комплексов не означает, что в их состав входят только перечисленные виды микроорганизмов, но именно эти сообщества видов являются наиболее устойчивыми.

Возможной причиной устойчивости именно таких микробных сочетаний является их существование в виде вязких биопленок по принципу вышеупомянутого «удобства» их метаболизма, когда продукты, выделяемые одними, являються питательными источниками для других микробов либо обеспечивают их повышенную устоичивость и вирулентность.

Перечисленные микробные ассоциации находяться в составе стабильных зубных бляшек, прикреплённых к поверности зуба или к стенкам пародонтального кармана. При этом состав свободно расположенных микробных скоплений внутри пародонтального кармана может быть совсем иным.

Пародонтогенные микроорганизмы выделяют ряд различных патогенных факторов, вызывающих разрушение тканей пародонта, а именно: лейкотоксины, эндотоксины (липополисахариды), липоевую кислоту, резорбирующий фактор,капссулярный материал, разные короткоцепочные жирные кислоты. Эти бактерии так же выделяют энзимы:коллагеназу, трипсиновые протеазы, кератиназу, нейраминазу,арилсульфатазу. Данные ферменты способны лизировать разные компоненты клеток тканей пародонта. Их действие усиливается при сочетании с ферментами, которые выделяют аккумулированные на клетках пародонта лейкоциты.

Первичной реакцией десны на совокупное действие этих факторов и, в первую очередь, медиаторов воспаления, является развитие гингивита. Патологические изменения при гингивите обратимы, однако длительное поддержание воспаления приводит к усилению проницаемости гистогематических барьеров, значительному увеличению миграции лейкоцитов и инфильтрации ими тканей пародонта, взаимодействию бактериальных антигенов с антителами, усилению секреции лизосомальных ферментов лейкоцитами. Последующая бласттрансформация лимфоцитов, приводящая к образованию плазматических клеток и тканевых базофилов, стимуляции секреции лимфокинов и активации остеокластов, определяет развитие деструктивных процессов в мягких и твердых тканях пародонта.

Развитие пародонтита находится в прямой зависимости от количества зубного налета и общей микробной обсемененности полости рта и в обратной – от эффективности гигиенических мероприятий.

Травматическая окклюзия. Состояния, при которых на пародонт действуют нагрузки, превышающие его резервные компенсаторные возможности и приводящие к его повреждению, получили название «функциональная травматическая перегрузка», «окклюзионная травма», «травма в результате окклюзии», «травматическая окклюзия». Возможны различные причины возникновения и механизмы развития травматической окклюзии. Если избыточное повреждающее жевательное давление действует на зубы со здоровым, непораженным патологическим процессом пародонтом, то такую травматическую окклюзию определяют как первичную . Первичная травматическая окклюзия может возникнуть при травматической перегрузке зубов вследствие повышения прикуса (пломбой, коронкой, каппой, ортодонтическим аппаратом), аномалий прикуса и отдельных зубов, при потере многих зубов, патологической стираемости. Довольно часто первичная травматическая окклюзия возникает в результате парафункций: бруксизм, тонические рефлексы жевательных мышц, сдавливание между зубами язика. Травматическая перегрузка возникает при смещениях нижней челюсти вследствие потери зубов, неправильного протезирования. Таким образом, первичная травматическая окклюзия возникает в результате действия на зубы чрезмерной (по сравнению с нормальной, физиологической) жевательной нагрузки или изменении ее направления. Необходимо отметить, что первичная травматическая окклюзия является обратимым патологическим процессом.

С другой стороны, на фоне патологического процесса в тканях пародонта обычная нормальная жевательная загрузка может превышать резервные силы пародонта. В результате резорбции альвеолярной кости и волокон периодонта зуб не может сопротивляться тому обычному жевательному давлению, которое он мог вынести с интактным пародонтом. Эта привычная окклюзионная нагрузка начинает превышать толерантность его структур и превращается из физиологической нагрузки в фактор, травмирующий и разрушающий ткани пародонта. При этом. изменяется соотношение между высотой клинической коронки и длиной корня, что вызывает значительную перегрузку костных стенок альвеолы. Это приводит к перегрузке пародонта и ускоряет резорбцию костной ткани лунок. Такая травматическая окклюзия определяется как вторичная . Она наиболее часто встречается при генерализованном пародонтите. Образуется замкнутый круг, патологических изменений: травматическая окклюзия возникает на фоне изменений пародонта и в последующем она же способствует дальнейшему прогрессированию разрушения альвеолярной кости и других тканей пародонта. Обычно при вторичной травматической окклюзии происходит резорбция тканей пародонта (периодонт, кость альвеолярного отростка) и твердых тканей зубов (цемент, дентин).

Неблагоприятное воздействие травматической окклюзии усиливается при удалении зубов. При потере или удалении зубов исчезает сопротивление со стороны соседних зубов, которое компенсирует определенную горизонтальную составляющую жевательной нагрузки. Такие зубы начинают воспринимать нагрузку изолированно, а зубные ряды перестают действовать как единая система. Возникающая перегрузка таких зубов приводит к их наклону в сторону дефекта зубного ряда. Это приводит к атрофией кости альвеолярного отростка в месте приложения избыточного жевательного давления

При длительно существовующей патологической ситуации изменяется рефлекторная деятельность жевательных мышц, и этот рефлекс закрепляется. Неправильные движения нижней челюсти, при которых некоторые участки зубных рядов не подвергаются жевательной нагрузки, а другие, наоборот, перегружены, приводят к изменению височно-нижнечелюстных суставов.

Характеризуя в целом это патологическое состояние, нужно отметить, что под травматической окклюзией понимают такие окклюзионные взаимоотношения отдельных групп зубов или зубных рядов, которые характеризуються преждевременным и неустойчивым их смыканием, неравномерным распределением жевательного давления с последующей миграцией перегруженных зубов, патологическими изменениями пародонта, нарушениями функции жевательных мышц и височно-нижнечелюстных суставов.

Иногда как отдельную форму выделяют комбинированную травматическую окклюзию. При этом выявляются признаки как первичной, так и вторичной травматической окклюзии.

Аномалии прикуса и положения отдельных зубов оказывают значительное повреждающее действие на ткани пародонта. Выраженные изменения развиваются при глубоком прикусе во фронтальном участке зубного ряда, так как эти участки перегружены при вертикальных и горизонтальных движениях нижней челюсти. При дистальном прикусе это усугубляется возникающей значительной горизонтальной перегрузкой зубов, что в последующем проявляется в веерообразном расхождении верхних фронтальных зубов. При медиальном, наоборот, их смещение происходит в нёбную сторону. Во фронтальном участке нижней челюсти отмечается смещение зубов и их скученность. В этих участках отмечается значительное скопление остатков пищи, микроорганизмов, образование зубных бляшек и зубного камня.

Развитие воспалительных процессов в пародонте при аномалиях положения зубов и патологии прикуса связано с нарушением нормального функционирования пародонта - перегрузкой одних его участков и недогрузкой других.

Выраженность этих патологических изменений в пародонте зависит от тяжести аномалии прикуса и отдельных зубов.

Несанированная полость рта , в которой имеется множество пораженных кариесом зубов, представляет собой целый комплекс повреждающих пародонт факторов. В кариозных полостях скапливаются остатки пищи, в области этих зубов отмечается образование значительного количества зубных отложений.

Особенно неблагоприятное действие на ткани оказывают кариозные полости, расположенные в пришеечной области и на контактных поверхностях боковых зубов. Повреждающее действие последних усиливается отсутствием в этих участках контактного пункта: остатки пищи проталкиваются при жевании вглубь, травмируют десну и другие ткани пародонта. Примерно такое же неблагоприятное действие на ткани пародонта оказывают неправильно запломбированные кариозные полости на контактных поверхностях зубов, особенно с нависающими на десневой сосочек краями. Под ними скапливаются остатки пищи, образуются зубные отложения и создаются, таким образом, условия для возникновения и прогрессирования патологического процесса в пародонте.

Аналогично влияют на пародонт неправильно изготовленные искусственные коронки, мостовидные и съемные протезы. Повышающие прикус пломбы и несъемные протезы дополнительно вызывают перегрузку зубов при жевательных движениях нижней челюсти. Это приводит к развитию травматической окклюзии и возникновению в этих участках травматических узлов.

Аномалии анатомического строения тканей десны , слизистой оболочки и полости рта в целом также оказывают неблагоприятное воздействие на ткани пародонта. Так, высокое прикрепление уздечек губ или языка приводит к тому, что при их движениях десна отрывается от шеек зубов. При этом возникает постоянно действующее напряжение в области прикрепления десны к шейкам зубов, еще точнее, прикрепления эпителия десневой борозды к твердым тканям зубов. В последующем в этих участках целостность эпителиального прикрепления нарушается, образуется вначале щель, а затем и пародонтальный карман. Примерно такой же механизм повреждающего действия на пародонт при мелком преддверии полости рта.

При длительной механической перегрузке зубов происходит набухание и деструкция коллагеновых волокон, снижается минерализация костных структур, а затем возникает их резорбция.

Значительно усиливается действие микроорганизмов на фоне нарушенной трофики тканей пародонта. Это происходит при нарушении строения мягких тканей преддверия полости рта или при налички «тянущих» тяжей слизистой оболочки.

Вредные привычки сосания или прикусывания языка, мягких тканей полости рта, каких-либо посторонних предметов оказывают повреждающее действие на ткани пародонта. Привычное кусание посторонних предметов создает небольшую по силе, но постоянно действующую травматическую перегрузку зубов этого участка Прикусывание мягких тканей, например щеки, вызывает дополнительное натяжение ее тканей. Через слизистую оболочку переходной складки оно передается на ткани десны и способствует ее отрыву от твердых тканей зубов. Это в дальнейшем приводит к накоплению на таких участках остатков пищи, образованию зубных отложений.

Местные раздражители.

Кроме зубных отложений, в полости рта есть ряд различных факторов, которые могут вызвать механическую травму, химическое и физическое повреждение тканей пародонта.

Механическими раздражителями могут быть разные инородные тела, которые (особенно у детей) могут легко травмировать десну. Острое повреждение возможно при неосторожном пользовании твердыми предметами (твердыми частями пищи, зубочистками, зубными щетками, у детей -детали игрушек), травмах (ушибе, ударе) челюстно-лицевой области.

Частой причиной воспалительных заболеваний пародонта является хроническая травма острыми краями кариозных полостей (особенно локализованных в пришеечной области или на контактных поверхностях), нависщими краями неполноценных пломб, неполноценными зубными протезами.

У подростков нередко наблюдают острую травму пародонта вследствие травм зубов, их вывиха или подвывиха, ушиба челюстей. В таких случаях обычно развивается локализованный пародонтит.

Химические повреждающие факторы связаны с действием на пародонт различных кислот, оснований (щелочей), химических лекарственных препаратов, компонентов пломбировочных материалов. В связи с расширением арсенала средств бытовой химии отмечаются химические ожоги слизистой оболочки и пародонта, особенно у детей. В зависимости от характера химических веществ, их концентрации и длительности контакта со слизистой оболочкой полости рта развивается или катаральное воспаление, или некроз десны, а в тяжелых случаях - глубокие поражения пародонта с некрозом альвеолярной кости. Обычно более тяжелые поражения возникают при ожогах основаниями, которые в отличие от кислот вызывают развитие колликвационного некроза тканей.

Физические факторы . К ним относится повреждение пародонта при воздействии на него высокой или очень низкой температуры, электрического тока, ионизирующей радиации.. В бытовых условиях возможны ожоги пародонта горячей водой, пищей. В зависимости от температуры, продолжительности действия раздражителя когут, возраста пострадавшего, степень тяжести изменений в пародонте может быть различной: от катарального воспаления до глубоких деструктивных повреждений (язвы, некроз тканей).

При повреждении тканей электрическим током обычно происходит нарушение целости тканей десны, в тяжелых случаях - некроз поверхностных и глубоких тканей пародонта. Причиной воспалительных изменений десен могут быть микротоки, возникающие между частями зубных протезов (металлическими пломбами), изготовленными из разных металлов. В последнем случае возможна комбинация электротермического и электрохимического воздействия на ткани пародонта.

Влияние ионизирующей радиацией возможно при инкорпорировании в полость рта радиоактивных веществ, случайном попадании пострадавших в зоны повышенной радиации, при лучевой терапии новообразований челюстно-лицевой области. В зависимости от вида ионизирующего излучения и его дозы возможны различные варианты клинического течения поражения: от катарального воспаления до обширных эрозивно-язвенных поражений и некроза тканей пародонта.

Общие факторы:

Поражения пародонта связаны с целым рядом общих факторов: генетическая прерасположенность, иммунодефицит, возрастные изменения, беременность, диабет. Итоговым результатом их действия является усиление процессов деструкции и ослабление, замедление процессов репарации. Системные заболевания более правомерно рассматривать в качестве отягощающих развитие заболеваний пародонта или влияющих на их патогенез.

Нейротрофические нарушения.

Болезни пародонта как нервно-дистрофический процесс обосновали в своих работах в 30-60 годах прошлого столетия Д.А. Энтин, Е.Е. Платонов, И.О. Новик, Э.Д. Бромберг, М.Г. Бугайова и современные учёные – Н.Ф. Данилевский, Л.М. Тарасенко, Л.А. Хоменко, Т.А. Петрушанко.

Рядом работ Д.А.Энтин экспериментально подтвердил роль центральной нервной системы в возникновении генерализованного пародонтита. Раздражая область серого бугра, он впервые получил в тканях пародонта дистрофические изменения, подобные генерализованному пародонтиту у человека. В основе этих изменений лежат органические и функциональные расстройства центральной нервной системы, которые усиливаются при неблагоприятных условиях внешней среды (например, гиповитаминоз С).

Н.Ф. Данилевский в експериментах на обезьянах использовал физиологический раздражитель – экспериментальный невроз, вызванный нарушением полового и стадного рефлексов.